

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	CIP-51 8051
Core Size	8-Bit
Speed	50MHz
Connectivity	I ² C, SMBus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	20
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2.25K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 12x10/12b SAR; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	24-VFQFN Exposed Pad
Supplier Device Package	24-QFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm8bb31f16i-b-qfn24r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Feature List

The EFM8BB3 device family are fully integrated, mixed-signal system-on-a-chip MCUs. Highlighted features are listed below.

- Core:
 - Pipelined CIP-51 Core
 - · Fully compatible with standard 8051 instruction set
 - 70% of instructions execute in 1-2 clock cycles
 - 50 MHz maximum operating frequency
- Memory:
 - Up to 64 kB flash memory (63 kB user-accessible), in-system re-programmable from firmware in 512-byte sectors
 - Up to 4352 bytes RAM (including 256 bytes standard 8051 RAM and 4096 bytes on-chip XRAM)
- · Power:
 - Internal LDO regulator for CPU core voltage
 - · Power-on reset circuit and brownout detectors
- I/O: Up to 29 total multifunction I/O pins:
 - Up to 25 pins 5 V tolerant under bias
 - Selectable state retention through reset events
 - · Flexible peripheral crossbar for peripheral routing
 - 5 mA source, 12.5 mA sink allows direct drive of LEDs
- · Clock Sources:
 - Internal 49 MHz oscillator with accuracy of ±2%
 - Internal 24.5 MHz oscillator with ±2% accuracy
 - · Internal 80 kHz low-frequency oscillator
 - External CMOS clock option
 - External crystal/RC Oscillator (up to 25 MHz)

- Analog:
 - 12/10-Bit Analog-to-Digital Converter (ADC)
 - Internal temperature sensor
 - 4 x 12-Bit Digital-to-Analog Converters (DAC)
 - 2 x Low-current analog comparators with adjustable reference
- · Communications and Digital Peripherals:
 - 2 x UART, up to 3 Mbaud
 - SPI™ Master / Slave, up to 12 Mbps
 - SMBus™/I2C™ Master / Slave, up to 400 kbps
 - I²C High-Speed Slave, up to 3.4 Mbps
 - 16-bit CRC unit, supporting automatic CRC of flash at 256byte boundaries
 - 4 Configurable Logic Units
- · Timers/Counters and PWM:
 - 6-channel programmable counter array (PCA) supporting PWM, capture/compare, and frequency output modes
 - 6 x 16-bit general-purpose timers
 - Independent watchdog timer, clocked from the low frequency oscillator
- On-Chip, Non-Intrusive Debugging
 - · Full memory and register inspection
 - · Four hardware breakpoints, single-stepping
- · Pre-programmed UART bootloader
- Temperature range -40 to 85 °C or -40 to 125 °C

With on-chip power-on reset, voltage supply monitor, watchdog timer, and clock oscillator, the EFM8BB3 devices are truly standalone system-on-a-chip solutions. The flash memory is reprogrammable in-circuit, providing nonvolatile data storage and allowing field upgrades of the firmware. The on-chip debugging interface (C2) allows non-intrusive (uses no on-chip resources), full speed, in-circuit debugging using the production MCU installed in the final application. This debug logic supports inspection and modification of memory and registers, setting breakpoints, single stepping, and run and halt commands. All analog and digital peripherals are fully functional while debugging. Device operation is specified from 2.2 V up to a 3.6 V supply. Devices are AEC-Q100 qualified and available in 4x4 mm 32-pin QFN, 3x3 mm 24-pin QFN, 32-pin QFP, or 24-pin QSOP packages. All package options are lead-free and RoHS compliant.

