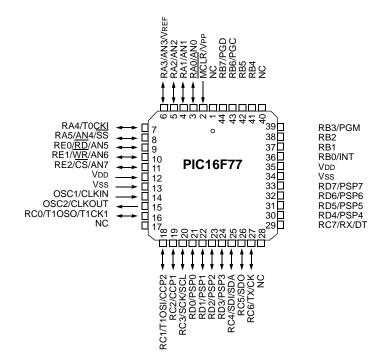
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f73-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

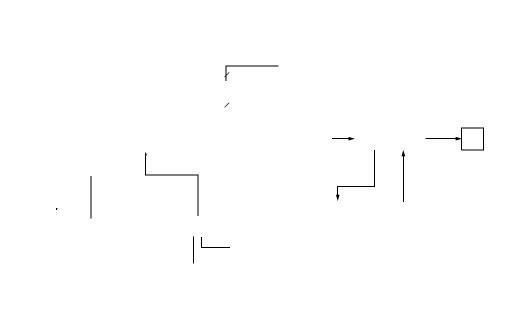
2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. A list of these registers is given in Table 2-1. The Special Function Registers can be classified into two sets: core (CPU) and peripheral. Those registers associated with the core functions are described in detail in this section. Those related to the operation of the peripheral features are described in detail in the peripheral feature section.

TABLE 2-1: SPECIAL FUNCTION REGISTER SUMMARY

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Details on page
Bank 0											
00h ⁽⁴⁾	INDF	Addressing	this location	n uses conte	ents of FSR to	address data	a memory (r	not a physica	al register)	0000 0000	27, 96
01h	TMR0	Timer0 Mod	lule Registe	er						xxxx xxxx	45, 96
02h ⁽⁴⁾	PCL	Program Co	ounter (PC)	Least Signif	icant Byte					0000 0000	26, 96
03h ⁽⁴⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	19, 96
04h ⁽⁴⁾	FSR	Indirect Dat	a Memory A	Address Poir	nter					XXXX XXXX	27, 96
05h	PORTA			PORTA Dat	ta Latch when	written: POF	RTA pins wh	en read		0x 0000	32, 96
06h	PORTB	PORTB Dat	a Latch wh	en written: F	ORTB pins w	hen read				xxxx xxxx	34, 96
07h	PORTC	PORTC Dat	ta Latch wh	en written: F	PORTC pins w	hen read				XXXX XXXX	35, 96
08h ⁽⁵⁾	PORTD	PORTD Dat	ta Latch wh	en written: F	PORTD pins w	hen read				XXXX XXXX	36, 96
09h ⁽⁵⁾	PORTE						RE2	RE1	RE0	xxx	39, 96
0Ah ^(1,4)	PCLATH				Write Buffer	for the upper	5 bits of the	Program C	ounter	0 0000	26, 96
0Bh ⁽⁴⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	21, 96
0Ch	PIR1	PSPIF ⁽³⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	23, 96
0Dh	PIR2								CCP2IF	0	24, 96
0Eh	TMR1L	Holding Reg	gister for the	e Least Sign	ificant Byte of	the 16-bit TM	/IR1 Registe	er		XXXX XXXX	50, 96
0Fh	TMR1H	Holding Reg	gister for the	e Most Signi	ficant Byte of	the 16-bit TM	IR1 Registe	r		XXXX XXXX	50, 96
10h	T1CON			T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	47, 96
11h	TMR2	Timer2 Mod	lule Registe	er						0000 0000	52, 96
12h	T2CON			TOUTPS2	TOUTPS	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	52, 96
13h	SSPBUF				Suffer/Transmi	0				XXXX XXXX	64, 68, 96
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	61,96
15h	CCPR1L	•	•	M Register1	, ,					XXXX XXXX	56, 96
16h	CCPR1H	Capture/Co	mpare/PWI	M Register1	,					XXXX XXXX	56, 96
17h	CCP1CON	00511	5.44	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	54, 96
18h	RCSTA	SPEN	RX9	SREN	CREN		FERR	OERR	RX9D	0000 -00x	70, 96
19h	TXREG	USART Tra		0						0000 0000	74, 96
1Ah 1Ph	RCREG CCPR2L	USART Red		•						0000 0000	76, 96
1Bh 1Ch	CCPR2L CCPR2H	Capture/Co	•	VI Register2	. ,					XXXX XXXX	58, 96
1Dh	CCPR2H C1Dxx5	Capture/CO	inpare/FWI	vi ivegistel z						XXXX XXXX	58, 96
	-										

