

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	CIP-51 8051
Core Size	8-Bit
Speed	50MHz
Connectivity	I ² C, SMBus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	29
Program Memory Size	16KB (16K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2.25K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 20x10/12b SAR; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-UFQFN Exposed Pad
Supplier Device Package	32-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm8bb31f16g-b-qfn32

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

EFM8BB3 Data Sheet Ordering Information

Ordering Part Number	Flash Memory (kB)	RAM (Bytes)	Digital Port I/Os (Total)	Voltage DACs	ADC0 Channels	Comparator 0 Inputs	Comparator 1 Inputs	Pb-free (RoHS Compliant)	Temperature Range	Package
EFM8BB31F64G-B-QSOP24	64	4352	21	4	13	6	7	Yes	-40 to +85 °C	QSOP24
EFM8BB31F32G-B-QFN32	32	2304	29	2 ¹	20	10	9	Yes	-40 to +85 °C	QFN32
EFM8BB31F32G-B-QFP32	32	2304	28	2 ¹	20	10	9	Yes	-40 to +85 °C	QFP32
EFM8BB31F32G-B-QFN24	32	2304	20	2 ¹	12	6	6	Yes	-40 to +85 °C	QFN24
EFM8BB31F32G-B-QSOP24	32	2304	21	2 ¹	13	6	7	Yes	-40 to +85 °C	QSOP24
EFM8BB31F16G-B-QFN32	16	2304	29	2 ¹	20	10	9	Yes	-40 to +85 °C	QFN32
EFM8BB31F16G-B-QFP32	16	2304	28	2 ¹	20	10	9	Yes	-40 to +85 °C	QFP32
EFM8BB31F16G-B-QFN24	16	2304	20	2 ¹	12	6	6	Yes	-40 to +85 °C	QFN24
EFM8BB31F16G-B-QSOP24	16	2304	21	2 ¹	13	6	7	Yes	-40 to +85 °C	QSOP24
EFM8BB31F64I-B-QFN32	64	4352	29	4	20	10	9	Yes	-40 to +125 °C	QFN32
EFM8BB31F64I-B-QFP32	64	4352	28	4	20	10	9	Yes	-40 to +125 °C	QFP32
EFM8BB31F64I-B-QFN24	64	4352	20	4	12	6	6	Yes	-40 to +125 °C	QFN24
EFM8BB31F64I-B-QSOP24	64	4352	21	4	13	6	7	Yes	-40 to +125 °C	QSOP24
EFM8BB31F32I-B-QFN32	32	2304	29	2 ¹	20	10	9	Yes	-40 to +125 °C	QFN32
EFM8BB31F32I-B-QFP32	32	2304	28	2 ¹	20	10	9	Yes	-40 to +125 °C	QFP32
EFM8BB31F32I-B-QFN24	32	2304	20	2 ¹	12	6	6	Yes	-40 to +125 °C	QFN24
EFM8BB31F32I-B-QSOP24	32	2304	21	2 ¹	13	6	7	Yes	-40 to +125 °C	QSOP24
EFM8BB31F16I-B-QFN32	16	2304	29	2 ¹	20	10	9	Yes	-40 to +125 °C	QFN32
EFM8BB31F16I-B-QFP32	16	2304	28	2 ¹	20	10	9	Yes	-40 to +125 °C	QFP32
EFM8BB31F16I-B-QFN24	16	2304	20	2 ¹	12	6	6	Yes	-40 to +125 °C	QFN24
EFM8BB31F16I-B-QSOP24	16	2304	21	2 ¹	13	6	7	Yes	-40 to +125 °C	QSOP24

1. DAC0 and DAC1 are enabled on devices with 2 DACs available.

3.2 Power

All internal circuitry draws power from the VDD supply pin. External I/O pins are powered from the VIO supply voltage (or VDD on devices without a separate VIO connection), while most of the internal circuitry is supplied by an on-chip LDO regulator. Control over the device power can be achieved by enabling/disabling individual peripherals as needed. Each analog peripheral can be disabled when not in use and placed in low power mode. Digital peripherals, such as timers and serial buses, have their clocks gated off and draw little power when they are not in use.

