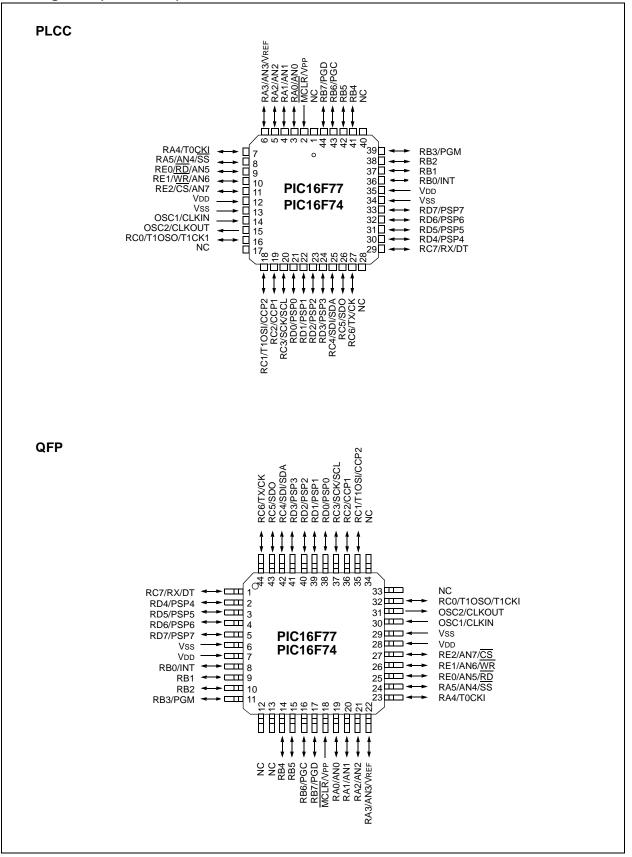


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f73-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

1.0 **DEVICE OVERVIEW**

This document contains device specific information about the following devices:

- PIC16F73
- PIC16F74
- PIC16F76
- PIC16F77

PIC16F73/76 devices are available only in 28-pin packages, while PIC16F74/77 devices are available in 40-pin and 44-pin packages. All devices in the PIC16F7X family share common architecture, with the following differences:

- The PIC16F73 and PIC16F76 have one-half of the total on-chip memory of the PIC16F74 and **PIC16F77**
- The 28-pin devices have 3 I/O ports, while the 40/44-pin devices have 5
- · The 28-pin devices have 11 interrupts, while the 40/44-pin devices have 12
- The 28-pin devices have 5 A/D input channels, while the 40/44-pin devices have 8
- The Parallel Slave Port is implemented only on the 40/44-pin devices

PIC16F7X DEVICE FEATURES **PIC16F74 PIC16F76 Key Features PIC16F73 PIC16F77 Operating Frequency** DC - 20 MHz DC - 20 MHz DC - 20 MHz DC - 20 MHz **RESETS** (and Delays) POR, BOR POR. BOR POR. BOR POR, BOR (PWRT, OST) (PWRT, OST) (PWRT, OST) (PWRT, OST) FLASH Program Memory 4K 4K 8K 8K (14-bit words) Data Memory (bytes) 368 192 192 368 Interrupts 11 12 11 12 I/O Ports Ports A,B,C Ports A,B,C Ports A,B,C,D,E Ports A,B,C,D,E Timers 3 3 3 3 Capture/Compare/PWM Modules 2 2 2 2 SSP, USART Serial Communications SSP, USART SSP. USART SSP, USART Parallel Communications PSP PSP 8-bit Analog-to-Digital Module **5 Input Channels** 8 Input Channels 5 Input Channels 8 Input Channels Instruction Set **35 Instructions 35 Instructions** 35 Instructions **35 Instructions** Packaging 28-pin DIP 40-pin PDIP 28-pin DIP 40-pin PDIP 28-pin SOIC 44-pin PLCC 28-pin SOIC 44-pin PLCC 28-pin SSOP 44-pin TQFP 28-pin SSOP 44-pin TQFP 28-pin MLF 28-pin MLF

TABLE 1-1:

The available features are summarized in Table 1-1. Block diagrams of the PIC16F73/76 and PIC16F74/77 devices are provided in Figure 1-1 and Figure 1-2, respectively. The pinouts for these device families are listed in Table 1-2 and Table 1-3.

Additional information may be found in the PICmicro™ Mid-Range Reference Manual (DS33023), which may be obtained from your local Microchip Sales Representative or downloaded from the Microchip website. The Reference Manual should be considered a complementary document to this data sheet, and is highly recommended reading for a better understanding of the device architecture and operation of the peripheral modules.