3. System Overview

3.1 Introduction

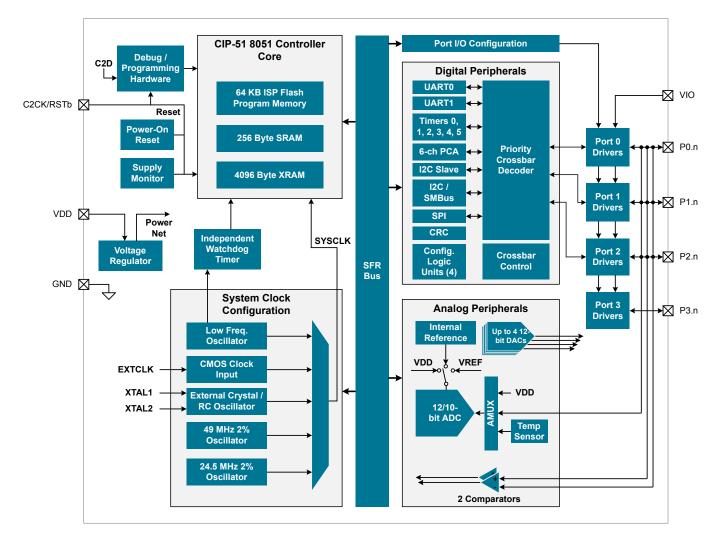


Figure 3.1. Detailed EFM8BB3 Block Diagram

3.2 Power

All internal circuitry draws power from the VDD supply pin. External I/O pins are powered from the VIO supply voltage (or VDD on devices without a separate VIO connection), while most of the internal circuitry is supplied by an on-chip LDO regulator. Control over the device power can be achieved by enabling/disabling individual peripherals as needed. Each analog peripheral can be disabled when not in use and placed in low power mode. Digital peripherals, such as timers and serial buses, have their clocks gated off and draw little power when they are not in use.

Table 3.1. Power Modes

Power Mode	Details	Mode Entry	Wake-Up Sources
Normal	Core and all peripherals clocked and fully operational		
ldle	 Core halted All peripherals clocked and fully operational Code resumes execution on wake event 	Set IDLE bit in PCON0	Any interrupt
Suspend	 Core and peripheral clocks halted HFOSC0 and HFOSC1 oscillators stopped Regulator in normal bias mode for fast wake Timer 3 and 4 may clock from LFOSC0 Code resumes execution on wake event 	 Switch SYSCLK to HFOSC0 Set SUSPEND bit in PCON1 	 Timer 4 Event SPI0 Activity I2C0 Slave Activity Port Match Event Comparator 0 Falling Edge CLUn Interrupt-Enabled Event
Stop	 All internal power nets shut down Pins retain state Exit on any reset source	1. Clear STOPCF bit in REG0CN 2. Set STOP bit in PCON0	Any reset source
Snooze	 Core and peripheral clocks halted HFOSC0 and HFOSC1 oscillators stopped Regulator in low bias current mode for energy savings Timer 3 and 4 may clock from LFOSC0 Code resumes execution on wake event 	 Switch SYSCLK to HFOSC0 Set SNOOZE bit in PCON1 	 Timer 4 Event SPI0 Activity I2C0 Slave Activity Port Match Event Comparator 0 Falling Edge CLUn Interrupt-Enabled Event
Shutdown	 All internal power nets shut down Pins retain state Exit on pin or power-on reset 	1. Set STOPCF bit in REG0CN 2. Set STOP bit in PCON0	RSTb pin resetPower-on reset

3.3 I/O

Digital and analog resources are externally available on the device's multi-purpose I/O pins. Port pins P0.0-P2.3 can be defined as general-purpose I/O (GPIO), assigned to one of the internal digital resources through the crossbar or dedicated channels, or assigned to an analog function. Port pins P2.4 to P3.7 can be used as GPIO. Additionally, the C2 Interface Data signal (C2D) is shared with P3.0 or P3.7, depending on the package option.

The port control block offers the following features:

- Up to 29 multi-functions I/O pins, supporting digital and analog functions.
- · Flexible priority crossbar decoder for digital peripheral assignment.
- Two drive strength settings for each port.
- State retention feature allows pins to retain configuration through most reset sources.
- Two direct-pin interrupt sources with dedicated interrupt vectors (INT0 and INT1).
- Up to 24 direct-pin interrupt sources with shared interrupt vector (Port Match).

Universal Asynchronous Receiver/Transmitter (UART1)

UART1 is an asynchronous, full duplex serial port offering a variety of data formatting options. A dedicated baud rate generator with a 16-bit timer and selectable prescaler is included, which can generate a wide range of baud rates. A received data FIFO allows UART1 to receive multiple bytes before data is lost and an overflow occurs.