Table 3.1. Power Modes

Power Mode	Details	Mode Entry	Wake-Up Sources
Normal	Core and all peripherals clocked and fully operational		
ldle	 Core halted All peripherals clocked and fully operational Code resumes execution on wake event 	Set IDLE bit in PCON0	Any interrupt
Suspend	 Core and peripheral clocks halted HFOSC0 and HFOSC1 oscillators stopped Regulator in normal bias mode for fast wake Timer 3 and 4 may clock from LFOSC0 Code resumes execution on wake event 	 Switch SYSCLK to HFOSC0 Set SUSPEND bit in PCON1 	 Timer 4 Event SPI0 Activity I2C0 Slave Activity Port Match Event Comparator 0 Falling Edge CLUn Interrupt-Enabled Event
Stop	 All internal power nets shut down Pins retain state Exit on any reset source	1. Clear STOPCF bit in REG0CN 2. Set STOP bit in PCON0	Any reset source
Snooze	 Core and peripheral clocks halted HFOSC0 and HFOSC1 oscillators stopped Regulator in low bias current mode for energy savings Timer 3 and 4 may clock from LFOSC0 Code resumes execution on wake event 	 Switch SYSCLK to HFOSC0 Set SNOOZE bit in PCON1 	 Timer 4 Event SPI0 Activity I2C0 Slave Activity Port Match Event Comparator 0 Falling Edge CLUn Interrupt-Enabled Event
Shutdown	 All internal power nets shut down Pins retain state Exit on pin or power-on reset 	1. Set STOPCF bit in REG0CN 2. Set STOP bit in PCON0	RSTb pin resetPower-on reset

3.3 I/O

Digital and analog resources are externally available on the device's multi-purpose I/O pins. Port pins P0.0-P2.3 can be defined as general-purpose I/O (GPIO), assigned to one of the internal digital resources through the crossbar or dedicated channels, or assigned to an analog function. Port pins P2.4 to P3.7 can be used as GPIO. Additionally, the C2 Interface Data signal (C2D) is shared with P3.0 or P3.7, depending on the package option.

The port control block offers the following features:

- Up to 29 multi-functions I/O pins, supporting digital and analog functions.
- · Flexible priority crossbar decoder for digital peripheral assignment.
- Two drive strength settings for each port.
- State retention feature allows pins to retain configuration through most reset sources.
- Two direct-pin interrupt sources with dedicated interrupt vectors (INT0 and INT1).
- Up to 24 direct-pin interrupt sources with shared interrupt vector (Port Match).

Universal Asynchronous Receiver/Transmitter (UART1)

UART1 is an asynchronous, full duplex serial port offering a variety of data formatting options. A dedicated baud rate generator with a 16-bit timer and selectable prescaler is included, which can generate a wide range of baud rates. A received data FIFO allows UART1 to receive multiple bytes before data is lost and an overflow occurs.

UART1 provides the following features:

- · Asynchronous transmissions and receptions
- Dedicated baud rate generator supports baud rates up to SYSCLK/2 (transmit) or SYSCLK/8 (receive)
- 5, 6, 7, 8, or 9 bit data
- Automatic start and stop generation
- Automatic parity generation and checking
- · Single-byte buffer on transmit and receive
- Auto-baud detection
- · LIN break and sync field detection
- CTS / RTS hardware flow control

Serial Peripheral Interface (SPI0)

The serial peripheral interface (SPI) module provides access to a flexible, full-duplex synchronous serial bus. The SPI can operate as a master or slave device in both 3-wire or 4-wire modes, and supports multiple masters and slaves on a single SPI bus. The slave-select (NSS) signal can be configured as an input to select the SPI in slave mode, or to disable master mode operation in a multi-master environment, avoiding contention on the SPI bus when more than one master attempts simultaneous data transfers. NSS can also be configured as a firmware-controlled chip-select output in master mode, or disable to reduce the number of pins required. Additional general purpose port I/O pins can be used to select multiple slave devices in master mode.

- Supports 3- or 4-wire master or slave modes
- · Supports external clock frequencies up to 12 Mbps in master or slave mode
- · Support for all clock phase and polarity modes
- 8-bit programmable clock rate (master)
- Programmable receive timeout (slave)
- · Two byte FIFO on transmit and receive
- · Can operate in suspend or snooze modes and wake the CPU on reception of a byte
- · Support for multiple masters on the same data lines

System Management Bus / I2C (SMB0)

The SMBus I/O interface is a two-wire, bi-directional serial bus. The SMBus is compliant with the System Management Bus Specification, version 1.1, and compatible with the I²C serial bus.