TABLE 1-3:PIC16F74 AND PIC16F77 PINOUT DESCRIPTION

OSC1/CLKI OSC1 CLKI OSC2/CLKO OSC2 CLKO MCLR/VPP MCLR VPP	13	14 15	30 31	1	ST/CMOS ⁽⁴⁾	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST buffer when configured in RC mode. Otherwise CMOS. External clock source input. Always associated with pin
CLKI OSC2/CLKO OSC2 CLKO <u>MCLR/VPP</u> MCLR	14	15	31	I		Oscillator crystal input or external clock source input. ST buffer when configured in RC mode. Otherwise CMOS. External clock source input. Always associated with pin
OSC2/CLKO OSC2 CLKO MCLR/VPP MCLR	14	15	31			CMOS. External clock source input. Always associated with pin
OSC2/CLKO OSC2 CLKO MCLR/VPP MCLR	14	15	31			External clock source input. Always associated with pin
OSC2 CLKO MCLR/VPP MCLR	14	15	31			
OSC2 CLKO MCLR/VPP MCLR	14	15	31	0		function OSC1 (see OSC1/CLKI, OSC2/CLKO pins).
CLKO MCLR/VPP MCLR				<u> </u>	I —	Oscillator crystal or clock output.
MCLR/Vpp MCLR				0		Oscillator crystal output.
MCLR/Vpp MCLR						Connects to crystal or resonator in Crystal Oscillator
MCLR/Vpp MCLR						mode.
MCLR				0		In RC mode, OSC2 pin outputs CLKO, which has 1/4
MCLR						the frequency of OSC1 and denotes the instruction
MCLR						cycle rate.
	1	2	18		ST	Master Clear (input) or programming voltage (output).
Vpp				I		Master Clear (Reset) input. This pin is an active low
VPP						RESET to the device.
				Р		Programming voltage input.
						PORTA is a bi-directional I/O port.
RA0/AN0	2	3	19		TTL	
RA0				I/O		Digital I/O.
AN0				I		Analog input 0.
RA1/AN1	3	4	20		TTL	
RA1				I/O		Digital I/O.
AN1				I		Analog input 1.
RA2/AN2	4	5	21		TTL	
RA2				I/O		Digital I/O.
AN2				I		Analog input 2.
RA3/AN3/Vref	5	6	22		TTL	
RA3				I/O		Digital I/O.
AN3				I		Analog input 3.
VREF				I		A/D reference voltage input.
RA4/T0CKI	6	7	23		ST	
RA4				I/O		Digital I/O – Open drain when configured as output.
TOCKI				I		Timer0 external clock input.
RA5/SS/AN4	7	8	24		TTL	
RA5		-		I/O		Digital I/O.
SS	1			1		SPI slave select input.
AN4					1	
Legend: I = inpu		1				Analog input 4.

— = Not used TTL = TTL input ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel Slave Port mode (for interfacing to a microprocessor bus).

4: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

Pin Name	DIP Pin#	PLCC Pin#	QFP Pin#	I/O/P Type	Buffer Type	Description
						PORTD is a bi-directional I/O port or parallel slave port
						when interfacing to a microprocessor bus.
RD0/PSP0	19	21	38		ST/TTL ⁽³⁾	
RD0				I/O		Digital I/O.
PSP0			00	I/O	ot (3)	Parallel Slave Port data.
RD1/PSP1 RD1	20	22	39	і І/О	ST/TTL ⁽³⁾	Digital I/O.
PSP1				1/O		Parallel Slave Port data.
RD2/PSP2	21	23	40	1,'C	ST/TTL ⁽³⁾	
RD2	21	20	40	ı/O	OI/TIE	Digital I/O.
PSP2				I/O		Parallel Slave Port data.
RD3/PSP3	22	24	41		ST/TTL ⁽³⁾	
RD3				I/O		Digital I/O.
PSP3				I/O		Parallel Slave Port data.
RD4/PSP4	27	30	2		ST/TTL ⁽³⁾	
RD4				I/O		Digital I/O.
PSP4 I/O			Parallel Slave Port data.			
RD5/PSP5	28	31	3		ST/TTL ⁽³⁾	
RD5				I/O		Digital I/O.
PSP5				I/O	· · · · · · (2)	Parallel Slave Port data.
RD6/PSP6	29	32	4		ST/TTL ⁽³⁾	District I/O
RD6 PSP6				I/O I/O		Digital I/O. Parallel Slave Port data.
RD7/PSP7	30	33	5	1/0	ST/TTL ⁽³⁾	Faraller Slave Folt data.
RD7/PSP7	30	- 33	Э	I/O	51/11L*/	Digital I/O.
PSP7				1/O		Parallel Slave Port data.
-						PORTE is a bi-directional I/O port.
RE0/RD/AN5	8	9	25		ST/TTL ⁽³⁾	
RE0	-	-		I/O		Digital I/O.
RD				I		Read control for parallel slave port .
AN5				I		Analog input 5.
RE1/WR/AN6	9	10	26		ST/TTL ⁽³⁾	
RE1				I/O		Digital I/O.
WR				1		Write control for parallel slave port .
AN6				I	o <i></i> (3)	Analog input 6.
RE2/CS/AN7	10	11	27		ST/TTL ⁽³⁾	
RE2 CS				I/O I		Digital I/O. Chip select control for parallel slave port .
AN7				1		Analog input 7.
Vss	12,31	13,34	6,29	P	_	Ground reference for logic and I/O pins.
VDD	11,32	12,35	7,28	Р	_	Positive supply for logic and I/O pins.
NC	· -	1,17,2	12,13,		_	These pins are not internally connected. These pins should
		8, 40	33, 34			be left unconnected.
Legend: I = input		O = 0		I/C) = input/outpu	ut P = power

TABLE 1-3: PIC16F74 AND PIC16F77 PINOUT DESCRIPTION (CONTINUED)

Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel Slave Port mode (for interfacing to a microprocessor bus).

4: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

TABLE 2-1:	SPECIAL FUNCTION REGISTER SUMMARY	(CONTINUED)
-------------------	-----------------------------------	-------------

