

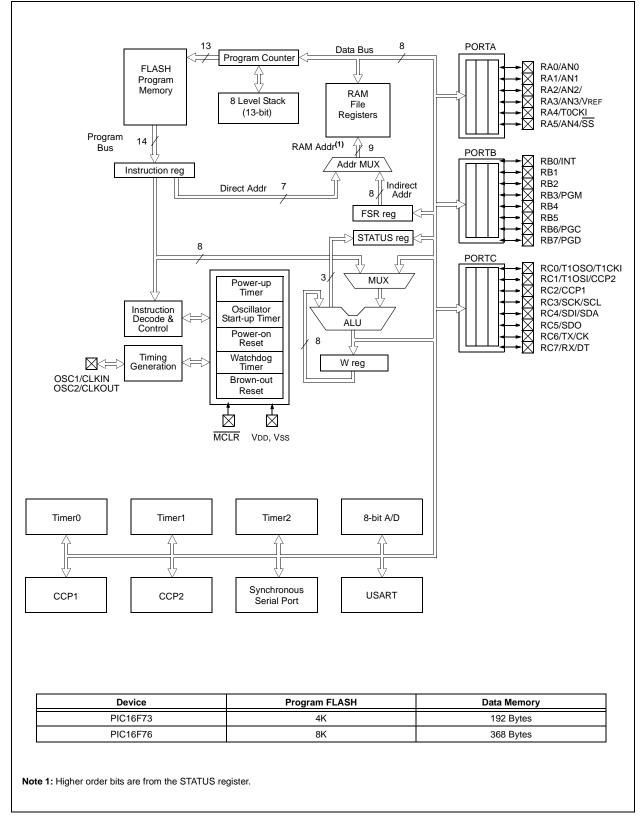
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f73-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16F7X

TABLE 1-3:PIC16F74 AND PIC16F77 PINOUT DESCRIPTION

OSC1/CLKI OSC1 CLKI OSC2/CLKO OSC2 CLKO MCLR/VPP MCLR VPP	13	14 15	30 31	1	ST/CMOS ⁽⁴⁾	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST buffer when configured in RC mode. Otherwise CMOS. External clock source input. Always associated with pin
CLKI OSC2/CLKO OSC2 CLKO <u>MCLR/VPP</u> MCLR	14	15	31	I		Oscillator crystal input or external clock source input. ST buffer when configured in RC mode. Otherwise CMOS. External clock source input. Always associated with pin
OSC2/CLKO OSC2 CLKO MCLR/VPP MCLR	14	15	31			CMOS. External clock source input. Always associated with pin
OSC2/CLKO OSC2 CLKO MCLR/VPP MCLR	14	15	31			External clock source input. Always associated with pin
OSC2 CLKO MCLR/VPP MCLR	14	15	31			
OSC2 CLKO MCLR/VPP MCLR	14	15	31	0		function OSC1 (see OSC1/CLKI, OSC2/CLKO pins).
CLKO MCLR/VPP MCLR				<u> </u>	I —	Oscillator crystal or clock output.
MCLR/Vpp MCLR				0		Oscillator crystal output.
MCLR/Vpp MCLR						Connects to crystal or resonator in Crystal Oscillator
MCLR/Vpp MCLR						mode.
MCLR				0		In RC mode, OSC2 pin outputs CLKO, which has 1/4
MCLR						the frequency of OSC1 and denotes the instruction
MCLR						cycle rate.
	1	2	18		ST	Master Clear (input) or programming voltage (output).
Vpp				I		Master Clear (Reset) input. This pin is an active low
VPP						RESET to the device.
				Р		Programming voltage input.
						PORTA is a bi-directional I/O port.
RA0/AN0	2	3	19		TTL	
RA0				I/O		Digital I/O.
AN0				I		Analog input 0.
RA1/AN1	3	4	20		TTL	
RA1				I/O		Digital I/O.
AN1				I		Analog input 1.
RA2/AN2	4	5	21		TTL	
RA2				I/O		Digital I/O.
AN2				I		Analog input 2.
RA3/AN3/Vref	5	6	22		TTL	
RA3				I/O		Digital I/O.
AN3				I		Analog input 3.
VREF				I		A/D reference voltage input.
RA4/T0CKI	6	7	23		ST	
RA4				I/O		Digital I/O – Open drain when configured as output.
TOCKI				I		Timer0 external clock input.
RA5/SS/AN4	7	8	24		TTL	
RA5		-		I/O		Digital I/O.
SS	1			1		SPI slave select input.
AN4					1	
Legend: I = inpu		1				Analog input 4.

— = Not used TTL = TTL input ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel Slave Port mode (for interfacing to a microprocessor bus).