The SMBus module includes the following features:

- · Standard (up to 100 kbps) and Fast (400 kbps) transfer speeds
- · Support for master, slave, and multi-master modes
- Hardware synchronization and arbitration for multi-master mode
- · Clock low extending (clock stretching) to interface with faster masters
- · Hardware support for 7-bit slave and general call address recognition
- Firmware support for 10-bit slave address decoding
- · Ability to inhibit all slave states
- Programmable data setup/hold times
- · Transmit and receive FIFOs (one byte) to help increase throughput in faster applications

I2C Slave (I2CSLAVE0)

The I2C Slave interface is a 2-wire, bidirectional serial bus that is compatible with the I2C Bus Specification 3.0. It is capable of transferring in high-speed mode (HS-mode) at speeds of up to 3.4 Mbps. Firmware can write to the I2C interface, and the I2C interface can autonomously control the serial transfer of data. The interface also supports clock stretching for cases where the core may be temporarily prohibited from transmitting a byte or processing a received byte during an I2C transaction. This module operates only as an I2C slave device.

The I2C module includes the following features:

- Standard (up to 100 kbps), Fast (400 kbps), Fast Plus (1 Mbps), and High-speed (3.4 Mbps) transfer speeds
- · Support for slave mode only
- · Clock low extending (clock stretching) to interface with faster masters
- · Hardware support for 7-bit slave address recognition
- Transmit and receive FIFOs (two byte) to help increase throughput in faster applications
- · Hardware support for multiple slave addresses with the option to save the matching address in the receive FIFO

16-bit CRC (CRC0)

The cyclic redundancy check (CRC) module performs a CRC using a 16-bit polynomial. CRC0 accepts a stream of 8-bit data and posts the 16-bit result to an internal register. In addition to using the CRC block for data manipulation, hardware can automatically CRC the flash contents of the device.

The CRC module is designed to provide hardware calculations for flash memory verification and communications protocols. The CRC module supports the standard CCITT-16 16-bit polynomial (0x1021), and includes the following features:

- Support for CCITT-16 polynomial
- Byte-level bit reversal
- · Automatic CRC of flash contents on one or more 256-byte blocks
- · Initial seed selection of 0x0000 or 0xFFFF

Configurable Logic Units (CLU0, CLU1, CLU2, and CLU3)

The Configurable Logic block consists of multiple Configurable Logic Units (CLUs). CLUs are flexible logic functions which may be used for a variety of digital functions, such as replacing system glue logic, aiding in the generation of special waveforms, or synchronizing system event triggers.

- · Four configurable logic units (CLUs), with direct-pin and internal logic connections
- Each unit supports 256 different combinatorial logic functions (AND, OR, XOR, muxing, etc.) and includes a clocked flip-flop for synchronous operations
- · Units may be operated synchronously or asynchronously
- · May be cascaded together to perform more complicated logic functions
- · Can operate in conjunction with serial peripherals such as UART and SPI or timing peripherals such as timers and PCA channels
- · Can be used to synchronize and trigger multiple on-chip resources (ADC, DAC, Timers, etc.)
- · Asynchronous output may be used to wake from low-power states

3.7 Analog

12/10-Bit Analog-to-Digital Converter (ADC0)

The ADC is a successive-approximation-register (SAR) ADC with 12- and 10-bit modes, integrated track-and hold and a programmable window detector. The ADC is fully configurable under software control via several registers. The ADC may be configured to measure different signals using the analog multiplexer. The voltage reference for the ADC is selectable between internal and external reference sources.