2.2.2.3 INTCON Register


The INTCON register is a readable and writable register, which contains various enable and flag bits for the TMR0 register overflow, RB Port change and External RB0/INT pin interrupts.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-3: INTCON REGISTER (ADDRESS 0Bh, 8Bh, 10Bh, 18Bh)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF
	bit 7							bit 0
bit 7		al Interrupt E						
	1 = Enables all unmasked interrupts 0 = Disables all interrupts							
bit 6			rupt Enable k	hit				
DIT U		•	ked peripher					
			eral interrup					
bit 5	TMROIE: T	MR0 Overfl	ow Interrupt	Enable bit				
	1 = Enable	es the TMRC) interrupt					
	0 = Disable	es the TMR	0 interrupt					
bit 4			al Interrupt E					
			NT external	•				
			INT external	•				
bit 3		•	e Interrupt E					
			ort change in ort change ir					
bit 2		•	ow Interrupt					
SR 2			overflowed	-	eared in soft	ware)		
		•	not overflow	•				
bit 1	INTF: RB0	/INT Extern	al Interrupt F	lag bit				
	1 = The RE	B0/INT exte	rnal interrupt	occurred (n	nust be clea	red in softwa	are)	
	0 = The RI	B0/INT exte	rnal interrupt	did not occ	ur			
bit 0			e Interrupt Fl					
			will continue g bit RBIF to			ding PORTE	3 will end the	emismatch
			RB7:RB4 pi			he cleared i	in software)	
			RB4 pins hav				in soltware)	
			•	ũ				
	Legend:							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as 0
- n = Value at POR reset	1 = Bit is set	0 = Bit is cleared	x = Bit is unknown

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/P-1	U-0	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
	_	_		—	_	_	BOREN	_	CP0	PWRTEN	WDTEN	FOSC1	FOSC0
bit13													bit0
bit 13-7		•		I: Read									
bit 6		BOREN	I: Browr	n-out Res	set Ena	ble bit							
			R enable										
		0 = BO	R disabl	ed									
bit 5		Unimple	emented	I: Read	as '1'								
bit 4		CP0: F	LASH P	rogram I	Vemory	Code F	Protection b	oit					
		1 = Coo	de prote	ction off									
		0 = AII I	memory	location	s code	protecte	ed						
bit 3		PWRTE	EN: Pow	er-up Ti	mer Ena	able bit							
		1 = PW	'RT disa	bled									
		0 = PW	'RT enal	oled									
bit 2		WDTEN	WDTEN: Watchdog Timer Enable bit										
		1 = WD	T enabl	ed									
		0 = WD	T disab	led									
bit 1-0		FOSC1	:FOSCO): Oscilla	tor Sele	ection bi	ts						
		11 = R0	C oscilla	tor									
		-	10 = HS oscillator										
		•••••	01 = XT oscillator										
		00 = LF	oscillat	or									
		Note	1. The	erased	lunnrog	irammo	d) value of	the co	ofigurat	tion word is	3FFFb		
		Note		Gradeu	(anpi0)	Jannie			mgura				

REGISTER 12-1: CONFIGURATION WORD (ADDRESS 2007h) ⁽¹⁾

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
- n = Value when device is u	nprogrammed	u = Unchanged from programmed state

PIC16F7X

MOVF	Move f
Syntax:	[label] MOVF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$
Operation:	(f) \rightarrow (destination)
Status Affected:	Z
Description:	The contents of register f are moved to a destination dependant upon the status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. d = 1 is useful to test a file register, since status flag Z is affected.

NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.

MOVLW	Move Literal to W				
Syntax:	[label] MOVLW k				
Operands:	$0 \le k \le 255$				
Operation:	$k \rightarrow (W)$				
Status Affected:	None				
Description:	The eight-bit literal k is loaded into W register. The don t cares will assemble as 0 s.				

RETFIE	Return from Interrupt
Syntax:	[label] RETFIE
Operands:	None
Operation:	$\begin{array}{l} TOS \to PC, \\ 1 \to GIE \end{array}$
Status Affected:	None

MOVWF	Move W to f					
Syntax:	[label] MOVWF f					
Operands:	$0 \le f \le 127$					
Operation:	$(W) \rightarrow (f)$					
Status Affected:	None					
Description:	Move data from W register to register 'f'.					

RETLW	Return with Literal in W				
Syntax:	[label] RETLW k				
Operands:	$0 \le k \le 255$				
Operation:	$k \rightarrow (W);$ TOS \rightarrow PC				
Status Affected:	None				
Description:	The W register is loaded with the eight-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.				