4: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

x = Bit is unknown

PCON Register 2.2.2.8

The Power Control (PCON) register contains flag bits to allow differentiation between a Power-on Reset (POR), a Brown-out Reset (BOR), a Watchdog Reset (WDT) and an external MCLR Reset.

BOR is unknown on POR. It must be set by Note: the user and checked on subsequent RESETS to see if BOR is clear, indicating a brown-out has occurred. The BOR status bit is not predictable if the brown-out circuit is disabled (by clearing the BODEN bit in the configuration word).

REGISTER 2-8: PCON REGISTER (ADDRESS 8Eh)

- n = Value at POR reset

	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-1				
	_	_	_		—		POR	BOR				
	bit 7							bit 0				
bit 7-2	Unimplem	ented: Rea	d as '0'									
bit 1	POR: Pow	er-on Reset	Status bit									
	1 = No Power-on Reset occurred											
	0 = A Pow	er-on Reset	occurred (m	ust be set in	software aft	er a Power-	on Reset or	ccurs)				
bit 0	BOR: Brov	vn-out Rese	t Status bit									
	1 = No Bro	wn-out Res	et occurred									
	0 = A Brow	n-out Rese	t occurred (m	lust be set in	software af	ter a Brown	-out Reset of	occurs)				
	Legend:											
	R = Reada	ble bit	W = W	ritable bit	U = Unim	plemented l	bit, read as	'0'				

'0' = Bit is cleared

'1' = Bit is set

Name	Bit#	Buffer	Function
RA0/AN0	bit0	TTL	Input/output or analog input.
RA1/AN1	bit1	TTL	Input/output or analog input.
RA2/AN2	bit2	TTL	Input/output or analog input.
RA3/AN3/VREF	bit3	TTL	Input/output or analog input or VREF.
RA4/T0CKI	bit4	ST	Input/output or external clock input for Timer0. Output is open drain type.
RA5/SS/AN4	bit5	TTL	Input/output or slave select input for synchronous serial port or analog input.

TABLE 4-1: PORTA FUNCTIONS

Legend: TTL = TTL input, ST = Schmitt Trigger input

TABLE 4-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
05h	PORTA	_	_	RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
85h	TRISA	_	_	PORTA	Data Di	rection Re	egister			11 1111	11 1111
9Fh	ADCON1		_	_	_	_	PCFG2	PCFG1	PCFG0	000	000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

Note: When using the SSP module in SPI Slave mode and \overline{SS} enabled, the A/D converter must be set to one of the following modes where PCFG2:PCFG0 = 100, 101, 11x.

6.0 TIMER1 MODULE

The Timer1 module is a 16-bit timer/counter consisting of two 8-bit registers (TMR1H and TMR1L), which are readable and writable. The TMR1 Register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The TMR1 Interrupt, if enabled, is generated on overflow, which is latched in interrupt flag bit TMR1IF (PIR1<0>). This interrupt can be enabled/disabled by setting/clearing TMR1 interrupt enable bit TMR1IE (PIE1<0>).

Timer1 can operate in one of two modes:

- As a timer
- · As a counter

The operating mode is determined by the clock select bit, TMR1CS (T1CON<1>).

In Timer mode, Timer1 increments every instruction cycle. In Counter mode, it increments on every rising edge of the external clock input.

Timer1 can be enabled/disabled by setting/clearing control bit TMR1ON (T1CON<0>).

Timer1 also has an internal "RESET input". This RESET can be generated by either of the two CCP modules as the special event trigger (see Sections 8.1 and 8.2). Register 6-1 shows the Timer1 Control register.

When the Timer1 oscillator is enabled (T1OSCEN is set), the RC1/T1OSI/CCP2 and RC0/T1OSO/T1CKI pins become inputs. That is, the TRISC<1:0> value is ignored and these pins read as '0'.

Additional information on timer modules is available in the PICmicro[™] Mid-Range MCU Family Reference Manual (DS33023).

REGISTER 6-1: T1CON: TIMER1 CONTROL REGISTER (ADDRESS 10h)