- Up to 20 external inputs
- Single-ended 12-bit and 10-bit modes
- Supports an output update rate of up to 350 ksps in 12-bit mode
- Channel sequencer logic with direct-to-XDATA output transfers
- Operation in a low power mode at lower conversion speeds
- Asynchronous hardware conversion trigger, selectable between software, external I/O and internal timer and configurable logic sources
- Output data window comparator allows automatic range checking
- Support for output data accumulation
- · Conversion complete and window compare interrupts supported
- Flexible output data formatting
- Includes a fully-internal fast-settling 1.65 V reference and an on-chip precision 2.4 / 1.2 V reference, with support for using the supply as the reference, an external reference and signal ground
- Integrated temperature sensor

12-Bit Digital-to-Analog Converters (DAC0, DAC1, DAC2, DAC3)

The DAC modules are 12-bit Digital-to-Analog Converters with the capability to synchronize multiple outputs together. The DACs are fully configurable under software control. The voltage reference for the DACs is selectable between internal and external reference sources.

- Voltage output with 12-bit performance
- Supports an update rate of 200 ksps
- Hardware conversion trigger, selectable between software, external I/O and internal timer and configurable logic sources
- · Outputs may be configured to persist through reset and maintain output state to avoid system disruption
- · Multiple DAC outputs can be synchronized together
- DAC pairs (DAC0 and 1 or DAC2 and 3) support complementary output waveform generation
- Outputs may be switched between two levels according to state of configurable logic / PWM input trigger
- Flexible input data formatting
- · Supports references from internal supply, on-chip precision reference, or external VREF pin

Device Package	Pin for Bootload Mode Entry
QFN32	P3.7 / C2D
QFP32	P3.7 / C2D
QFN24	P3.0 / C2D
QSOP24	P3.0 / C2D

Table 3.3. Summary of Pins for Bootload Mode Entry

4.1.2 Power Consumption

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Digital Core Supply Current (G-gr	ade device	s, -40 °C to +85 °C)				
Normal Mode-Full speed with code executing from flash	I _{DD}	F _{SYSCLK} = 49 MHz (HFOSC1) ²	_	5	14.4	mA
executing from liash		F _{SYSCLK} = 24.5 MHz (HFOSC0) ²	_	4.2	5	mA
		F _{SYSCLK} = 1.53 MHz (HFOSC0) ²	_	625	820	μA
		F _{SYSCLK} = 80 kHz ³		155	310	μA
Idle Mode-Core halted with periph-	I _{DD}	F _{SYSCLK} = 49 MHz (HFOSC1) ²	_	3.8	11.8	mA
erals running		F _{SYSCLK} = 24.5 MHz (HFOSC0) ²	_	3.14	3.8	mA
		F _{SYSCLK} = 1.53 MHz (HFOSC0) ²	_	520	725	μA
		F _{SYSCLK} = 80 kHz ³	_	135	315	μA
Suspend Mode-Core halted and	I _{DD}	LFO Running	_	125	320	μA
high frequency clocks stopped, Supply monitor off.		LFO Stopped	_	120	300	μA
Snooze Mode-Core halted and	I _{DD}	LFO Running	_	23	190	μA
high frequency clocks stopped. Regulator in low-power state, Sup- ply monitor off.		LFO Stopped	—	19	186	μA
Stop Mode—Core halted and all clocks stopped,Internal LDO On, Supply monitor off.	I _{DD}		_	120	300	μA
Shutdown Mode—Core halted and all clocks stopped,Internal LDO Off, Supply monitor off.	I _{DD}		_	0.2	0.91	μA
Digital Core Supply Current (I-gra	de devices	s, -40 °C to +125 °C)				
Normal Mode-Full speed with code	I _{DD}	F _{SYSCLK} = 49 MHz (HFOSC1) ²	_	5	14.4	mA
executing from flash		F _{SYSCLK} = 24.5 MHz (HFOSC0) ²	_	4.2	5.2	mA
		F _{SYSCLK} = 1.53 MHz (HFOSC0) ²	_	625	1280	μA
		F _{SYSCLK} = 80 kHz ³	_	155	765	μA
dle Mode-Core halted with periph-	I _{DD}	F _{SYSCLK} = 49 MHz (HFOSC1) ²	_	3.8	11.8	mA
erals running		F _{SYSCLK} = 24.5 MHz (HFOSC0) ²		3.14	4.1	mA
		F _{SYSCLK} = 1.53 MHz (HFOSC0) ²		520	1175	μA
		F _{SYSCLK} = 80 kHz ³	_	135	750	μA
Suspend Mode-Core halted and	I _{DD}	LFO Running	_	125	775	μA
high frequency clocks stopped, Supply monitor off.		LFO Stopped	_	120	755	μA
Snooze Mode-Core halted and	I _{DD}	LFO Running	_	23	615	μA
high frequency clocks stopped. Regulator in low-power state, Sup- ply monitor off.		LFO Stopped	_	19	610	μA