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Details on page
Bank 2											
100h ⁽⁴⁾	INDF	Addressin	g this locatio	n uses conte	ents of FSR to	address data	a memory (r	not a physica	al register)	0000 0000	27, 96
101h	TMR0	Timer0 Mc	dule Registe		xxxx xxxx	45, 96					
102h ⁽⁴⁾	PCL	Program Counter (PC) Least Significant Byte								0000 0000	26, 96
103h ⁽⁴⁾	STATUS	IRP	RP1	RP0	ТО	PD	Z	DC	С	0001 1xxx	19, 96
104h ⁽⁴⁾	FSR	Indirect Da	ata Memory /	Address Poir	nter					xxxx xxxx	27, 96
105h	—	Unimplem	ented							_	—
106h	PORTB	PORTB D	ata Latch wh	en written: F	ORTB pins w	hen read				xxxx xxxx	34, 96
107h	_	Unimplem	ented							—	—
108h	—	Unimplem	ented							—	—
109h	—	Unimplem	ented							_	—
10Ah ^(1,4)	PCLATH	—	_	_	Write Buffer	for the upper	5 bits of the	Program C	ounter	0 0000	21, 96
10Bh ⁽⁴⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	23, 96
10Ch	PMDATA	Data Regi	ster Low Byte	e		•	•		-	XXXX XXXX	29, 97
10Dh	PMADR	Address R	egister Low	Byte						xxxx xxxx	29, 97
10Eh	PMDATH	—	_	Data Regist	ter High Byte					xxxx xxxx	29, 97
10Fh	PMADRH		_	_	Address Reg	gister High By	/te			XXXX XXXX	29, 97
Bank 3											
180h ⁽⁴⁾	INDF	Addressin	g this locatio	n uses conte	ents of FSR to	address data	a memory (r	not a physica	al register)	0000 0000	27, 96
181h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	20, 44, 96
182h ⁽⁴⁾	PCL	Program C	Counter (PC)	Least Signif	icant Byte					0000 0000	26, 96
183h ⁽⁴⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	19, 96
184h ⁽⁴⁾	FSR	Indirect Da	ata Memory /	Address Poir	nter					xxxx xxxx	27, 96
185h	—	Unimplem	ented							_	_
186h	TRISB	PORTB Data Direction Register						1111 1111	34, 96		
187h	—	Unimplemented						_	_		
188h	—	Unimplemented							_	_	
189h	—	Unimplemented						_	_		
18Ah ^(1,4)	PCLATH	_		_	Write Buffer	for the upper	5 bits of the	Program C	ounter	0 0000	21, 96
18Bh ⁽⁴⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	23, 96
18Ch	PMCON1	(6)	_	—	—	—	_	—	RD	10	29, 97
18Dh	—	Unimplem	ented							_	
18Eh	—	Reserved	maintain clea	ar						0000 0000	
18Fh	_	Reserved	maintain clea	ar						0000 0000	

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

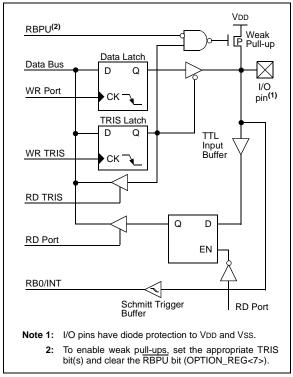
Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter during branches (CALL or GOTO).

2: Other (non power-up) RESETS include external RESET through MCLR and Watchdog Timer Reset.

3: Bits PSPIE and PSPIF are reserved on the 28-pin devices; always maintain these bits clear.

4: These registers can be addressed from any bank.

5: PORTD, PORTE, TRISD, and TRISE are not physically implemented on the 28-pin devices, read as '0'.


6: This bit always reads as a '1'.

4.2 PORTB and the TRISB Register

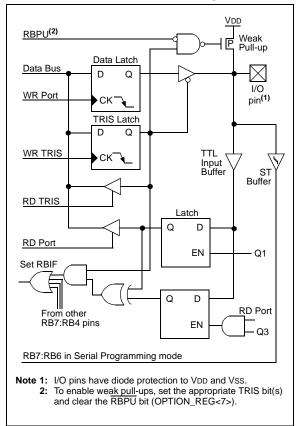
PORTB is an 8-bit wide, bi-directional port. The corresponding data direction register is TRISB. Setting a TRISB bit (= '1') will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISB bit (= '0') will make the corresponding PORTB pin an output (i.e., put the contents of the output latch on the selected pin).

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit RBPU (OPTION_REG<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

Four of the PORTB pins (RB7:RB4) have an interrupt-on-change feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB4 pin configured as an output is excluded from the interrupt-on-change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are ORed together to generate the RB Port Change Interrupt with flag bit RBIF (INTCON<0>). This interrupt can wake the device from SLEEP. The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared.


The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

This interrupt on mismatch feature, together with software configureable pull-ups on these four pins, allow easy interface to a keypad and make it possible for wake-up on key depression. Refer to the Embedded Control Handbook, "Implementing Wake-up on Key Stroke" (AN552).

RB0/INT is an external interrupt input pin and is configured using the INTEDG bit (OPTION_REG<6>).

RB0/INT is discussed in detail in Section 12.11.1.

FIGURE 4-4: BLOCK DIAGRAM OF RB7:RB4 PINS

5.2 Using Timer0 with an External Clock

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI, with the internal phase clocks, is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks. Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device.

REGISTER 5-1:	OPTION_REG REGISTER
---------------	----------------------------

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0		
	bit 7							bit 0		
bit 7	RBPU: PC	ORTB Pull-up	Enable bit	(see Sectior	n 2.2.2.2)					
bit 6	INTEDG:	Interrupt Edg	e Select bit	(see Section	n 2.2.2.2)					
bit 5	TOCS: TM	TMR0 Clock Source Select bit								
		ransition on T0CKI pin iternal instruction cycle clock (CLKOUT)								
bit 4	TOSE: TM	R0 Source E	Edge Select	bit						
	1 = Incren	nent on high-	to-low trans	ition on TOC	KI pin					
	0 = Incren	nent on low-t	o-high trans	ition on TOC	KI pin					
bit 3	PSA: Pres	scaler Assigr	nment bit							
		aler is assign aler is assign			е					
bit 2-0	PS2:PS0:	Prescaler R	ate Select b	its						
	Bit Value	TMR0 Rate	WDT Rate							
	000	1:2	1:1							
	001	1:4 1:8	1:2 1:4							
	010 011	1:16	1:4							
	100	1:32	1:16							
	101	1:64	1:32							
	110	1:128	1:64							
	111	1 : 256	1 : 128							
	Legend:									
	R = Reada	able bit	W = V	Vritable bit	U = Unii	mplemented	bit, read as	'0'		
	- n = Value	e at POR res	et '1' = B	Bit is set	'0' = Bit	is cleared	x = Bit is ι	unknown		
		To avoid ar								
		Example 5-1 caler assigni even if the W	ment betwee	en Timer0 a						

