E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	CIP-51 8051
Core Size	8-Bit
Speed	50MHz
Connectivity	I ² C, SMBus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	29
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	2.25K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 20x10/12b SAR; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	32-UFQFN Exposed Pad
Supplier Device Package	32-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm8bb31f16i-b-qfn32

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3. System Overview

3.1 Introduction

Figure 3.1. Detailed EFM8BB3 Block Diagram

Universal Asynchronous Receiver/Transmitter (UART1)

UART1 is an asynchronous, full duplex serial port offering a variety of data formatting options. A dedicated baud rate generator with a 16-bit timer and selectable prescaler is included, which can generate a wide range of baud rates. A received data FIFO allows UART1 to receive multiple bytes before data is lost and an overflow occurs.

UART1 provides the following features:

- · Asynchronous transmissions and receptions
- Dedicated baud rate generator supports baud rates up to SYSCLK/2 (transmit) or SYSCLK/8 (receive)
- 5, 6, 7, 8, or 9 bit data
- Automatic start and stop generation
- Automatic parity generation and checking
- · Single-byte buffer on transmit and receive
- Auto-baud detection
- · LIN break and sync field detection
- CTS / RTS hardware flow control

Serial Peripheral Interface (SPI0)

The serial peripheral interface (SPI) module provides access to a flexible, full-duplex synchronous serial bus. The SPI can operate as a master or slave device in both 3-wire or 4-wire modes, and supports multiple masters and slaves on a single SPI bus. The slave-select (NSS) signal can be configured as an input to select the SPI in slave mode, or to disable master mode operation in a multi-master environment, avoiding contention on the SPI bus when more than one master attempts simultaneous data transfers. NSS can also be configured as a firmware-controlled chip-select output in master mode, or disable to reduce the number of pins required. Additional general purpose port I/O pins can be used to select multiple slave devices in master mode.

- Supports 3- or 4-wire master or slave modes
- · Supports external clock frequencies up to 12 Mbps in master or slave mode
- · Support for all clock phase and polarity modes
- 8-bit programmable clock rate (master)
- Programmable receive timeout (slave)
- · Two byte FIFO on transmit and receive
- · Can operate in suspend or snooze modes and wake the CPU on reception of a byte
- · Support for multiple masters on the same data lines

System Management Bus / I2C (SMB0)

The SMBus I/O interface is a two-wire, bi-directional serial bus. The SMBus is compliant with the System Management Bus Specification, version 1.1, and compatible with the I²C serial bus.

The SMBus module includes the following features:

- · Standard (up to 100 kbps) and Fast (400 kbps) transfer speeds
- · Support for master, slave, and multi-master modes
- Hardware synchronization and arbitration for multi-master mode
- · Clock low extending (clock stretching) to interface with faster masters
- · Hardware support for 7-bit slave and general call address recognition
- Firmware support for 10-bit slave address decoding
- · Ability to inhibit all slave states
- Programmable data setup/hold times
- · Transmit and receive FIFOs (one byte) to help increase throughput in faster applications

Device Package	Pin for Bootload Mode Entry
QFN32	P3.7 / C2D
QFP32	P3.7 / C2D
QFN24	P3.0 / C2D
QSOP24	P3.0 / C2D