Table 4.2. Power Consumption

4.1.13 Comparators

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Response Time, CPMD = 00	t _{RESP0}	+100 mV Differential	_	100	_	ns
(Highest Speed)		-100 mV Differential	_	150	_	ns
Response Time, CPMD = 11 (Low-	t _{RESP3}	+100 mV Differential	_	1.5	_	μs
est Power)		-100 mV Differential	—	3.5	_	μs
Positive Hysteresis	HYS _{CP+}	CPHYP = 00	_	0.4	_	mV
Mode 0 (CPMD = 00)		CPHYP = 01	_	8	_	mV
		CPHYP = 10	_	16	_	mV
		CPHYP = 11	_	32	_	mV
Negative Hysteresis	HYS _{CP-}	CPHYN = 00	_	-0.4	_	mV
Mode 0 (CPMD = 00)		CPHYN = 01	_	-8	_	mV
		CPHYN = 10	_	-16	_	mV
		CPHYN = 11	_	-32	_	mV
Positive Hysteresis	HYS _{CP+}	CPHYP = 00	_	0.5	_	mV
Mode 1 (CPMD = 01)		CPHYP = 01	—	6	_	mV
		CPHYP = 10	_	12	_	mV
		CPHYP = 11	_	24	_	mV
Negative Hysteresis	HYS _{CP-}	CPHYN = 00	_	-0.5	_	mV
Mode 1 (CPMD = 01)		CPHYN = 01	_	-6	_	mV
		CPHYN = 10	—	-12	_	mV
		CPHYN = 11	—	-24	_	mV
Positive Hysteresis	HYS _{CP+}	CPHYP = 00	_	0.7	_	mV
Mode 2 (CPMD = 10)		CPHYP = 01	_	4.5	_	mV
		CPHYP = 10	_	9	_	mV
		CPHYP = 11	_	18	_	mV
Negative Hysteresis	HYS _{CP-}	CPHYN = 00	_	-0.6	_	mV
Mode 2 (CPMD = 10)		CPHYN = 01	_	-4.5	_	mV
		CPHYN = 10	_	-9	_	mV
		CPHYN = 11	_	-18	_	mV
Positive Hysteresis	HYS _{CP+}	CPHYP = 00	_	1.5	_	mV
Mode 3 (CPMD = 11)		CPHYP = 01		4	_	mV
		CPHYP = 10	_	8	_	mV
		CPHYP = 11		16	_	mV

Table 4.13. Comparators

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Negative Hysteresis	HYS _{CP-}	CPHYN = 00	_	-1.5	_	mV
Mode 3 (CPMD = 11)		CPHYN = 01	—	-4	_	mV
		CPHYN = 10	_	-8	_	mV
		CPHYN = 11	—	-16	—	mV
Input Range (CP+ or CP-)	V _{IN}		-0.25	_	V _{IO} +0.25	V
Input Pin Capacitance	C _{CP}		—	7.5	—	pF
Internal Reference DAC Resolution	N _{bits}			6	1	bits
Common-Mode Rejection Ratio	CMRR _{CP}		_	70	_	dB
Power Supply Rejection Ratio	PSRR _{CP}		_	72	_	dB
Input Offset Voltage	V _{OFF}	T _A = 25 °C	-10	0	10	mV
Input Offset Tempco	TC _{OFF}		_	3.5	_	μV/°

4.1.14 Configurable Logic

Table 4.14. Configurable Logic

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Propagation Delay	t _{DLY}	Through single CLU	—	_	35.3	ns
		Using an external pin				
		Through single CLU	—	3	—	ns
		Using an internal connection				
Clocking Frequency	F _{CLK}	1 or 2 CLUs Cascaded	—	—	73.5	MHz
		3 or 4 CLUs Cascaded			36.75	MHz

4.3 Absolute Maximum Ratings

Stresses above those listed in Table 4.19 Absolute Maximum Ratings on page 32 may cause permanent damage to the device. This is a stress rating only and functional operation of the devices at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. For more information on the available quality and reliability data, see the Quality and Reliability Monitor Report at http://www.silabs.com/support/quality/pages/default.aspx.