6.4 Timer1 Operation in Asynchronous Counter Mode

If control bit T1SYNC (T1CON<2>) is set, the external clock input is not synchronized. The timer continues to increment asynchronous to the internal phase clocks. The timer will continue to run during SLEEP and can generate an interrupt on overflow, which will wake-up the processor. However, special precautions in software are needed to read/write the timer (Section 6.4.1).

In Asynchronous Counter mode, Timer1 cannot be used as a time-base for capture or compare operations.

6.4.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L, while the timer is running from an external asynchronous clock, will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems, since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the timer register.

Reading the 16-bit value requires some care. The example code provided in Example 6-1 and Example 6-2 demonstrates how to write to and read Timer1 while it is running in Asynchronous mode.

EXAMPLE 6-1: WRITING A 16-BIT FREE-RUNNING TIMER

; All	interrupts	are disabled	
CLRF	TMR1L	; Clear Low byte, Ensures no rollover into TMR1H	
MOVLW	HI_BYTE	; Value to load into TMR1H	
MOVWF	TMR1H, F	; Write High byte	
MOVLW	LO_BYTE	; Value to load into TMR1L	
MOVWF	TMR1H, F	; Write Low byte	
; Re-0	enable the	Interrupt (if required)	
CONTI	NUE	; Continue with your code	
1			

EXAMPLE 6-2: READING A 16-BIT FREE-RUNNING TIMER

; All	interrupts an	ce	disabled
MOVF	TMR1H, W	;	Read high byte
MOVWF	TMPH		
MOVF	TMR1L, W	;	Read low byte
MOVWF	TMPL		
MOVF	TMR1H, W	;	Read high byte
SUBWF	TMPH, W	;	Sub 1st read with 2nd read
BTFSC	STATUS,Z	;	Is result = 0
GOTO	CONTINUE	;	Good 16-bit read
; TMR1	L may have ro	51	led over between the read of the high and low bytes.
; Read	ing the high	a	nd low bytes now will read a good value.
MOVF	TMR1H, W	;	Read high byte
MOVWF	TMPH		
MOVF	TMR1L, W	;	Read low byte
MOVWF	TMPL	;	Re-enable the Interrupt (if required)
CONTIN	UE	;	Continue with your code
			-

6.5 Timer1 Oscillator

A crystal oscillator circuit is built-in between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). The oscillator is a low power oscillator rated up to 200 kHz. It will continue to run during SLEEP. It is primarily intended for use with a 32 kHz crystal. Table 6-1 shows the capacitor selection for the Timer1 oscillator.

The Timer1 oscillator is identical to the LP oscillator. The user must provide a software time delay to ensure proper oscillator start-up.

6.6 Resetting Timer1 using a CCP Trigger Output

If the CCP1 or CCP2 module is configured in Compare mode to generate a "special event trigger" (CCP1M3:CCP1M0 = '1011'), this signal will reset Timer1.

Note:	The special event triggers from the CCP1
	and CCP2 modules will not set interrupt
	flag bit TMR1IF (PIR1<0>).

Timer1 must be configured for either Timer or Synchronized Counter mode, to take advantage of this feature. If Timer1 is running in Asynchronous Counter mode, this RESET operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from CCP1 or CCP2, the write will take precedence.

In this mode of operation, the CCPRxH:CCPRxL register pair effectively becomes the period register for Timer1.

6.7 Resetting of Timer1 Register Pair (TMR1H, TMR1L)

TMR1H and TMR1L registers are not reset to 00h on a POR, or any other RESET, except by the CCP1 and CCP2 special event triggers.

TABLE 6-1:CAPACITOR SELECTION FOR
THE TIMER1 OSCILLATOR

	Frequency	Capacitors Used:				
Osc Type	Frequency	OSC1	OSC2			
LP	32 kHz	47 pF	47 pF			
	100 kHz	33 pF	33 pF			
	200 kHz	15 pF	15 pF			
• •						

Capacitor values are for design guidance only.

These capacitors were tested with the crystals listed below for basic start-up and operation. These values were not optimized.

Different capacitor values may be required to produce acceptable oscillator operation. The user should test the performance of the oscillator over the expected VDD and temperature range for the application.

See the notes (below) table for additional information.

Commonly Used Crystals:								
32.768 kHz	Epson C-001R32.768K-A							
100 kHz	Epson C-2 100.00 KC-P							
200 kHz	STD XTL 200.000 kHz							
of t sta 2: Sin cha res	the capacitance increases the stability the oscillator, but also increases the rt-up time. Ince each resonator/crystal has its own aracteristics, the user should consult the onator/crystal manufacturer for appro- tate values of external components.							

T1CON register is reset to 00h on a Power-on Reset or a Brown-out Reset, which shuts off the timer and leaves a 1:1 prescale. In all other RESETS, the register is unaffected.