UART1 provides the following features:

- · Asynchronous transmissions and receptions
- Dedicated baud rate generator supports baud rates up to SYSCLK/2 (transmit) or SYSCLK/8 (receive)
- 5, 6, 7, 8, or 9 bit data
- Automatic start and stop generation
- Automatic parity generation and checking
- · Single-byte buffer on transmit and receive
- Auto-baud detection
- · LIN break and sync field detection
- CTS / RTS hardware flow control

Serial Peripheral Interface (SPI0)

The serial peripheral interface (SPI) module provides access to a flexible, full-duplex synchronous serial bus. The SPI can operate as a master or slave device in both 3-wire or 4-wire modes, and supports multiple masters and slaves on a single SPI bus. The slave-select (NSS) signal can be configured as an input to select the SPI in slave mode, or to disable master mode operation in a multi-master environment, avoiding contention on the SPI bus when more than one master attempts simultaneous data transfers. NSS can also be configured as a firmware-controlled chip-select output in master mode, or disable to reduce the number of pins required. Additional general purpose port I/O pins can be used to select multiple slave devices in master mode.

- Supports 3- or 4-wire master or slave modes
- · Supports external clock frequencies up to 12 Mbps in master or slave mode
- · Support for all clock phase and polarity modes
- 8-bit programmable clock rate (master)
- Programmable receive timeout (slave)
- · Two byte FIFO on transmit and receive
- · Can operate in suspend or snooze modes and wake the CPU on reception of a byte
- · Support for multiple masters on the same data lines

System Management Bus / I2C (SMB0)

The SMBus I/O interface is a two-wire, bi-directional serial bus. The SMBus is compliant with the System Management Bus Specification, version 1.1, and compatible with the I²C serial bus.

The SMBus module includes the following features:

- · Standard (up to 100 kbps) and Fast (400 kbps) transfer speeds
- · Support for master, slave, and multi-master modes
- Hardware synchronization and arbitration for multi-master mode
- · Clock low extending (clock stretching) to interface with faster masters
- · Hardware support for 7-bit slave and general call address recognition
- Firmware support for 10-bit slave address decoding
- · Ability to inhibit all slave states
- Programmable data setup/hold times
- · Transmit and receive FIFOs (one byte) to help increase throughput in faster applications

4.1.8 Crystal Oscillator

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Crystal Frequency	f _{XTAL}		0.02	_	25	MHz
Crystal Drive Current	I _{XTAL}	XFCN = 0	_	0.5	_	μA
		XFCN = 1	_	1.5	—	μA
		XFCN = 2	_	4.8	—	μA
		XFCN = 3	_	14	_	μA
		XFCN = 4	_	40	—	μA
		XFCN = 5	_	120	_	μA
		XFCN = 6	_	550	_	μA
		XFCN = 7	_	2.6	-	mA

Table 4.8. Crystal Oscillator

Table 4.9. ADC

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Resolution	N _{bits}	12 Bit Mode		12		Bits
		10 Bit Mode		10		Bits
Throughput Rate	f _S	10 Bit Mode	_	_	1.125	Msps
(High Speed Mode)						
Throughput Rate	f _S	12 Bit Mode	_	_	340	ksps
(Low Power Mode)		10 Bit Mode	_	_	360	ksps
Tracking Time	t _{TRK}	High Speed Mode	230	_	_	ns
		Low Power Mode	450	_	_	ns
Power-On Time	t _{PWR}		1.2	_	_	μs
SAR Clock Frequency	f _{SAR}	High Speed Mode	_	_	18	MHz
		Low Power Mode	_	_	12.25	MHz
Conversion Time ¹	t _{CNV}	12-Bit Conversion,		2.0		μs
		SAR Clock = 6.125 MHz,				
		System Clock = 49 MHz				
		10-Bit Conversion,		0.658		μs
		SAR Clock = 16.33 MHz,				
		System Clock = 49 MHz				
Sample/Hold Capacitor	C _{SAR}	Gain = 1		5.2	_	pF
		Gain = 0.75	_	3.9	_	pF
		Gain = 0.5	_	2.6	_	pF
		Gain = 0.25	_	1.3	_	pF
Input Pin Capacitance	C _{IN}			20	_	pF
Input Mux Impedance	R _{MUX}			550	_	Ω
Voltage Reference Range	V _{REF}		1	_	V _{IO}	V
Input Voltage Range ²	V _{IN}		0	_	V _{REF} / Gain	V
Power Supply Rejection Ratio	PSRR _{ADC}	At 1 kHz	_	66	_	dB
		At 1 MHz		43	_	dB