Table 4.19. Absolute Maximum Ratings

Parameter	Symbol	Test Condition	Min	Max	Unit
Ambient Temperature Under Bias	T _{BIAS}		-55	125	°C
Storage Temperature	T _{STG}		-65	150	°C
Voltage on VDD	V _{DD}		GND-0.3	4.2	V
Voltage on VIO ²	V _{IO}		GND-0.3	V _{DD} +0.3	V
Voltage on I/O pins or RSTb, excluding	V _{IN}	V _{IO} > 3.3 V	GND-0.3	5.8	V
P2.0-P2.3 (QFN24 and QSOP24) or P3.0-P3.3 (QFN32 and QFP32)		V _{IO} < 3.3 V	GND-0.3	V _{IO} +2.5	V
Voltage on P2.0-P2.3 (QFN24 and QSOP24) or P3.0-P3.3 (QFN32 and QFP32)	V _{IN}		GND-0.3	V _{DD} +0.3	V
Total Current Sunk into Supply Pin	I _{VDD}		-	200	mA
Total Current Sourced out of Ground Pin	I _{GND}		200	_	mA
Current Sourced or Sunk by any I/O Pin or RSTb	I _{IO}		-100	100	mA
Operating Junction Temperature	TJ	$T_A = -40 \ ^\circ C$ to 85 $^\circ C$	-40	105	°C
		T_A = -40 °C to 125 °C (I-grade parts only)	-40	130	°C

Note:

1. Exposure to maximum rating conditions for extended periods may affect device reliability.

2. In certain package configurations, the VIO and VDD supplies are bonded to the same pin.

5. Typical Connection Diagrams

5.1 Power

Figure 5.1 Power Connection Diagram on page 33 shows a typical connection diagram for the power pins of the device.