PIC16F7X

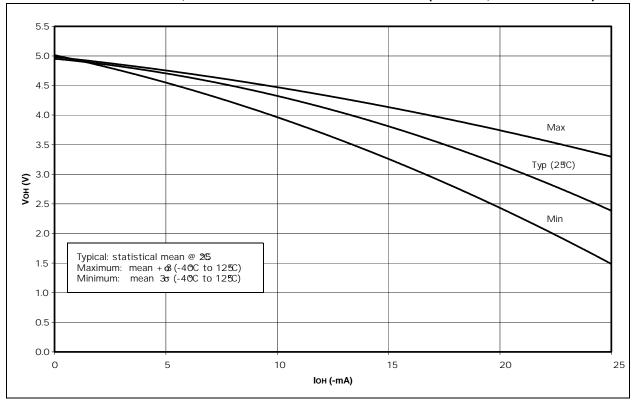
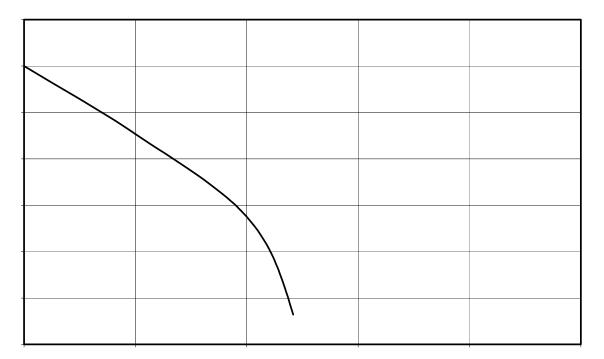
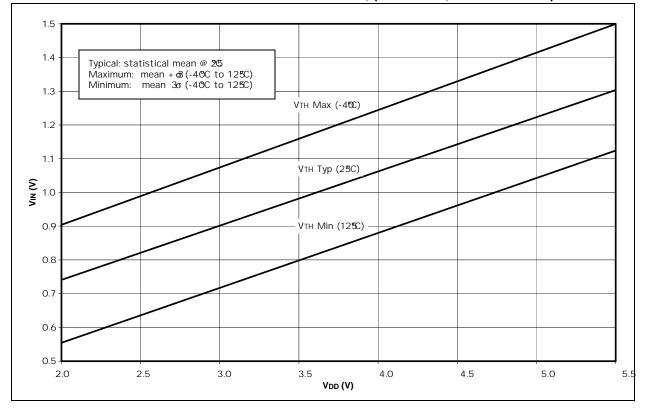
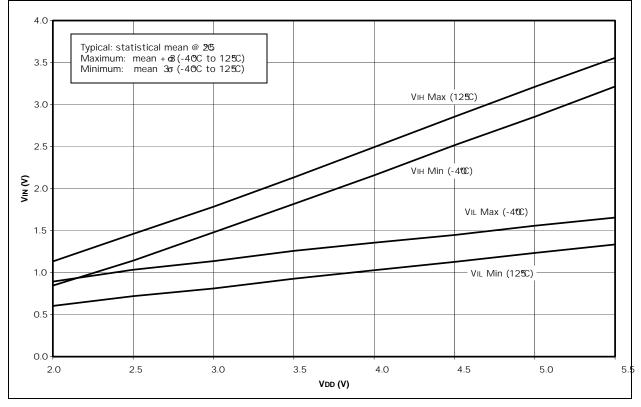




FIGURE 16-15: TYPICAL, MINIMUM AND MAXIMUM VOH vs. IOH (VDD = 5V, -40°C TO 125°C)


FIGURE 16-16: TYPICAL, MINIMUM AND MAXIMUM VOH vs. IOH (VDD = 3V, -40°C TO 125°C)

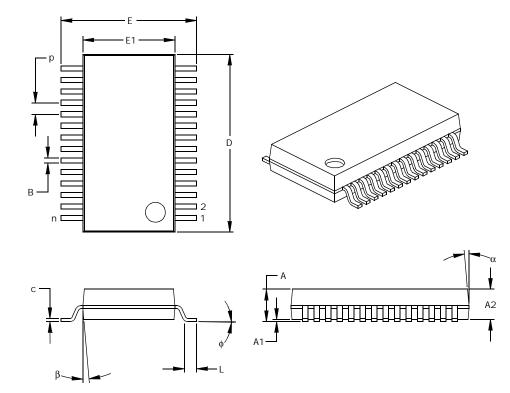


FIGURE 16-19: MINIMUM AND MAXIMUM VIN vs. Vdd, (TTL INPUT, -40°C TO 125°C)

28-Lead Plastic Shrink Small Outline (SS) - 209 mil, 5.30 mm (SSOP)

Units		INCHES			MILLIMETERS*		
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.026			0.65	
Overall Height	Α	.068	.073	.078	1.73	1.85	1.98
Molded Package Thickness	A2	.064	.068	.072	1.63	1.73	1.83
Standoff §	A1	.002	.006	.010	0.05	0.15	0.25
Overall Width	E	.299	.309	.319	7.59	7.85	8.10
Molded Package Width	E1	.201	.207	.212	5.11	5.25	5.38
Overall Length	D	.396	.402	.407	10.06	10.20	10.34
Foot Length	L	.022	.030	.037	0.56	0.75	0.94
Lead Thickness	С	.004	.007	.010	0.10	0.18	0.25
Foot Angle	¢	0	4	8	0.00	101.60	203.20
Lead Width	В	.010	.013	.015	0.25	0.32	0.38
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010 (0.254mm) per side. JEDEC Equivalent: MS-150 Drawing No. C04-073