Table 3.3. Summary of Pins for Bootload Mode Entry

4.1.2 Power Consumption

Parameter Symbol Test Condition		Test Condition	Min	Тур	Мах	Unit	
Digital Core Supply Current (G-grade devices, -40 °C to +85 °C)							
Normal Mode-Full speed with code	I _{DD}	F _{SYSCLK} = 49 MHz (HFOSC1) ²		5	14.4	mA	
		F _{SYSCLK} = 24.5 MHz (HFOSC0) ²	—	4.2	5	mA	
		F _{SYSCLK} = 1.53 MHz (HFOSC0) ²	—	625	820	μA	
		F _{SYSCLK} = 80 kHz ³	—	155	310	μA	
Idle Mode-Core halted with periph-	I _{DD}	F _{SYSCLK} = 49 MHz (HFOSC1) ²	—	3.8	11.8	mA	
		F_{SYSCLK} = 24.5 MHz (HFOSC0) ²	—	3.14	3.8	mA	
		F _{SYSCLK} = 1.53 MHz (HFOSC0) ²	—	520	725	μA	
		F _{SYSCLK} = 80 kHz ³	—	135	315	μA	
Suspend Mode-Core halted and	I _{DD}	LFO Running	—	125	320	μA	
Supply monitor off.		LFO Stopped		120	300	μA	
Snooze Mode-Core halted and	I _{DD}	LFO Running	—	23	190	μA	
Regulator in low-power state, Sup- ply monitor off.		LFO Stopped		19	186	μA	
Stop Mode—Core halted and all clocks stopped,Internal LDO On, Supply monitor off.	I _{DD}		_	120	300	μA	
Shutdown Mode—Core halted and all clocks stopped,Internal LDO Off, Supply monitor off.	I _{DD}		_	0.2	0.91	μA	
Digital Core Supply Current (I-gra	de devices,	-40 °C to +125 °C)			1		
Normal Mode-Full speed with code	I _{DD}	F _{SYSCLK} = 49 MHz (HFOSC1) ²	_	5	14.4	mA	
		F _{SYSCLK} = 24.5 MHz (HFOSC0) ²	_	4.2	5.2	mA	
		F _{SYSCLK} = 1.53 MHz (HFOSC0) ²	—	625	1280	μA	
		F _{SYSCLK} = 80 kHz ³	—	155	765	μA	
Idle Mode-Core halted with periph-	I _{DD}	F _{SYSCLK} = 49 MHz (HFOSC1) ²	—	3.8	11.8	mA	
		F _{SYSCLK} = 24.5 MHz (HFOSC0) ²	—	3.14	4.1	mA	
		F _{SYSCLK} = 1.53 MHz (HFOSC0) ²	—	520	1175	μA	
		F _{SYSCLK} = 80 kHz ³	—	135	750	μA	
Suspend Mode-Core halted and	I _{DD}	LFO Running	—	125	775	μA	
Supply monitor off.		LFO Stopped	_	120	755	μA	
Snooze Mode-Core halted and	I _{DD}	LFO Running		23	615	μA	
Regulator in low-power state, Sup- ply monitor off.		LFO Stopped	_	19	610	μA	

Table 4.2. Power Consumption

4.1.8 Crystal Oscillator

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Crystal Frequency	f _{XTAL}	L		_	25	MHz
Crystal Drive Current	I _{XTAL} XFCN = 0		—	0.5	—	μA
		XFCN = 1	_	1.5	_	μA
		XFCN = 2	—	4.8	—	μA
		XFCN = 3	_	14	_	μA
		XFCN = 4	—	40	_	μA
		XFCN = 5	—	120	_	μA
		XFCN = 6	_	550	_	μA
		XFCN = 7		2.6		mA