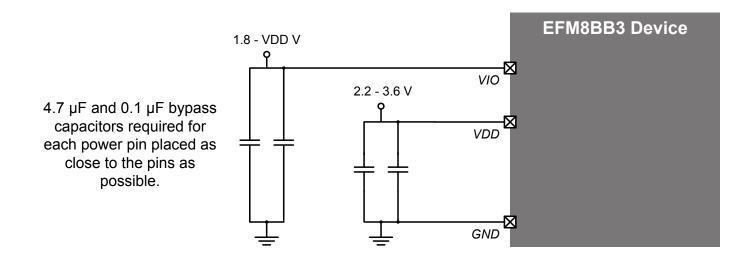


Figure 5.1. Power Connection Diagram

6. Pin Definitions

6.1 EFM8BB3x-QFN32 Pin Definitions

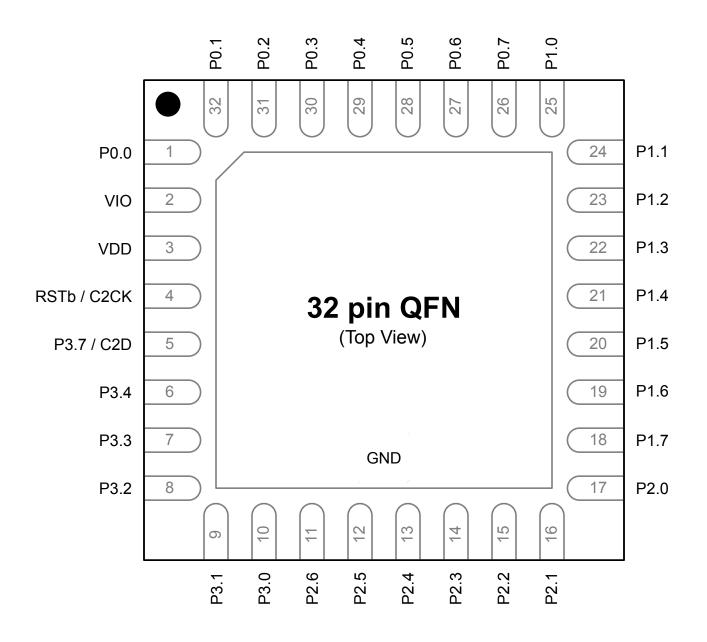


Figure 6.1. EFM8BB3x-QFN32 Pinout

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
1	P0.0	Multifunction I/O	Yes	P0MAT.0	VREF
				INT0.0	
				INT1.0	
				CLU0A.8	
				CLU2A.8	
				CLU3B.8	
2	VIO	I/O Supply Power Input			
3	VDD	Supply Power Input			
4	RSTb /	Active-low Reset /			
	C2CK	C2 Debug Clock			
5	P3.7 /	Multifunction I/O /			
	C2D	C2 Debug Data			
6	P3.4	Multifunction I/O			
7	P3.3	Multifunction I/O			DAC3
8	P3.2	Multifunction I/O			DAC2
9	P3.1	Multifunction I/O			DAC1
10	P3.0	Multifunction I/O			DAC0
11	P2.6	Multifunction I/O			ADC0.19
					CMP1P.8
					CMP1N.8
12	P2.5	Multifunction I/O		CLU3OUT	ADC0.18
					CMP1P.7
					CMP1N.7
13	P2.4	Multifunction I/O			ADC0.17
					CMP1P.6
					CMP1N.6
14	P2.3	Multifunction I/O	Yes	P2MAT.3	ADC0.16
				CLU1B.15	CMP1P.5
				CLU2B.15	CMP1N.5
				CLU3A.15	

Table 6.1. Pin Definitions for EFM8BB3x-QFN32

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
6	P3.7 /	Multifunction I/O /			
	C2D	C2 Debug Data			
7	P3.3	Multifunction I/O			DAC3
8	P3.2	Multifunction I/O			DAC2
9	P3.1	Multifunction I/O			DAC1
10	P3.0	Multifunction I/O			DAC0
11	P2.6	Multifunction I/O			ADC0.19
					CMP1P.8
					CMP1N.8
12	P2.5	Multifunction I/O		CLU3OUT	ADC0.18
					CMP1P.7
					CMP1N.7
13	P2.4	Multifunction I/O			ADC0.17
					CMP1P.6
					CMP1N.6
14	P2.3	Multifunction I/O	Yes	P2MAT.3	ADC0.16
				CLU1B.15	CMP1P.5
				CLU2B.15	CMP1N.5
				CLU3A.15	
15	P2.2	Multifunction I/O	Yes	P2MAT.2	ADC0.15
				CLU2OUT	CMP1P.4
				CLU1A.15	CMP1N.4
				CLU2B.14	
				CLU3A.14	
16	P2.1	Multifunction I/O	Yes	P2MAT.1	ADC0.14
				I2C0_SCL	CMP1P.3
				CLU1B.14	CMP1N.3
				CLU2A.15	
				CLU3B.15	
17	P2.0	Multifunction I/O	Yes	P2MAT.0	CMP1P.2
				I2C0_SDA	CMP1N.2
				CLU1A.14	
				CLU2A.14	
				CLU3B.14	

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
25	P1.0	Multifunction I/O	Yes	P1MAT.0	ADC0.6
				CLU1OUT	CMP0P.6
				CLU0A.12	CMP0N.6
				CLU1A.10	CMP1P.1
				CLU2A.10	CMP1N.1
				CLU3B.12	
26	P0.7	Multifunction I/O	Yes	P0MAT.7	ADC0.5
				INT0.7	CMP0P.5
				INT1.7	CMP0N.5
				CLU0B.11	CMP1P.0
				CLU1B.9	CMP1N.0
				CLU3A.11	
27	P0.6	Multifunction I/O	Yes	P0MAT.6	ADC0.4
				CNVSTR	CMP0P.4
				INT0.6	CMP0N.4
				INT1.6	
				CLU0A.11	
				CLU1B.8	
				CLU3A.10	
28	P0.5	Multifunction I/O	Yes	P0MAT.5	ADC0.3
				INT0.5	CMP0P.3
				INT1.5	CMP0N.3
				UART0_RX	
				CLU0B.10	
				CLU1A.9	
				CLU3B.11	
29	P0.4	Multifunction I/O	Yes	P0MAT.4	ADC0.2
				INT0.4	CMP0P.2
				INT1.4	CMP0N.2
				UART0_TX	
				CLU0A.10	
				CLU1A.8	
				CLU3B.10	