Table 4.12. DACs

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Resolution	N _{bits}			12		Bits
Throughput Rate	f _S				200	ksps
Integral Nonlinearity	INL	DAC0 and DAC2	-11.5	-1.77 /	11.5	LSB
		$T_A = -40$ °C to 125 °C (I-grade parts only)		1.56		
		DAC0 and DAC3	-13.5	-2.73 / 1.11	13.5	LSB
		$T_A = -40$ °C to 125 °C (I-grade parts only)		1.11		
Differential Nonlinearity	DNL		-1	_	1	LSB
Output Noise	VREF = 2.4 V		_	110	_	μV _{RMS}
	f _S = 0.1 Hz to 300 kHz					
Slew Rate	SLEW		_	±1	_	V/µs
Output Settling Time to 1% Full- scale	tSETTLE	V _{OUT} change between 25% and 75% Full Scale	_	2.6	5	μs
Power-on Time	t _{PWR}		_	_	10	μs
Voltage Reference Range	V _{REF}		1.15	—	V _{DD}	V
Power Supply Rejection Ratio	PSRR	DC, V _{OUT} = 50% Full Scale	—	78	—	dB
Total Harmonic Distortion	THD	V _{OUT} = 10 kHz sine wave, 10% to 90%	54		_	dB
Offset Error	E _{OFF}	VREF = 2.4 V	-8	0	8	LSB
Full-Scale Error	E _{FS}	VREF = 2.4 V	-13	±5	13	LSB
External Load Impedance	R _{LOAD}		2	—		kΩ
External Load Capacitance ¹	C _{LOAD}		_	—	100	pF

Note:

1. No minimum external load capacitance is required. However, under low loading conditions, it is possible for the DAC output to glitch during start-up. If smooth start-up is required, the minimum loading capacitance at the pin should be a minimum of 10 pF.

5.2 Debug

The diagram below shows a typical connection diagram for the debug connections pins. The pin sharing resistors are only required if the functionality on the C2D (a GPIO pin) and the C2CK (RSTb) is routed to external circuitry. For example, if the RSTb pin is connected to an external switch with debouncing filter or if the GPIO sharing with the C2D pin is connected to an external circuit, the pin sharing resistors and connections to the debug adapter must be placed on the hardware. Otherwise, these components and connections can be omitted.

For more information on debug connections, see the example schematics and information available in AN127: "Pin Sharing Techniques for the C2 Interface." Application notes can be found on the Silicon Labs website (http://www.silabs.com/8bit-appnotes) or in Simplicity Studio.

Figure 5.2. Debug Connection Diagram

5.3 Other Connections

Other components or connections may be required to meet the system-level requirements. Application Note AN203: "8-bit MCU Printed Circuit Board Design Notes" contains detailed information on these connections. Application Notes can be accessed on the Silicon Labs website (www.silabs.com/8bit-appnotes).