6.8 Timer1 Prescaler

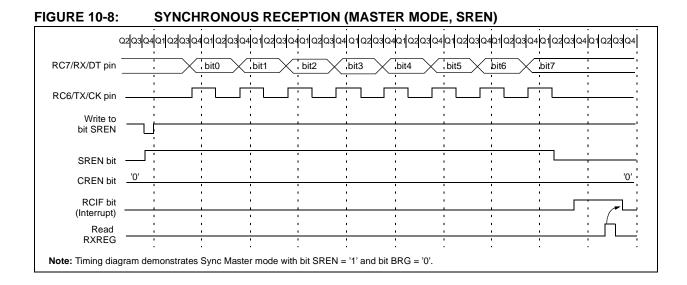
The prescaler counter is cleared on writes to the TMR1H or TMR1L registers.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value PC BC	DR,		e on other ETS
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
0Eh	TMR1L	Holding register for the Least Significant Byte of the 16-bit TMR1 Register							r	xxxx	xxxx	uuuu	uuuu
0Fh	TMR1H	Holding register for the Most Significant Byte of the 16-bit TMR1 Register								xxxx	xxxx	uuuu	uuuu
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00	0000	uu	uuuu

TABLE 6-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76; always maintain these bits clear.


10.3.2 USART SYNCHRONOUS MASTER RECEPTION

Once synchronous mode is selected, reception is enabled by setting either enable bit SREN (RCSTA<5>), or enable bit CREN (RCSTA<4>). Data is sampled on the RC7/RX/DT pin on the falling edge of the clock. If enable bit SREN is set, then only a single word is received. If enable bit CREN is set, the reception is continuous until CREN is cleared. If both bits are set, CREN takes precedence. After clocking the last bit, the received data in the Receive Shift Register (RSR) is transferred to the RCREG register (if it is empty). When the transfer is complete, interrupt flag bit RCIF (PIR1<5>) is set. The actual interrupt can be enabled/ disabled by setting/clearing enable bit RCIE (PIE1<5>). Flag bit RCIF is a read only bit, which is reset by the hardware. In this case, it is reset when the RCREG register has been read and is empty. The RCREG is a double buffered register (i.e., it is a two deep FIFO). It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting into the RSR register. On the clocking of the last bit of the third byte, if the RCREG register is still full, then overrun error bit OERR (RCSTA<1>) is set. The word in the RSR will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Bit OERR has to be cleared in software (by clearing bit CREN). If bit OERR is set, transfers from the RSR to the RCREG are inhibited, so it is essential to clear bit OERR if it is set. The ninth receive bit is buffered the same way as the

receive data. Reading the RCREG register will load bit RX9D with a new value, therefore, it is essential for the user to read the RCSTA register before reading RCREG, in order not to lose the old RX9D information.

Steps to follow when setting up a Synchronous Master Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate (Section 10.1).
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 3. Ensure bits CREN and SREN are clear.
- 4. If interrupts are desired, then set enable bit RCIE.
- 5. If 9-bit reception is desired, then set bit RX9.
- 6. If a single reception is required, set bit SREN. For continuous reception set bit CREN.
- Interrupt flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- 8. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 9. Read the 8-bit received data by reading the RCREG register.
- 10. If any error occurred, clear the error by clearing bit CREN.
- 11. If using interrupts, ensure that GIE and PEIE in the INTCON register are set.

11.2 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 9.0 TAD per 8-bit conversion. The source of the A/D conversion clock is software selectable. The four possible options for TAD are:

- 2 Tosc (Fosc/2)
- 8 Tosc (Fosc/8)
- 32 Tosc (Fosc/32)
- Internal RC oscillator (2-6 μs)

For correct A/D conversions, the A/D conversion clock (TAD) must be selected to ensure a minimum TAD time as small as possible, but no less than $1.6 \,\mu s$.

11.3 Configuring Analog Port Pins

The ADCON1, TRISA and TRISE registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS2:CHS0 bits and the TRIS bits.

- Note 1: When reading the port register, all pins configured as analog input channels will read as cleared (a low level). Pins configured as digital inputs will convert an analog input. Analog levels on a digitally configured input will not affect the conversion accuracy.
 - 2: Analog levels on any pin that is defined as a digital input, but not as an analog input, may cause the digital input buffer to consume current that is out of the device's specification.

11.4 A/D Conversions

Note: The GO/DONE bit should **NOT** be set in the same instruction that turns on the A/D.

Setting the GO/DONE bit begins an A/D conversion. When the conversion completes, the 8-bit result is placed in the ADRES register, the GO/DONE bit is cleared, and the ADIF flag (PIR<6>) is set.

If both the A/D interrupt bit ADIE (PIE1<6>) and the peripheral interrupt enable bit PEIE (INTCON<6>) are set, the device will wake from SLEEP whenever ADIF is set by hardware. In addition, an interrupt will also occur if the global interrupt bit GIE (INTCON<7>) is set.

Clearing the GO/DONE bit during a conversion will abort the current conversion. The ADRES register will NOT be changed, and the ADIF flag will not be set.

After the GO/DONE bit is cleared at either the end of a conversion, or by firmware, another conversion can be initiated by setting the GO/DONE bit. Users must still take into account the appropriate acquisition time for the application.

11.5 A/D Operation During SLEEP

The A/D module can operate during SLEEP mode. This requires that the A/D clock source be set to RC (ADCS1:ADCS0 = '11'). When the RC clock source is selected, the A/D module waits one instruction cycle before starting the conversion. This allows the SLEEP instruction to be executed, which eliminates all digital switching noise from the conversion. When the conversion is completed, the GO/DONE bit will be cleared, and the result loaded into the ADRES register. If the A/D interrupt is enabled, the device will wake-up from SLEEP. If the A/D interrupt is not enabled, the ADON bit will remain set.

When the A/D clock source is another clock option (not RC), a SLEEP instruction will cause the present conversion to be aborted and the A/D module to be turned off, though the ADON bit will remain set.

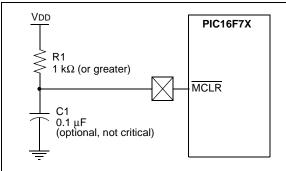
Turning off the A/D places the A/D module in its lowest current consumption state.