Table 4.8. Crystal Oscillator

Table 4.9. ADC

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit	
Resolution	N _{bits}	12 Bit Mode		12			
		10 Bit Mode		10		Bits	
Throughput Rate	f _S	10 Bit Mode	_	_	1.125	Msps	
(High Speed Mode)							
Throughput Rate	f _S	12 Bit Mode	—	—	340	ksps	
(Low Power Mode)		10 Bit Mode	_	—	360	ksps	
Tracking Time	t _{TRK}	High Speed Mode	230	—	—	ns	
		Low Power Mode	450	—	—	ns	
Power-On Time	t _{PWR}		1.2	—	—	μs	
SAR Clock Frequency	f _{SAR}	High Speed Mode	_	_	18	MHz	
		Low Power Mode	_	_	12.25	MHz	
Conversion Time ¹	t _{CNV}	12-Bit Conversion,		2.0			
		SAR Clock = 6.125 MHz,					
		System Clock = 49 MHz					
		10-Bit Conversion,		0.658			
		SAR Clock = 16.33 MHz,					
		System Clock = 49 MHz					
Sample/Hold Capacitor	C _{SAR}	Gain = 1	_	5.2	_	pF	
		Gain = 0.75	_	3.9	_	pF	
		Gain = 0.5	_	2.6	_	pF	
		Gain = 0.25	_	1.3	—	pF	
Input Pin Capacitance	C _{IN}		_	20	_	pF	
Input Mux Impedance	R _{MUX}		_	550	_	Ω	
Voltage Reference Range	V _{REF}		1		V _{IO}	V	
Input Voltage Range ²	V _{IN}		0		V _{REF} / Gain	V	
Power Supply Rejection Ratio	PSRR _{ADC}	At 1 kHz		66	_	dB	
		At 1 MHz	_	43	_	dB	
DC Performance							

4.1.11 Temperature Sensor

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Offset	V _{OFF}	T _A = 0 °C	_	751	_	mV
Offset Error ¹	E _{OFF}	T _A = 0 °C	_	19	_	mV
Slope	М		_	2.82	_	mV/°C
Slope Error ¹	E _M		_	29	_	μV/°C
Linearity	LIN	T = -40 °C to 85 °C	_	±0.4	—	°C
		T = -40 °C to 125 °C (I-grade parts only)	_	-0.6 to 1.2	_	°C
Turn-on Time	t _{ON}		_	3.5	_	μs
Note:						

Table 4.11. Temperature Sensor

1. Represents one standard deviation from the mean.

6. Pin Definitions

6.1 EFM8BB3x-QFN32 Pin Definitions

Figure 6.1. EFM8BB3x-QFN32 Pinout

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
15	P2.2	Multifunction I/O	Yes	P2MAT.2	ADC0.15
				CLU2OUT	CMP1P.4
				CLU1A.15	CMP1N.4
				CLU2B.14	
				CLU3A.14	
16	P2.1	Multifunction I/O	Yes	P2MAT.1	ADC0.14
				I2C0_SCL	CMP1P.3
				CLU1B.14	CMP1N.3
				CLU2A.15	
				CLU3B.15	
17	P2.0	Multifunction I/O	Yes	P2MAT.0	CMP1P.2
				I2C0_SDA	CMP1N.2
				CLU1A.14	
				CLU2A.14	
				CLU3B.14	
18	P1.7	Multifunction I/O	Yes	P1MAT.7	ADC0.13
				CLU0B.15	CMP0P.9
				CLU1B.13	CMP0N.9
				CLU2A.13	
19	P1.6	Multifunction I/O	Yes	P1MAT.6	ADC0.12
				CLU0A.15	
				CLU1B.12	
				CLU2A.12	
20	P1.5	Multifunction I/O	Yes	P1MAT.5	ADC0.11
				CLU0B.14	
				CLU1A.13	
				CLU2B.13	
21	P1.4	Multifunction I/O	Yes	P1MAT.4	ADC0.10
				CLU0A.14	
				CLU1A.12	
				CLU2B.12	
22	P1.3	Multifunction I/O	Yes	P1MAT.3	ADC0.9
				CLU0B.13	
				CLU1B.11	
				CLU2B.11	
				CLU3A.13	

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
29	P0.4	Multifunction I/O	Yes	P0MAT.4	ADC0.2
				INT0.4	CMP0P.2
				INT1.4	CMP0N.2
				UART0_TX	
				CLU0A.10	
				CLU1A.8	
				CLU3B.10	
30	P0.3	Multifunction I/O	Yes	P0MAT.3	XTAL2
				EXTCLK	
				INT0.3	
				INT1.3	
				CLU0B.9	
				CLU2B.9	
				CLU3A.9	
31	P0.2	Multifunction I/O	Yes	P0MAT.2	XTAL1
				INT0.2	ADC0.1
				INT1.2	CMP0P.1
				CLU0OUT	CMP0N.1
				CLU0A.9	
				CLU2B.8	
				CLU3A.8	
32	P0.1	Multifunction I/O	Yes	P0MAT.1	ADC0.0
				INT0.1	CMP0P.0
				INT1.1	CMP0N.0
				CLU0B.8	AGND
				CLU2A.9	
				CLU3B.9	
Center	GND	Ground			