					•	,								
	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
	_	—	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N						
	bit 7							bit 0						
bit 7-6	Unimplem	nented: Rea	d as '0'											
bit 5-4			•	ut Clock Pres	scale Select I	bits								
		rescale valu												
		10 = 1:4 Prescale value 01 = 1:2 Prescale value												
		rescale valu												
bit 3	T1OSCEN	T1OSCEN: Timer1 Oscillator Enable Control bit												
	1 = Oscilla	1 = Oscillator is enabled												
	0 = Oscillator is shut-off (the oscillator inverter is turned off to eliminate power drain)													
bit 2	T1SYNC: Timer1 External Clock Input Synchronization Control bit													
	TMR1CS :			I.a. a. l										
		synchronize												
	TMR1CS :			Jul										
			ner1 uses th	e internal clo	ock when TM	IR1CS = 0.								
bit 1	TMR1CS:	Timer1 Cloc	k Source S	elect bit										
		al clock fron al clock (Fos	•	10SO/T1Cł	<i (on="" risi<="" td="" the=""><td>ng edge)</td><td></td><td></td></i>	ng edge)								
bit 0	TMR10N:	Timer1 On I	bit											
	1 = Enable	es Timer1												
	0 = Stops	Timer1												
	r													
	Legend:													
	R = Reada	able bit	W = V	Nritable bit	U = Unin	nplemented	bit, read as	'0'						
	- n = Value	e at POR res	set '1' =	Bit is set	'0' = Bit i	s cleared	x = Bit is ι	unknown						

7.0 TIMER2 MODULE

Timer2 is an 8-bit timer with a prescaler and a postscaler. It can be used as the PWM time-base for the PWM mode of the CCP module(s). The TMR2 register is readable and writable, and is cleared on any device RESET.

The input clock (Fosc/4) has a prescale option of 1:1, 1:4 or 1:16, selected by control bits T2CKPS1:T2CKPS0 (T2CON<1:0>).

The Timer2 module has an 8-bit period register, PR2. Timer2 increments from 00h until it matches PR2 and then resets to 00h on the next increment cycle. PR2 is a readable and writable register. The PR2 register is initialized to FFh upon RESET.

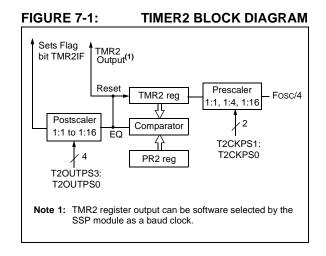
The match output of TMR2 goes through a 4-bit postscaler (which gives a 1:1 to 1:16 scaling inclusive) to generate a TMR2 interrupt (latched in flag bit TMR2IF, (PIR1<1>)).

Timer2 can be shut-off by clearing control bit TMR2ON (T2CON<2>) to minimize power consumption.

Register 7-1 shows the Timer2 control register.

Additional information on timer modules is available in the PICmicro[™] Mid-Range MCU Family Reference Manual (DS33023).

7.1 Timer2 Prescaler and Postscaler


The prescaler and postscaler counters are cleared when any of the following occurs:

- a write to the TMR2 register
- a write to the T2CON register
- any device RESET (POR, MCLR Reset, WDT Reset or BOR)

TMR2 is not cleared when T2CON is written.

7.2 Output of TMR2

The output of TMR2 (before the postscaler) is fed to the SSP module, which optionally uses it to generate shift clock.

8.5.3 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.
- 3. Make the CCP1 pin an output by clearing the TRISC<2> bit.
- 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.
- 5. Configure the CCP1 module for PWM operation.

TABLE 8-4: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	5.5

TABLE 8-5: REGISTERS ASSOCIATED WITH PWM AND TIMER2

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	PC	e on: DR, DR	Value on all other RESETS	
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE PEIE TMROIE INTE RBIE TMROIF INTF RBIF										0000	000u
0Ch	PIR1	PSPIF ⁽¹⁾	PSPIF ⁽¹⁾ ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF									0000	0000
0Dh	PIR2	_	—	—		_	—		CCP2IF		0		0
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
8Dh	PIE2	—	CCP2IE								0		0
87h	TRISC	PORTC D	Data Directi	on Register						1111	1111	1111	1111
11h	TMR2	Timer2 M	odule Regi	ster						0000	0000	0000	0000
92h	PR2	Timer2 M	odule Peric	d Register						1111	1111	1111	1111
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000	0000	-000	0000
15h	CCPR1L	Capture/C	Compare/P	VM Registe	er1 (LSB)					xxxx	xxxx	uuuu	uuuu
16h	CCPR1H	Capture/C	Compare/P	VM Registe	er1 (MSB)					xxxx	xxxx	uuuu	uuuu
17h	CCP1CON	_	— — ССР1X ССР1Y ССР1M3 ССР1M2 ССР1M1 ССР1M0								0000	00	0000
1Bh	CCPR2L	Capture/Compare/PWM Register2 (LSB)									xxxx	uuuu	uuuu
1Ch	CCPR2H	Capture/C	Compare/P	WM Registe	er2 (MSB)					xxxx	xxxx	uuuu	uuuu
1Dh	CCP2CON	—	—	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00	0000	00	0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PWM and Timer2.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76; always maintain these bits clear.