Note: For the A/D module to operate in SLEEP, the A/D clock source must be set to RC (ADCS1:ADCS0 = 11). To perform an A/D conversion in SLEEP, ensure the SLEEP instruction immediately follows the instruction that sets the GO/DONE bit.

11.6 Effects of a RESET

A device RESET forces all registers to their RESET state. The A/D module is disabled and any conversion in progress is aborted. All A/D input pins are configured as analog inputs.

The ADRES register will contain unknown data after a Power-on Reset.


12.4 MCLR

PIC16F7X devices have a noise filter in the $\overline{\text{MCLR}}$ Reset path. The filter will detect and ignore small pulses.

It should be noted that a WDT Reset does not drive MCLR pin low.

The behavior of the ESD protection on the $\overline{\text{MCLR}}$ pin has been altered from previous devices of this family. Voltages applied to the pin that exceed its specification can result in both $\overline{\text{MCLR}}$ Resets and excessive current beyond the device specification during the ESD event. For this reason, Microchip recommends that the $\overline{\text{MCLR}}$ pin no longer be tied directly to VDD. The use of an RC network, as shown in Figure 12-5, is suggested.

12.5 Power-on Reset (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.2V - 1.7V). To take advantage of the POR, tie the MCLR pin to VDD as described in Section 12.4. A maximum rise time for VDD is specified. See the Electrical Specifications for details.

When the device starts normal operation (exits the RESET condition), device operating parameters (voltage, frequency, temperature,...) must be met to ensure operation. If these conditions are not met, the device must be held in RESET until the operating conditions are met. For additional information, refer to Application Note, AN607, "Power-up Trouble Shooting" (DS00607).

12.6 Power-up Timer (PWRT)

The Power-up Timer provides a fixed 72 ms nominal time-out on power-up only from the POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in RESET as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an accept-able level. A configuration bit is provided to enable/ disable the PWRT.

The power-up time delay will vary from chip to chip, due to VDD, temperature and process variation. See DC parameters for details (TPWRT, parameter #33).

12.7 Oscillator Start-up Timer (OST)

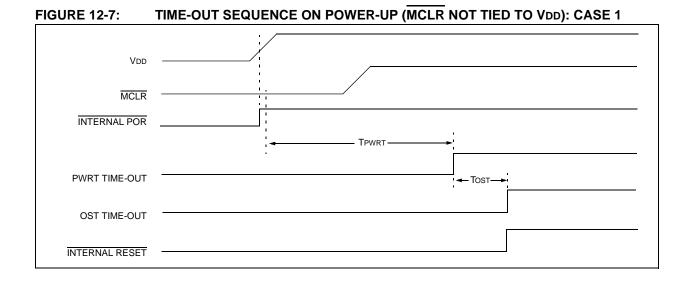
The Oscillator Start-up Timer (OST) provides 1024 oscillator cycles (from OSC1 input) delay after the PWRT delay is over (if enabled). This helps to ensure that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset, or wake-up from SLEEP.

12.8 Brown-out Reset (BOR)

The configuration bit, BODEN, can enable or disable the Brown-out Reset circuit. If VDD falls below VBOR (parameter D005, about 4V) for longer than TBOR (parameter #35, about 100 μ S), the brown-out situation will reset the device. If VDD falls below VBOR for less than TBOR, a RESET may not occur.

Once the brown-out occurs, the device will remain in Brown-out Reset until VDD rises above VBOR. The Power-up Timer then keeps the device in RESET for TPWRT (parameter #33, about 72 mS). If VDD should fall below VBOR during TPWRT, the Brown-out Reset process will restart when VDD rises above VBOR, with the Power-up Timer Reset. The Power-up Timer is always enabled when the Brown-out Reset circuit is enabled, regardless of the state of the PWRT configuration bit.


12.9 Time-out Sequence

On power-up, the time-out sequence is as follows: the PWRT delay starts (if enabled) when a POR Reset occurs. Then, OST starts counting 1024 oscillator cycles when PWRT ends (LP, XT, HS). When the OST ends, the device comes out of RESET.

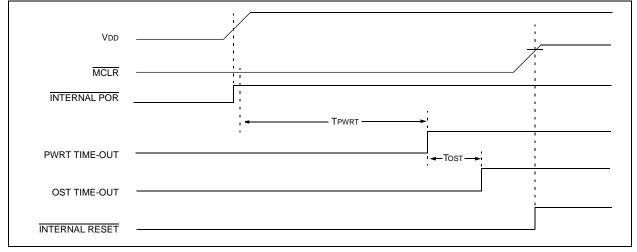

If MCLR is kept low long enough, all delays will expire. Bringing MCLR high will begin execution immediately. This is useful for testing purposes or to synchronize more than one PIC16F7X device operating in parallel.

Table 12-5 shows the RESET conditions for the STATUS, PCON and PC registers, while Table 12-6 shows the RESET conditions for all the registers.