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
18	P1.7	Multifunction I/O	Yes	P1MAT.7	ADC0.13
				CLU0B.15	CMP0P.9
				CLU1B.13	CMP0N.9
				CLU2A.13	
19	P1.6	Multifunction I/O	Yes	P1MAT.6	ADC0.12
				CLU0A.15	
				CLU1B.12	
				CLU2A.12	
20	P1.5	Multifunction I/O	Yes	P1MAT.5	ADC0.11
				CLU0B.14	
				CLU1A.13	
				CLU2B.13	
21	P1.4	Multifunction I/O	Yes	P1MAT.4	ADC0.10
				CLU0A.14	
				CLU1A.12	
				CLU2B.12	
22	P1.3	Multifunction I/O	Yes	P1MAT.3	ADC0.9
				CLU0B.13	
				CLU1B.11	
				CLU2B.11	
				CLU3A.13	
23	P1.2	Multifunction I/O	Yes	P1MAT.2	ADC0.8
				CLU0A.13	CMP0P.8
				CLU1A.11	CMP0N.8
				CLU2B.10	
				CLU3A.12	
24	P1.1	Multifunction I/O	Yes	P1MAT.1	ADC0.7
				CLU0B.12	CMP0P.7
				CLU1B.10	CMP0N.7
				CLU2A.11	
				CLU3B.13	

Figure 6.4. EFM8BB3x-QSOP24 Pinout

TADIE 0.4. FIII DEIIIIIUUIIS IUI EFINIODD3X-Q30F2	Table 6.4.	Pin Definitions	for EFM8BB3x	-QSOP24
---	------------	-----------------	--------------	---------

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
1	P0.3	Multifunction I/O	Yes	P0MAT.3	XTAL2
				EXTCLK	
				INT0.3	
				INT1.3	
				CLU0B.9	
				CLU2B.9	
				CLU3A.9	

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
2	P0.2	Multifunction I/O	Yes	P0MAT.2	XTAL1
				INT0.2	ADC0.1
				INT1.2	CMP0P.1
				CLU0OUT	CMP0N.1
				CLU0A.9	
				CLU2B.8	
				CLU3A.8	
3	P0.1	Multifunction I/O	Yes	P0MAT.1	ADC0.0
				INT0.1	CMP0P.0
				INT1.1	CMP0N.0
				CLU0B.8	AGND
				CLU2A.9	
				CLU3B.9	
4	P0.0	Multifunction I/O	Yes	P0MAT.0	VREF
				INT0.0	
				INT1.0	
				CLU0A.8	
				CLU2A.8	
				CLU3B.8	
5	GND	Ground			
6	VDD / VIO	Supply Power Input			
7	RSTb /	Active-low Reset /			
	C2CK	C2 Debug Clock			
8	P3.0 /	Multifunction I/O /			
	C2D	C2 Debug Data			
9	P2.3	Multifunction I/O	Yes	P2MAT.3	DAC3
				CLU1B.15	
				CLU2B.15	
				CLU3A.15	
10	P2.2	Multifunction I/O	Yes	P2MAT.2	DAC2
				CLU1A.15	
				CLU2B.14	
				CLU3A.14	

7. QFN32 Package Specifications

7.1 QFN32 Package Dimensions

Figure 7.1. QFN32 Package Drawing

Dimension	Min	Тур	Мах
A	0.45	0.50	0.55
A1	0.00	0.035	0.05
b	0.15	0.20	0.25
D	4.00 BSC.		
D2	2.80	2.90	3.00
е	0.40 BSC.		
E	4.00 BSC.		
E2	2.80	2.90	3.00
L	0.20	0.30	0.40
ааа		_	0.10
bbb	_	—	0.10
ССС		—	0.08
ddd	_	_	0.10
eee	—	—	0.10
999			0.05