9.0 SYNCHRONOUS SERIAL PORT (SSP) MODULE

9.1 SSP Module Overview

The Synchronous Serial Port (SSP) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be Serial EEPROMs, shift registers, display drivers, A/D converters, etc. The SSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C)

An overview of I²C operations and additional information on the SSP module can be found in the PICmicro[™] Mid-Range MCU Family Reference Manual (DS33023).

Refer to Application Note AN578, "Use of the SSP Module in the I²C Multi-Master Environment" (DS00578).

9.2 SPI Mode

This section contains register definitions and operational characteristics of the SPI module. Additional information on the SPI module can be found in the PICmicro[™] Mid-Range MCU Family Reference Manual (DS33023A).

SPI mode allows 8 bits of data to be synchronously transmitted and received simultaneously. To accomplish communication, typically three pins are used:

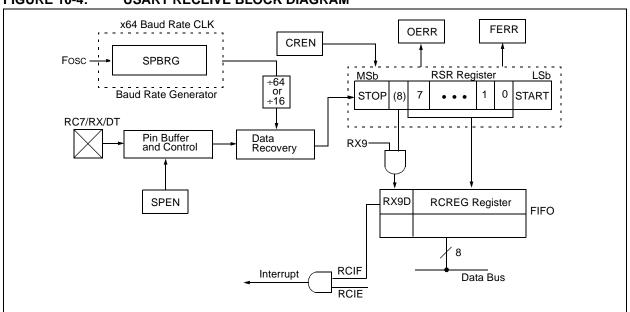
- Serial Data Out (SDO) RC5/SDO
- Serial Data In (SDI) RC4/SDI/SDA
- Serial Clock (SCK) RC3/SCK/SCL

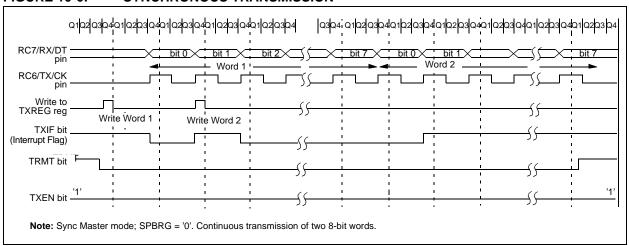
Additionally, a fourth pin may be used when in a Slave mode of operation:

Slave Select (SS) RA5/SS/AN4

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits in the SSPCON register (SSPCON<5:0>) and SSPSTAT<7:6>. These control bits allow the following to be specified:

- Master mode (SCK is the clock output)
- Slave mode (SCK is the clock input)
- Clock Polarity (IDLE state of SCK)
- Clock edge (output data on rising/falling edge of SCK)
- Clock Rate (Master mode only)
- Slave Select mode (Slave mode only)


10.2.2 USART ASYNCHRONOUS RECEIVER


The receiver block diagram is shown in Figure 10-4. The data is received on the RC7/RX/DT pin and drives the data recovery block. The data recovery block is actually a high speed shifter operating at x16 times the baud rate, whereas the main receive serial shifter operates at the bit rate, or at FOSC.

Once Asynchronous mode is selected, reception is enabled by setting bit CREN (RCSTA<4>).

The heart of the receiver is the receive (serial) shift register (RSR). After sampling the STOP bit, the received data in the RSR is transferred to the RCREG register (if it is empty). If the transfer is complete, flag bit RCIF (PIR1<5>) is set. The actual interrupt can be enabled/ disabled by setting/clearing enable bit RCIE (PIE1<5>). Flag bit RCIF is a read only bit which is cleared by the hardware. It is cleared when the RCREG register has been read and is empty. The RCREG is a double buffered register (i.e., it is a two deep FIFO). It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting to the RSR register. On the detection of the STOP bit of the third byte, if the RCREG register is still full, the overrun error bit OERR (RCSTA<1>) will be set. The word in the RSR will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Overrun bit OERR has to be cleared in software. This is done by resetting the receive logic (CREN is cleared and then set). If bit OERR is set, transfers from the RSR register to the RCREG register are inhibited and no further data will be received, therefore, it is essential to clear error bit OERR if it is set. Framing error bit FERR (RCSTA<2>) is set if a STOP bit is detected as clear. Bit FERR and the 9th receive bit are buffered the same way as the receive data. Reading the RCREG will load bits RX9D and FERR with new values, therefore, it is essential for the user to read the RCSTA register before reading RCREG register, in order not to lose the old FERR and RX9D information.