6. Pin Definitions

6.1 EFM8BB3x-QFN32 Pin Definitions

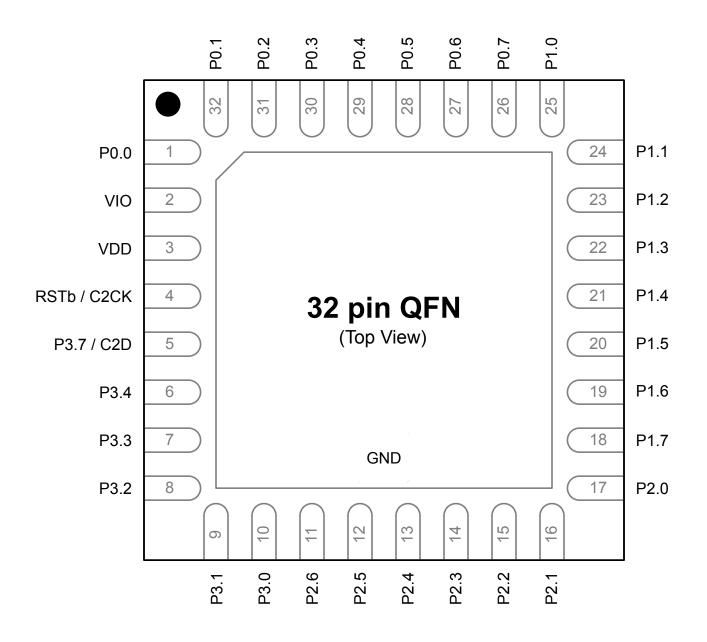


Figure 6.1. EFM8BB3x-QFN32 Pinout

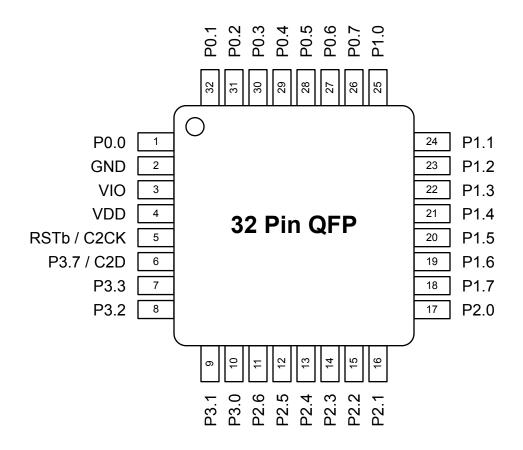


Figure 6.2. EFM8BB3x-QFP32 Pinout

Table 6.2.	Pin Definitions	for EFM8BB3x-QFP32
------------	------------------------	--------------------

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
1	P0.0	Multifunction I/O	Yes	P0MAT.0	VREF
				INT0.0	
				INT1.0	
				CLU0A.8	
				CLU2A.8	
				CLU3B.8	
2	GND	Ground			
3	VIO	I/O Supply Power Input			
4	VDD	Supply Power Input			
5	RSTb /	Active-low Reset /			
	C2CK	C2 Debug Clock			

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
25	P1.0	Multifunction I/O	Yes	P1MAT.0	ADC0.6
				CLU1OUT	CMP0P.6
				CLU0A.12	CMP0N.6
				CLU1A.10	CMP1P.1
				CLU2A.10	CMP1N.1
				CLU3B.12	
26	P0.7	Multifunction I/O	Yes	P0MAT.7	ADC0.5
				INT0.7	CMP0P.5
				INT1.7	CMP0N.5
				CLU0B.11	CMP1P.0
				CLU1B.9	CMP1N.0
				CLU3A.11	
27	P0.6	Multifunction I/O	Yes	P0MAT.6	ADC0.4
				CNVSTR	CMP0P.4
				INT0.6	CMP0N.4
				INT1.6	
				CLU0A.11	
				CLU1B.8	
				CLU3A.10	
28	P0.5	Multifunction I/O	Yes	P0MAT.5	ADC0.3
				INT0.5	CMP0P.3
				INT1.5	CMP0N.3
				UART0_RX	
				CLU0B.10	
				CLU1A.9	
				CLU3B.11	
29	P0.4	Multifunction I/O	Yes	P0MAT.4	ADC0.2
				INT0.4	CMP0P.2
				INT1.4	CMP0N.2
				UART0_TX	
				CLU0A.10	
				CLU1A.8	
				CLU3B.10	

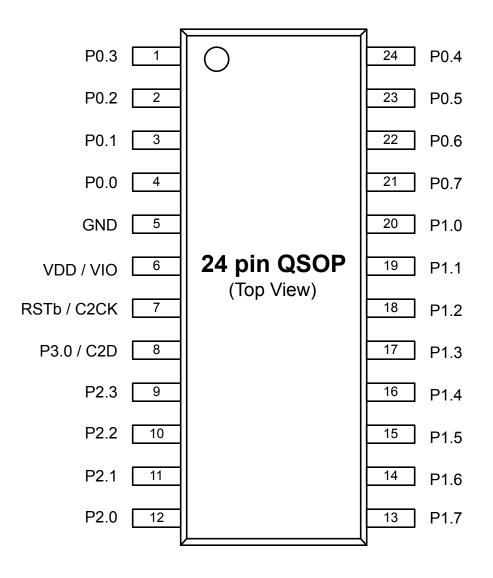


Figure 6.4. EFM8BB3x-QSOP24 Pinout

Table 6.4.	Pin Definitions	for EFM8BB3x-QSOP24
------------	-----------------	---------------------

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
1	P0.3	Multifunction I/O	Yes	P0MAT.3	XTAL2
				EXTCLK	
				INT0.3	
				INT1.3	
				CLU0B.9	
				CLU2B.9	
				CLU3A.9	