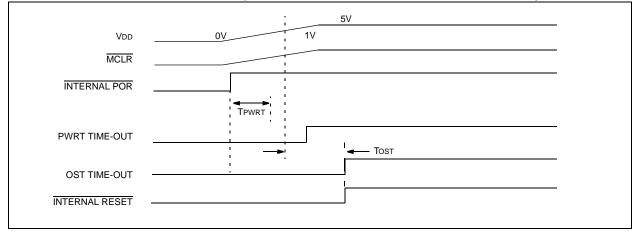

PIC16F7X

FIGURE 12-8: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

FIGURE 12-9: SLOW RISE TIME (MCLR TIED TO VDD THROUGH RC NETWORK)

14.13 PICDEM 3 Low Cost PIC16CXXX Demonstration Board

The PICDEM 3 demonstration board is a simple demonstration board that supports the PIC16C923 and PIC16C924 in the PLCC package. It will also support future 44-pin PLCC microcontrollers with an LCD Module. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM 3 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer with an adapter socket, and easily test firmware. The MPLAB ICE in-circuit emulator may also be used with the PICDEM 3 demonstration board to test firmware. A prototype area has been provided to the user for adding hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push button switches, a potentiometer for simulated analog input, a thermistor and separate headers for connection to an external LCD module and a keypad. Also provided on the PICDEM 3 demonstration board is a LCD panel, with 4 commons and 12 segments, that is capable of displaying time, temperature and day of the week. The PICDEM 3 demonstration board provides an additional RS-232 interface and Windows software for showing the demultiplexed LCD signals on a PC. A simple serial interface allows the user to construct a hardware demultiplexer for the LCD signals.

14.14 PICDEM 17 Demonstration Board

The PICDEM 17 demonstration board is an evaluation board that demonstrates the capabilities of several Microchip microcontrollers, including PIC17C752, PIC17C756A, PIC17C762 and PIC17C766. All necessary hardware is included to run basic demo programs, which are supplied on a 3.5-inch disk. A programmed sample is included and the user may erase it and program it with the other sample programs using the PRO MATE II device programmer, or the PICSTART Plus development programmer, and easily debug and test the sample code. In addition, the PICDEM 17 demonstration board supports downloading of programs to and executing out of external FLASH memory on board. The PICDEM 17 demonstration board is also usable with the MPLAB ICE in-circuit emulator, or the PICMASTER emulator and all of the sample programs can be run and modified using either emulator. Additionally, a generous prototype area is available for user hardware.

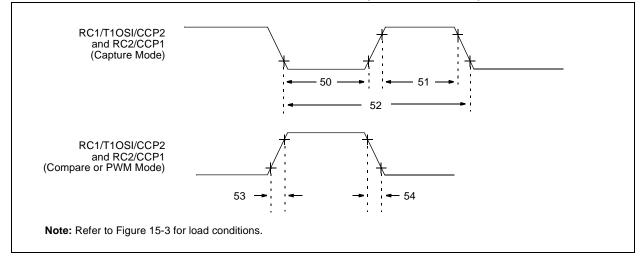
14.15 KEELOQ Evaluation and Programming Tools

KEELOQ evaluation and programming tools support Microchip's HCS Secure Data Products. The HCS evaluation kit includes a LCD display to show changing codes, a decoder to decode transmissions and a programming interface to program test transmitters.

15.2 DC Characteristics: PIC16F73/74/76/77 (Industrial, Extended) PIC16LF73/74/76/77 (Industrial) (Continued)

DC CHA	ARACT	ERISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for extended} \end{array}$							
			Operating voltage VDD range as described in DC Specification, Section 15.1.							
Param No.	Sym	Characteristic Min Typ† Max Units Conditions								
	Vol	Output Low Voltage								
D080		I/O ports		—	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +125°C			
D083		OSC2/CLKOUT (RC osc config)		—	0.6	V	IoL = 1.6 mA, VDD = 4.5V, -40°C to +125°C			
				—	0.6	V	IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C			
	Vон	Output High Voltage								
D090		I/O ports (Note 3)	Vdd - 0.7	_	_	V	IOH = -3.0 mA, VDD = 4.5V, -40°С to +125°С			
D092		OSC2/CLKOUT (RC osc config)	Vdd - 0.7	—	—	V	ІОН = -1.3 mA, VDD = 4.5V, -40°С to +125°С			
			Vdd - 0.7	—	—	V	IOH = -1.0 mA, VDD = 4.5V, -40°С to +125°С			
D150*	Vod	Open Drain High Voltage		_	12	V	RA4 pin			
		Capacitive Loading Specs on (Dutput Pir	IS						
D100	Cosc2	OSC2 pin	_	—	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1			
D101	Сю	All I/O pins and OSC2 (in RC mode)	—	—	50	pF				
D102	Св	SCL, SDA in I ² C mode	—	—	400	pF				
		Program FLASH Memory		I I			1			
D130	ЕΡ	Endurance	100	1000	_	E/W	25°C at 5V			
D131	Vpr	VDD for Read	2.0	—	5.5	V				

* These parameters are characterized but not tested.


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16F7X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

FIGURE 15-9: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)

TABLE 15-5: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)

Param No.	Symbol		Characteristic		Min	Тур†	Max	Units	Conditions
50*	TccL	CCP1 and CCP2	No Prescaler		0.5Tcy + 20			ns	
		input low time		Standard(F)	10	—		ns	
			With Prescaler	Extended(LF)	20	—		ns	
51*	ТссН	CCP1 and CCP2	No Prescaler		0.5Tcy + 20	—		ns	
		input high time		Standard(F)	10	—		ns	
	With P		With Prescaler	Extended(LF)	20	—		ns	
52*	TccP	CCP1 and CCP2 in	nput period		<u>3Tcy + 40</u> N	-	_	ns	N = prescale value (1,4 or 16)
53*	TccR	CCP1 and CCP2 of	output rise time	Standard(F)	—	10	25	ns	
				Extended(LF)	—	25	50	ns	
54*	TccF	CCP1 and CCP2 output fall time		Standard(F)	—	10	25	ns	
				Extended(LF)	—	25	45	ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 15-12: A/D CONVERTER CHARACTERISTICS: PIC16F7X (INDUSTRIAL, EXTENDED) PIC16LF7X (INDUSTRIAL)