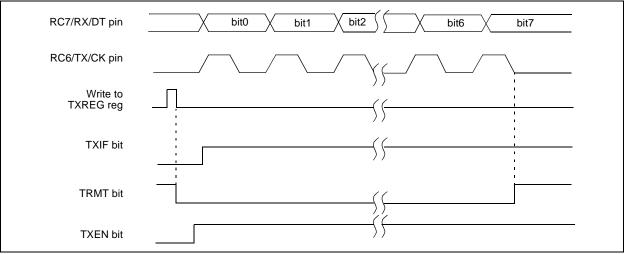


FIGURE 10-6: SYNCHRONOUS TRANSMISSION

FIGURE 10-7: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

TABLE 10-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	USART Tr	ansmit Re	egister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Generat	or Registe	r					0000 0000	0000 0000

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76 devices; always maintain these bits clear.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
19h	TXREG	USART Tr	ansmit R	egister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Generat	or Registe		0000 0000	0000 0000				

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous slave transmission.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76 devices; always maintain these bits clear.

10.4.2 USART SYNCHRONOUS SLAVE RECEPTION

The operation of the Synchronous Master and Slave modes is identical, except in the case of the SLEEP mode. Bit SREN is a "don't care" in Slave mode.

If receive is enabled by setting bit CREN prior to the SLEEP instruction, then a word may be received during SLEEP. On completely receiving the word, the RSR register will transfer the data to the RCREG register and if enable bit RCIE bit is set, the interrupt generated will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Follow these steps when setting up a Synchronous Slave Reception:

- Enable the synchronous master serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. If interrupts are desired, set enable bit RCIE.
- 3. If 9-bit reception is desired, set bit RX9.
- 4. To enable reception, set enable bit CREN.
- 5. Flag bit RCIF will be set when reception is complete and an interrupt will be generated, if enable bit RCIE was set.
- Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 7. Read the 8-bit received data by reading the RCREG register.
- 8. If any error occurred, clear the error by clearing bit CREN.
- 9. If using interrupts, ensure that GIE and PEIE in the INTCON register are set.

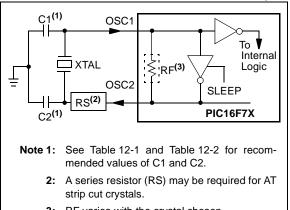
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
1Ah	RCREG	USART R	eceive R	egister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	e Genera	ator Registe	er					0000 0000	0000 0000

TABLE 10-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous slave reception. Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76 devices, always maintain these bits clear.

12.2 Oscillator Configurations

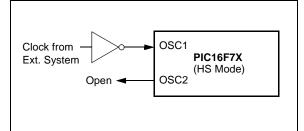
12.2.1 OSCILLATOR TYPES


The PIC16F7X can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor

12.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

In XT, LP or HS modes, a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 12-1). The PIC16F7X oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in HS mode, the device can accept an external clock source to drive the OSC1/CLKIN pin (Figure 12-2). See Figure 15-1 or Figure 15-2 (depending on the part number and VDD range) for valid external clock frequencies.


FIGURE 12-1: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)

3: RF varies with the crystal chosen.

FIGURE 12-2:

EXTERNAL CLOCK INPUT OPERATION (HS OSC CONFIGURATION)

TABLE 12-1: CERAMIC RESONATORS (FOR DESIGN GUIDANCE ONLY)

Typical Capacitor Values Used:							
Mode Freq OSC1 OSC2							
XT	455 kHz	56 pF	56 pF				
	2.0 MHz	47 pF	47 pF				
	4.0 MHz	33 pF	33 pF				
HS	8.0 MHz	27 pF	27 pF				
	16.0 MHz	22 pF	22 pF				

Capacitor values are for design guidance only.

These capacitors were tested with the resonators listed below for basic start-up and operation. These values were not optimized.

Different capacitor values may be required to produce acceptable oscillator operation. The user should test the performance of the oscillator over the expected VDD and temperature range for the application.

See the notes at the bottom of page 92 for additional information.

Resonators Used:		
455 kHz	Panasonic EFO-A455K04B	
2.0 MHz	Murata Erie CSA2.00MG	
4.0 MHz	Murata Erie CSA4.00MG	
8.0 MHz	Murata Erie CSA8.00MT	
16.0 MHz	Murata Erie CSA16.00MX	

TABLE 12-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR (FOR DESIGN GUIDANCE ONLY)

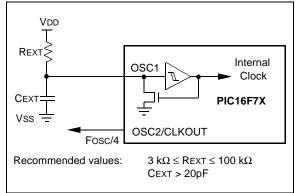
Osc Type	Crystal Freq	Typical Capacitor Values Tested:		
	ITEG	C1	C2	
LP	32 kHz	33 pF	33 pF	
	200 kHz	15 pF	15 pF	
XT	200 kHz	56 pF	56 pF	
	1 MHz	15 pF	15 pF	
	4 MHz	15 pF	15 pF	
HS	4 MHz	15 pF	15 pF	
	8 MHz	15 pF	15 pF	
	20 MHz	15 pF	15 pF	

Capacitor values are for design guidance only.