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
18	P1.2	Multifunction I/O	Yes	P1MAT.2	ADC0.8
				CLU0A.13	
				CLU1A.11	
				CLU2B.10	
				CLU3A.12	
19	P1.1	Multifunction I/O	Yes	P1MAT.1	ADC0.7
				CLU0B.12	
				CLU1B.10	
				CLU2A.11	
				CLU3B.13	
20	P1.0	Multifunction I/O	Yes	P1MAT.0	ADC0.6
				CLU0A.12	
				CLU1A.10	
				CLU2A.10	
				CLU3B.12	
21	P0.7	Multifunction I/O	Yes	P0MAT.7	ADC0.5
				INT0.7	CMP0P.5
				INT1.7	CMP0N.5
				CLU1OUT	CMP1P.1
				CLU0B.11	CMP1N.1
				CLU1B.9	
				CLU3A.11	
22	P0.6	Multifunction I/O	Yes	P0MAT.6	ADC0.4
				CNVSTR	CMP0P.4
				INT0.6	CMP0N.4
				INT1.6	CMP1P.0
				CLU0A.11	CMP1N.0
				CLU1B.8	
				CLU3A.10	
23	P0.5	Multifunction I/O	Yes	P0MAT.5	ADC0.3
				INT0.5	CMP0P.3
				INT1.5	CMP0N.3
				UART0_RX	
				CLU0B.10	
				CLU1A.9	
				CLU3B.11	

7. QFN32 Package Specifications

7.1 QFN32 Package Dimensions

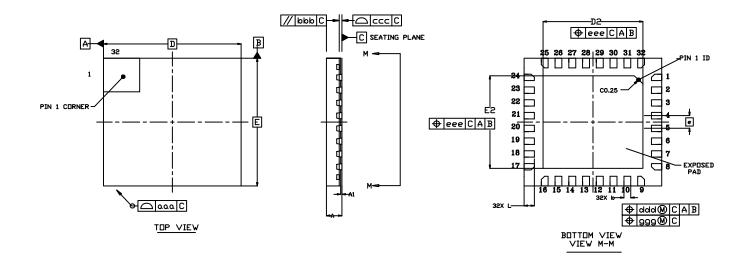


Figure 7.1. QFN32 Package Drawing

Dimension	Min	Тур	Мах	
A	0.45	0.50	0.55	
A1	0.00	0.035	0.05	
b	0.15	0.20	0.25	
D		4.00 BSC.		
D2	2.80	2.90	3.00	
e		0.40 BSC.		
E	4.00 BSC.			
E2	2.80	2.90	3.00	
L	0.20	0.30	0.40	
ааа	_	_	0.10	
bbb	—	_	0.10	
ссс	—	_	0.08	
ddd	_	_	0.10	
eee	—	—	0.10	
999	_	_	0.05	

Table 7.1. QFN32 Package Dimensions

Dimension	Min	Мах
Note:		
1. All dimensions shown are in millimeters	(mm) unless otherwise noted.	
2. Dimensioning and Tolerancing is per the	ANSI Y14.5M-1994 specification.	
3. This Land Pattern Design is based on th	e IPC-7351 guidelines.	
 All dimensions shown are at Maximum N cation Allowance of 0.05mm. 	<i>I</i> aterial Condition (MMC). Least Material Con	dition (LMC) is calculated based on a Fabri
All metal pads are to be non-solder mas minimum, all the way around the pad.	k defined (NSMD). Clearance between the so	older mask and the metal pad is to be 60 μm
6. A stainless steel, laser-cut and electro-p	olished stencil with trapezoidal walls should b	be used to assure good solder paste release
7. The stencil thickness should be 0.125 m	m (5 mils).	
8. The ratio of stencil aperture to land pad	size should be 1:1 for all perimeter pads.	
9. A 2 x 2 array of 1.10 mm square opening	gs on a 1.30 mm pitch should be used for the	center pad.
10 A No Clean Ture 2 colder posto is read	mmandad	

- 10. A No-Clean, Type-3 solder paste is recommended.
- 11. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

7.3 QFN32 Package Marking

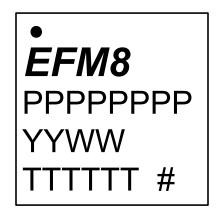


Figure 7.3. QFN32 Package Marking

The package marking consists of:

- PPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.
- # The device revision (A, B, etc.).

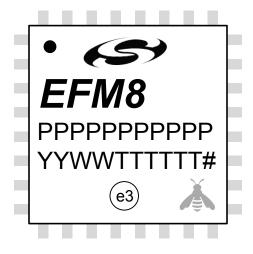


Figure 8.3. QFP32 Package Marking

The package marking consists of:

- PPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.
- # The device revision (A, B, etc.).