Table 7.1. QFN32 Package Dimensions

Dimension	Min	Мах
Note:		
1. All dimensions shown are in millimeters	(mm) unless otherwise noted.	
2. Dimensioning and Tolerancing is per the	ANSI Y14.5M-1994 specification.	
3. This Land Pattern Design is based on the IPC-7351 guidelines.		
 All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabri- cation Allowance of 0.05mm. 		
 All metal pads are to be non-solder mas minimum, all the way around the pad. 	k defined (NSMD). Clearance between the so	older mask and the metal pad is to be 60 μm
6. A stainless steel, laser-cut and electro-p	olished stencil with trapezoidal walls should b	be used to assure good solder paste release.
7. The stencil thickness should be 0.125 mm (5 mils).		
8. The ratio of stencil aperture to land pad	size should be 1:1 for all perimeter pads.	
9. A 2 x 2 array of 1.10 mm square opening	gs on a 1.30 mm pitch should be used for the	center pad.

- 10. A No-Clean, Type-3 solder paste is recommended.
- 11. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

7.3 QFN32 Package Marking

Figure 7.3. QFN32 Package Marking

The package marking consists of:

- PPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.
- # The device revision (A, B, etc.).

Dimension	Min	Тур	Мах
е	0.40 BSC		
e1	0.45 BSC		
J	1.60	1.70	1.80
К	1.60	1.70	1.80
L	0.35	0.40	0.45
L1	0.25	0.30	0.35
ааа	—	0.10	—
bbb	—	0.10	—
ссс	—	0.08	—
ddd	_	0.1	_
eee	_	0.1	—

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to JEDEC Solid State Outline MO-248 but includes custom features which are toleranced per supplier designation.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Dimension	Min	Мах	
Note:			
1. All dimensions shown are in millimeters	(mm) unless otherwise noted.		
2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.			
3. This Land Pattern Design is based on the IPC-SM-782 guidelines.			
4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μm minimum, all the way around the pad.			
5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release			
6. The stencil thickness should be 0.125 mm (5 mils).			
7. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.			
8. A 2 x 1 array of 0.7 mm x 1.6 mm openi	ngs on a 0.9 mm pitch should be used for the	center pad.	
9. A No-Clean, Type-3 solder paste is reco	mmended.		

10. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

9.3 QFN24 Package Marking

Figure 9.3. QFN24 Package Marking

The package marking consists of:

- PPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.
- # The device revision (A, B, etc.).

10. QSOP24 Package Specifications

10.1 QSOP24 Package Dimensions

Figure 10.1. QSOP24 Package Drawing

Table 10.1. QSOP24 Package Dimensions

Dimension	Min	Тур	Мах
A	—	—	1.75
A1	0.10	—	0.25
b	0.20	—	0.30
с	0.10	—	0.25
D	8.65 BSC		
E	6.00 BSC		
E1	3.90 BSC		
е	0.635 BSC		
L	0.40	_	1.27
theta	0°	—	8°

Min	Тур	Мах
	0.20	
	0.18	
	0.10	
	0.10	
	Min	Min Typ 0.20 0.18 0.10 0.10

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to JEDEC outline MO-137, variation AE.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

10.2 QSOP24 PCB Land Pattern

Figure 10.2. QSOP24 PCB Land Pattern Drawing

Table 10.2. QSOP24 PCB Land Pattern Dimension

Dimension	Min	Мах
С	5.20	5.30
E	0.635 BSC	
x	0.30	0.40
Y	1.50	1.60

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. This land pattern design is based on the IPC-7351 guidelines.

3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.

4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.

5. The stencil thickness should be 0.125 mm (5 mils).

6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.

7. A No-Clean, Type-3 solder paste is recommended.

8. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.