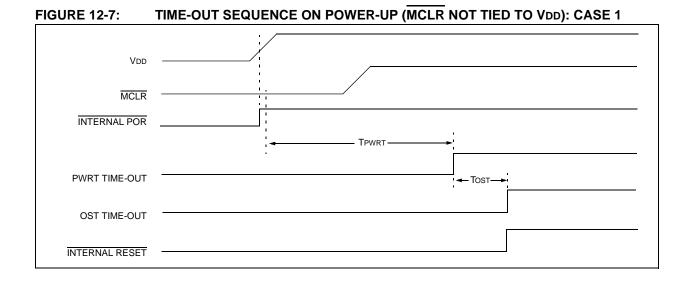
These capacitors were tested with the crystals listed below for basic start-up and operation. These values were not optimized.

Different capacitor values may be required to produce acceptable oscillator operation. The user should test the performance of the oscillator over the expected VDD and temperature range for the application.

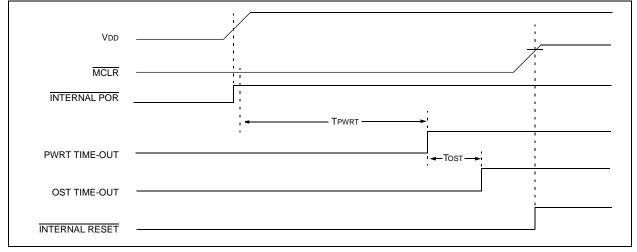
See the notes following this table for additional information.


Crystals Used:		
32 kHz	Epson C-001R32.768K-A	
200 kHz	STD XTL 200.000KHz	
1 MHz	ECS ECS-10-13-1	
4 MHz	ECS ECS-40-20-1	
8 MHz	EPSON CA-301 8.000M-C	
20 MHz	EPSON CA-301 20.000M-C	

- **Note 1:** Higher capacitance increases the stability of oscillator, but also increases the start-up time.
 - 2: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.
 - 3: Rs may be required in HS mode, as well as XT mode, to avoid overdriving crystals with low drive level specification.
 - **4:** Always verify oscillator performance over the VDD and temperature range that is expected for the application.


12.2.3 RC OSCILLATOR

For timing insensitive applications, the "RC" device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 12-3 shows how the R/C combination is connected to the PIC16F7X.



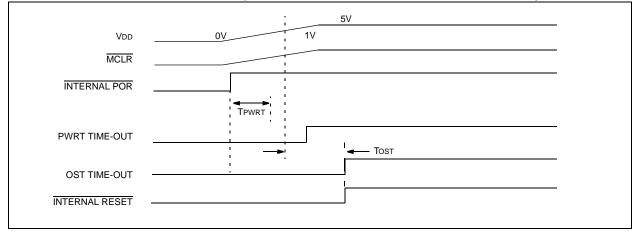

PIC16F7X

FIGURE 12-8: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

FIGURE 12-9: SLOW RISE TIME (MCLR TIED TO VDD THROUGH RC NETWORK)

RLF	Rotate Left f through Carry				
Syntax:	[<i>label</i>] RLF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$				
Operation:	See description below				
Status Affected:	С				
Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is stored back in register 'f'.				

SLEEP

Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow WDT \text{ prescaler,} \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$
Status Affected:	TO, PD
Description:	The power-down status bit, $\overline{\text{PD}}$ is cleared. Time-out status bit, $\overline{\text{TO}}$ is set. Watchdog Timer and its prescaler are cleared. The processor is put into SLEEP mode with the oscillator stopped.

RETURN	Return from Subroutine				
Syntax:	[label] RETURN				
Operands:	None				
Operation:	$TOS\toPC$				
Status Affected:	None				
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction.				

RRF	Rotate Right f through Carry			
Syntax:	[<i>label</i>] RRF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$			
Operation:	See description below			
Status Affected:	С			
Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.			
	C Register f			

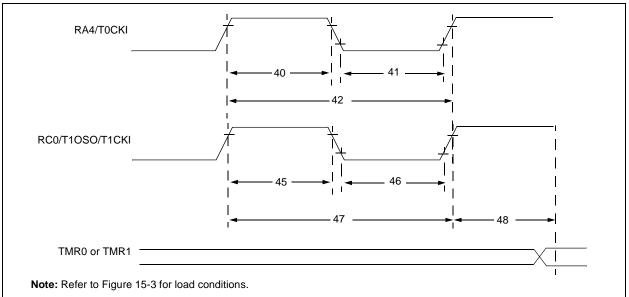
SUBLW	Subtract W from Literal			
Syntax:	[<i>label</i>] SUBLW k			
Operands:	$0 \le k \le 255$			
Operation:	$k \text{ - (W)} \rightarrow (W)$			
Status Affected:	C, DC, Z			
Description:	The W register is subtracted (2's complement method) from the eight-bit literal 'k'. The result is placed in the W register.			