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
24	P0.2	Multifunction I/O	Yes	P0MAT.2	XTAL1
				INT0.2	ADC0.1
				INT1.2	CMP0P.1
				CLU0OUT	CMP0N.1
				CLU0A.9	
				CLU2B.8	
				CLU3A.8	
Center	GND	Ground			

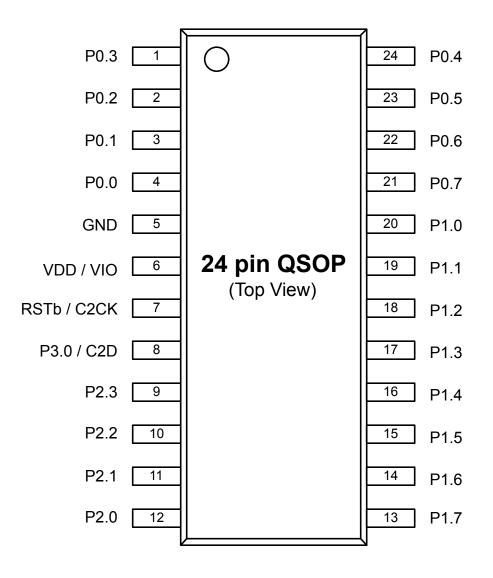


Figure 6.4. EFM8BB3x-QSOP24 Pinout

Table 6.4.	Pin Definitions	for EFM8BB3x-QSOP24
------------	-----------------	---------------------

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
1	P0.3	Multifunction I/O	Yes	P0MAT.3	XTAL2
				EXTCLK	
				INT0.3	
				INT1.3	
				CLU0B.9	
				CLU2B.9	
				CLU3A.9	

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
24	P0.4	Multifunction I/O	Yes	P0MAT.4	ADC0.2
				INT0.4	CMP0P.2
				INT1.4	CMP0N.2
				UART0_TX	
				CLU0A.10	
				CLU1A.8	
				CLU3B.10	

7. QFN32 Package Specifications

7.1 QFN32 Package Dimensions

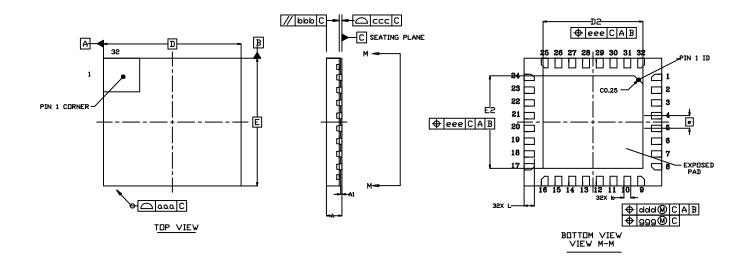


Figure 7.1. QFN32 Package Drawing

Dimension	Min	Тур	Мах
A	0.45	0.50	0.55
A1	0.00	0.035	0.05
b	0.15	0.20	0.25
D	4.00 BSC.		
D2	2.80	2.90	3.00
е	0.40 BSC.		
E	4.00 BSC.		
E2	2.80	2.90	3.00
L	0.20	0.30	0.40
ааа	—	_	0.10
bbb	—	_	0.10
ссс	0.08		
ddd	—	—	0.10
eee	—	—	0.10
999	_	_	0.05

Table 7.1. QFN32 Package Dimensions

Dimension	Min	Мах			
Note:					
1. All dimensions shown are in millimeters (mm) unless otherwise noted.					
2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.					
3. This Land Pattern Design is based on the IPC-SM-782 guidelines.					
4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μm minimum, all the way around the pad.					
5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.					
6. The stencil thickness should be 0.125 mm (5 mils).					
7. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.					
8. A 2 x 1 array of 0.7 mm x 1.6 mm opening	igs on a 0.9 mm pitch should be used for the	center pad.			
9. A No-Clean, Type-3 solder paste is reco	mmended.				

10. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

9.3 QFN24 Package Marking

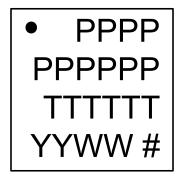


Figure 9.3. QFN24 Package Marking

The package marking consists of:

- PPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.
- # The device revision (A, B, etc.).