Param No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
A01	Nr	Resolution	PIC16F7X			8 bits	bit	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
			PIC16LF7X	—	—	8 bits	bit	VREF = VDD = 2.2V
A02	Eabs	Total absolute er	ror	—	—	< ±1	LSb	VREF = VDD = 5.12V, VSS ≤ VAIN ≤ VREF
A03	EIL	Integral linearity	error	—	—	< ±1	LSb	VREF = VDD = 5.12V, $VSS \le VAIN \le VREF$
A04	Edl	Differential linea	rity error	—	—	< ±1	LSb	$\begin{array}{l} \text{VREF} = \text{VDD} = 5.12\text{V},\\ \text{VSS} \leq \text{VAIN} \leq \text{VREF} \end{array}$
A05	Efs	Full scale error		—	—	< ±1	LSb	$\begin{array}{l} \text{VREF} = \text{VDD} = 5.12\text{V},\\ \text{VSS} \leq \text{VAIN} \leq \text{VREF} \end{array}$
A06	EOFF	Offset error		—	—	< ±1	LSb	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
A10	—	Monotonicity (No	ote 3)	_	guaranteed	_	—	$VSS \le VAIN \le VREF$
A20	Vref	Reference voltag	ge	2.5 2.2	_	5.5 5.5	V V	-40°C to +125°C 0°C to +125°C
A25	VAIN	Analog input vol	tage	Vss - 0.3	_	Vref + 0.3	V	
A30	ZAIN	Recommended impedance of analog voltage source		—	—	10.0	kΩ	
A40	IAD	A/D conversion	PIC16F7X	_	180	_	μΑ	Average current
		current (VDD)	PIC16LF7X	—	90	—	μA	consumption when A/D is on (Note 1) .
A50	IREF	VREF input current (Note 2)		N/A —	—	±5 500	μΑ μΑ	During VAIN acquisition. During A/D Conversion cycle.

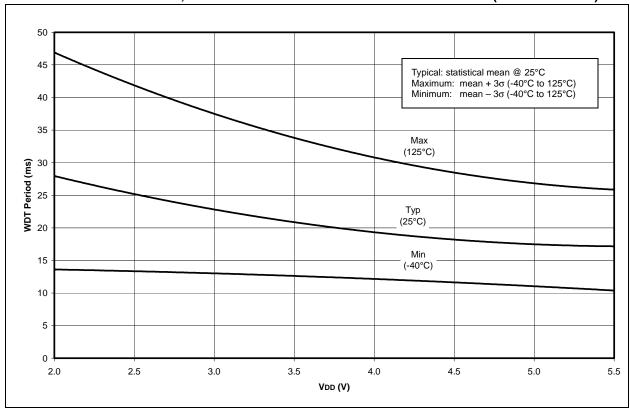
* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from the RA3 pin or the VDD pin, whichever is selected as a reference input.

3: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.



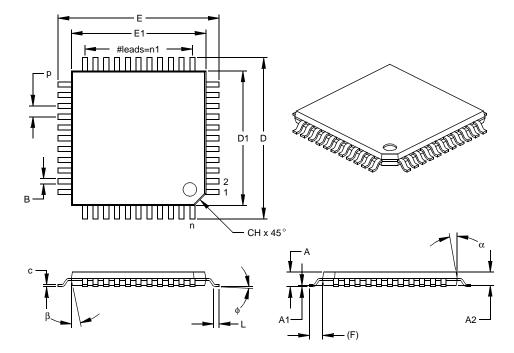


FIGURE 16-13: TYPICAL, MINIMUM AND MAXIMUM WDT PERIOD vs. VDD (-40°C TO 125°C)

44-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)

	Units				М	MILLIMETERS*			
Dimensior	n Limits	MIN	NOM	MAX	MIN	NOM	MAX		
Number of Pins	n		44			44			
Pitch	р		.031			0.80			
Pins per Side	n1		11			11			
Overall Height	А	.039	.043	.047	1.00	1.10	1.20		
Molded Package Thickness	A2	.037	.039	.041	0.95	1.00	1.05		
Standoff §	A1	.002	.004	.006	0.05	0.10	0.15		
Foot Length	L	.018	.024	.030	0.45	0.60	0.75		
Footprint (Reference)	(F)		.039		1.00				
Foot Angle	φ	0	3.5	7	0	3.5	7		
Overall Width	Е	.463	.472	.482	11.75	12.00	12.25		
Overall Length	D	.463	.472	.482	11.75	12.00	12.25		
Molded Package Width	E1	.390	.394	.398	9.90	10.00	10.10		
Molded Package Length	D1	.390	.394	.398	9.90	10.00	10.10		
Lead Thickness	С	.004	.006	.008	0.09	0.15	0.20		
Lead Width	В	.012	.015	.017	0.30	0.38	0.44		
Pin 1 Corner Chamfer	СН	.025	.035	.045	0.64	0.89	1.14		
Mold Draft Angle Top	α	5	10	15	5	10	15		
Mold Draft Angle Bottom	β	5	10	15	5	10	15		

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-026 Drawing No. C04-076

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To:	Technical Publications Manager To	tal Pages Sent
RE:	Reader Response	
From:	n: Name	
	Company	
	Address	
	City / State / ZIP / Country	
	Telephone:	()
	lication (optional):	
Would	ıld you like a reply?YN	
Devic	ice: PIC16F7X Literature Number: DS30325B	
Quest	stions:	
1. W	What are the best features of this document?	
2. H	How does this document meet your hardware and software develop	ment needs?
3. D	Do you find the organization of this data sheet easy to follow? If not	why?
4. W	What additions to the data sheet do you think would enhance the st	ructure and subject?
5. W	What deletions from the data sheet could be made without affecting	the overall usefulness?
_		
6. Is	Is there any incorrect or misleading information (what and where)?	
7. H	How would you improve this document?	
8. H	How would you improve our software, systems, and silicon products	?