SUBWF	Subtract W from f			
Syntax:	[<i>label</i>] SUBWF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$			
Operation:	(f) - (W) \rightarrow (destination)			
Status Affected:	C, DC, Z			
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.			

15.2 **DC Characteristics:** PIC16F73/74/76/77 (Industrial, Extended) PIC16LF73/74/76/77 (Industrial)

DC CHARACTERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Sym	Characteristic Min Typ† Max Units Conditions					
	VIL	Input Low Voltage					
		I/O ports:					
D030		with TTL buffer	Vss	_	0.15Vdd	V	For entire VDD range
D030A			Vss	_	0.8V	V	$4.5V \le VDD \le 5.5V$
D031		with Schmitt Trigger buffer	Vss	—	0.2Vdd	V	
D032		MCLR, OSC1 (in RC mode)	Vss	_	0.2Vdd	V	(Note 1)
D033		OSC1 (in XT and LP mode)	Vss	_	0.3V	V	
		OSC1 (in HS mode)	Vss	_	0.3Vdd	V	
	Vih	Input High Voltage					
		I/O ports:					
D040		with TTL buffer	2.0	—	Vdd	V	$4.5V \le VDD \le 5.5V$
D040A			0.25Vdd + 0.8V	—	Vdd	V	For entire VDD range
D041		with Schmitt Trigger buffer	0.8Vdd	—	Vdd	V	For entire VDD range
D042		MCLR	0.8Vdd	_	Vdd	V	
D042A		OSC1 (in XT and LP mode)	1.6V	_	Vdd	V	
		OSC1 (in HS mode)	0.7Vdd	—	Vdd	V	
D043		OSC1 (in RC mode)	0.9Vdd		Vdd	V	(Note 1)
D070	IPURB	PORTB Weak Pull-up Current	50	250	400	μΑ	VDD = 5V, VPIN = VSS
	lı∟	Input Leakage Current (Notes 2	2, 3)				
D060		I/O ports	_		±1	μA	$Vss \leq VPIN \leq VDD$, pin at hi-impedance
D061		MCLR, RA4/T0CKI	—	—	±5	μA	$Vss \leq VPIN \leq VDD$
D063		OSC1	—	—	±5	μA	Vss \leq VPIN \leq VDD, XT, HS and LP osc configuration

These parameters are characterized but not tested.


Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance † only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16F7X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

FIGURE 15-8: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE 15-4 :	TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Param No.	Symbol		Characteristic				Max	Units	Conditions	
40*	Tt0H	T0CKI High Pulse Width		No Prescaler	0.5Tcy + 20	—		ns	Must also meet parameter 42	
				With Prescaler	10	—	_	ns		
41*	Tt0L	T0CKI Low Pulse Width		No Prescaler	0.5Tcy + 20	—	_	ns	Must also meet	
				With Prescaler	10	—	_	ns	parameter 42	
42*	Tt0P	T0CKI Period		No Prescaler	Tcy + 40	—	_	ns		
				With Prescaler	/ith Prescaler Greater of: —		—	ns	N = prescale value (2, 4,, 256)	
					20 or <u>Tcy + 40</u>					
					N					
45*	Tt1H	T1CKI High Time	Synchronous, Pr		0.5Tcy + 20	—	—	ns	Must also meet	
			Synchronous, Prescaler = 2,4,8	Standard(F)	15	—	—	ns	parameter 47	
				Extended(LF)	25	—	—	ns		
			Asynchronous	Standard(F)	30	—	_	ns		
				Extended(LF)	50	-	—	ns		
46*	Tt1L	T1CKI Low Time	Synchronous, Prescaler = 1		0.5Tcy + 20	—		ns	Must also meet	
			Synchronous, Prescaler = 2,4,8	Standard(F)	15	—	_	ns	parameter 47	
				Extended(LF)	25	—		ns		
			Asynchronous	Standard(F)	30	-	—	ns		
				Extended(LF)	50	—		ns		
47*	Tt1P	T1CKI Input Period	Synchronous	Standard(F)	Greater of: 30 or <u>Tcy + 40</u> N			ns	N = prescale value (1, 2, 4, 8)	
				Extended(LF)	Greater of: 50 or <u>Tcy + 40</u> N				N = prescale value (1, 2, 4, 8)	
			Asynchronous	Standard(F)	60	—	—	ns		
				Extended(LF)	100	—	_	ns		
	Ft1	Timer1 Oscillator I (oscillator enabled	DC	—	200	kHz				
48	TCKEZtmr1	Delay from Extern	al Clock Edge to T	Timer Increment	2 Tosc	—	7 Tosc	—		