9. QFN24 Package Specifications

9.1 QFN24 Package Dimensions

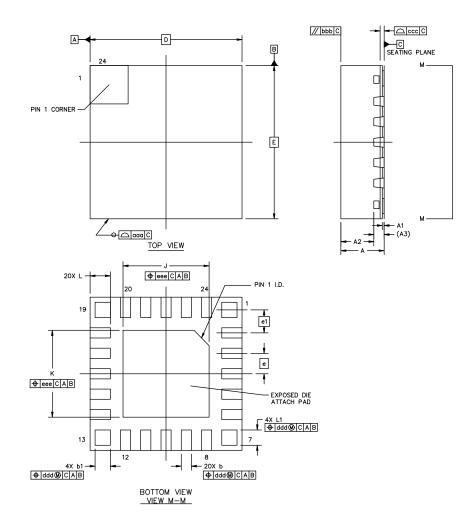


Figure 9.1. QFN24 Package Drawing

Table 9.1.	QFN24 Package Dimensions
------------	--------------------------

Dimension	Min	Тур	Мах
A	0.8	0.85	0.9
A1	0.00	—	0.05
A2	_	0.65	—
A3	0.203 REF		
b	0.15	0.2	0.25
b1	0.25	0.3	0.35
D	3.00 BSC		
E	3.00 BSC		

Dimension	Min	Тур	Max
ааа		0.20	
bbb	0.18		
ссс		0.10	
ddd		0.10	

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to JEDEC outline MO-137, variation AE.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

10.2 QSOP24 PCB Land Pattern

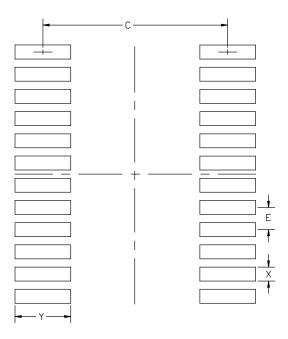


Figure 10.2. QSOP24 PCB Land Pattern Drawing

Dimension	Min	Мах	
С	5.20	5.30	
E	0.635 BSC		
x	0.30	0.40	
Y	1.50	1.60	

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. This land pattern design is based on the IPC-7351 guidelines.

3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.

4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.

5. The stencil thickness should be 0.125 mm (5 mils).

6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.

7. A No-Clean, Type-3 solder paste is recommended.

8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

11. Revision History

11.1 Revision 1.01

October 21st, 2016

Updated Figure 2.1 EFM8BB3 Part Numbering on page 2 to include the I-grade description.

Updated QFN24 center pad stencil description.

11.2 Revision 1.0

September 6th, 2016

Filled in all TBD values in 4. Electrical Specifications.

Added a note regarding which DACs are available to Table 2.1 Product Selection Guide on page 2.

Added specifications for 4.1.16 SMBus.

Added bootloader pinout information to 3.10 Bootloader.

Added CRC Calculation Time to 4.1.4 Flash Memory.

11.3 Revision 0.4

May 12th, 2016

Filled in TBD values for DAC Integral Nonlinearity in Table 4.12 DACs on page 26.

Added I-grade devices.

Adjusted the Total Current Sunk into Supply Pin and Total Current Sourced out of Ground Pin specifications in 4.3 Absolute Maximum Ratings.

Added Operating Junction Temperature specification to 4.3 Absolute Maximum Ratings.

11.4 Revision 0.3

February 10th, 2016

Added EFM8831F16G-A-QFN24 to Table 2.1 Product Selection Guide on page 2.

Updated Figure 5.2 Debug Connection Diagram on page 34 to move the pull-up resistor on C2D / RSTb to after the series resistor instead of before.

Added mention of the pre-programmed bootloader in 1. Feature List.

Added a reference to AN945: EFM8 Factory Bootloader User Guide in 3.10 Bootloader.

Updated all part numbers to revision B.

Adjusted C1, C2, X2, Y2, and Y1 maximums for 7.2 QFN32 PCB Land Pattern.

Adjusted package markings for QFN32 and QSOP24 packages.

Filled in TBD minimum and maximum values for DAC Differential Nonlinearity in Table 4.12 DACs on page 26.

11.5 Revision 0.2

Added information on the bootloader to 3.10 Bootloader.

Updated some characterization TBD values.

11.6 Revision 0.1

Initial release.