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

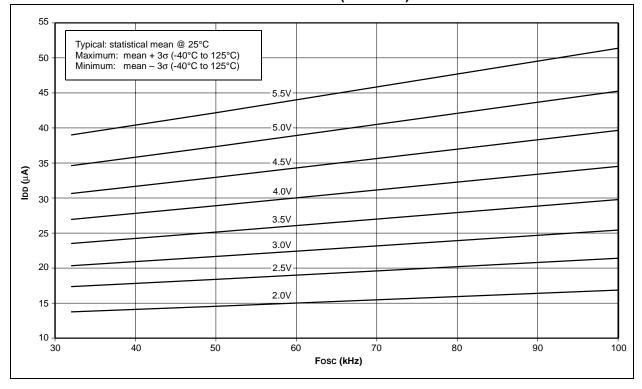
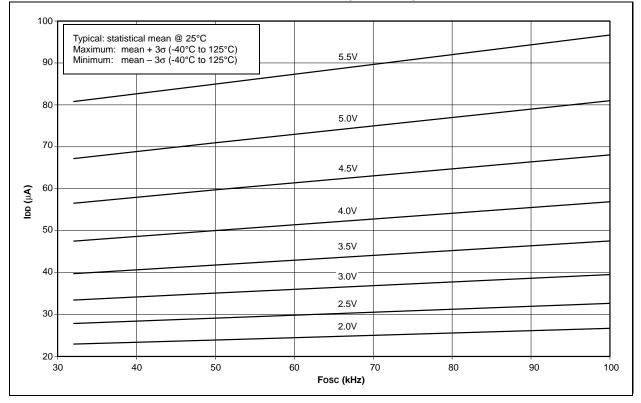
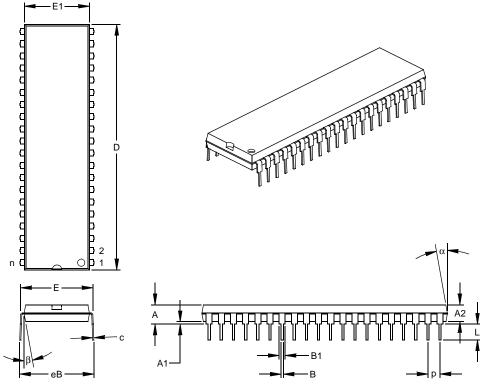




FIGURE 16-5: TYPICAL IDD vs. Fosc OVER VDD (LP MODE)

40-Lead Plastic Dual In-line (P) - 600 mil (PDIP)

Units				MILLIMETERS			
Dimension Limits			MAX	MIN	NOM	MAX	
n		40			40		
р		.100			2.54		
Α	.160	.175	.190	4.06	4.45	4.83	
A2	.140	.150	.160	3.56	3.81	4.06	
A1	.015			0.38			
Е	.595	.600	.625	15.11	15.24	15.88	
E1	.530	.545	.560	13.46	13.84	14.22	
D	2.045	2.058	2.065	51.94	52.26	52.45	
L	.120	.130	.135	3.05	3.30	3.43	
С	.008	.012	.015	0.20	0.29	0.38	
B1	.030	.050	.070	0.76	1.27	1.78	
В	.014	.018	.022	0.36	0.46	0.56	
eB	.620	.650	.680	15.75	16.51	17.27	
α	5	10	15	5	10	15	
β	5	10	15	5	10	15	
	n Limits n P A A2 A1 E E1 D L c B1 B eB α	n Limits MIN n p A .160 A2 .140 A1 .015 E .595 E1 .530 D 2.045 L .120 c .008 B1 .030 B .014 eB .620 α 5	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-011

Drawing No. C04-016

ON-LINE SUPPORT

Microchip provides on-line support on the Microchip World Wide Web (WWW) site.

The web site is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape or Microsoft Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available by using your favorite Internet browser to attach to:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp://ftp.microchip.com

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked
 Questions
- Design Tips
- Device Errata
- Job Postings
- Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products
- Conferences for products, Development Systems, technical information and more
- · Listing of seminars and events

Systems Information and Upgrade Hot Line

The Systems Information and Upgrade Line provides system users a listing of the latest versions of all of Microchip's development systems software products. Plus, this line provides information on how customers can receive any currently available upgrade kits.The Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada, and

1-480-792-7302 for the rest of the world.

013001