

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f73t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	5
2.0	Memory Organization	3
3.0	Reading Program Memory	9
4.0	I/O Ports	1
5.0	Timer0 Module	3
6.0	Timer1 Module	7
7.0	Timer2 Module	1
8.0	Capture/Compare/PWM Modules	3
9.0	Synchronous Serial Port (SSP) Module	9
10.0	Universal Synchronous Asynchronous Receiver Transmitter (USART)	9
11.0	Analog-to-Digital Converter (A/D) Module	3
12.0	Special Features of the CPU	9
13.0	Instruction Set Summary 109	5
14.0	Development Support	3
15.0	Electrical Characteristics	9
16.0	DC and AC Characteristics Graphs and Tables	1
17.0	Packaging Information 15	1
Apper	ndix A: Revision History	1
Apper	ndix B: Device Differences	1
Apper	ndix C: Conversion Considerations	2
Index		3
On-Li	ne Support	9
Reade	er Response 170	C
PIC16	F7X Product Identification System	1

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

TABLE 1-2:	PIC16F73 AND PIC16F76 PINOUT DESCRIPTION (CONTINUED)
------------	--

RB0/INT 2' RB0 INT RB1 2' RB2 2' RB3/PGM 2' RB3 PGM RB4 2' RB5 2' RB6/PGC 2' RB7/PGD 2' RB7 PGD RC0/T10S0/T1CKI 1' RC0 T10SO T1CKI RC1 RC1 T10SI CCP2 I				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	r Description					
RB0/INT 2' RB0 INT RB1 2' RB2 2' RB3/PGM 2' RB3 2' RB4 2' RB5 2' RB6/PGC 2' RB7/PGD 2' RB7 PGD RC0/T10SO/T1CKI 1' RC0/T10SO/T1CKI 1' RC1/T1OSI/CCP2 1' RC1 T10SI CCP2 1'					PORTB is a bi-directional I/O port. PORTB can be software					
RB0/INT 2' RB0 INT RB1 2' RB2 2' RB3/PGM 2' PGM 2' RB4 2' RB5 2' RB6 2' PGC 2' RB7 2' RB7 2' RC0/T1OSO/T1CKI 1' RC0/T1OSO/T1CKI 1' RC1 1' RC1/T1OSI/CCP2 1' RC1 1' T1OSI 2' CCP2 1'					programmed for internal weak pull-up on all inputs.					
RB0 INT RB1 22 RB2 22 RB3/PGM 22 RB3 PGM RB4 22 RB5 26 RB6/PGC 27 RB6 PGC RB7/PGD 28 RB7/PGD 28 RC0/T10SO/T1CKI 17 RC0 T10SO T10SO T1CKI RC1/T10SI/CCP2 112 RC1 T10SI CCP2 1	1	18		TTL/ST ⁽¹⁾						
INT 21 RB1 22 RB2 22 RB3/PGM 24 RB3 26 RB4 22 RB5 26 RB6/PGC 27 RB6 26 PGC 27 RB7 26 RB7/PGD 28 RB7 29 RC0/T10SO/T1CKI 17 RC0 110SO T10SO 11 RC1/T10SI/CCP2 112 RC1 110SI CCP2 110			I/O		Digital I/O.					
RB1 2: RB2 2: RB3/PGM 2: RB3 PGM RB4 2: RB5 26 RB6/PGC 2: RB6 PGC RB7/PGD 28 RB7 PGD RC0/T10S0/T1CKI 1* RC0 T10SO T1CKI RC1 RC1/T10SI/CCP2 12 RC1 T10SI CCP2 1*			I		External interrupt.					
RB2 2: RB3/PGM 24 RB3 PGM RB4 2: RB5 2: RB6 2: PGC 2: RB7 2: PGD 2: RC0/T1OSO/T1CKI 1* RC0/T1OSO/T1CKI 1* RC0/T1OSO/T1CKI 1* RC1 1* RC1/T1OSI/CCP2 12 RC1 1* T1OSI CCP2	2	19	I/O	TTL	Digital I/O.					
RB3/PGM 24 RB3 PGM RB4 24 RB5 20 RB6/PGC 21 RB6/PGC 21 RB7 PGD RB7 PGD RC0/T10S0/T1CKI 11 RC0 T10S0 T1CKI RC1 RC1/T10SI/CCP2 112 RC1 T10SI CCP2 1	3	20	I/O	TTL	Digital I/O.					
RB3 PGM PGM 24 RB4 24 RB5 26 RB6/PGC 23 RB6 PGC RB7/PGD 28 RB7 PGD RC0/T10S0/T1CKI 17 RC0 T10S0 T1CKI RC1 RC1/T10SI/CCP2 12 RC1 T10SI CCP2 14	4	21		TTL						
PGM 24 RB4 24 RB5 26 RB6/PGC 27 RB6 PGC RB7/PGD 28 RB7 PGD RC0/T10S0/T1CKI 17 RC0/T10S0/T1CKI 17 RC0/T10S0/T1CKI 17 RC0 T10S0 T1CKI 17 RC1/T10SI/CCP2 12 RC1 T10SI CCP2 12			I/O		Digital I/O.					
RB4 2! RB5 2! RB6 PGC PGC 2! RB7/PGD 2! RB7 PGD RC0/T10S0/T1CKI 1' RC0 T10S0 T1CKI RC1/T10SI/CCP2 RC1 T10SI CCP2 1'			I/O		Low voltage ICSP programming enable pin.					
RB5 24 RB6/PGC 21 RB6 PGC RB7/PGD 28 RB7 PGD RC0/T10S0/T1CKI 11 RC0 T10S0 T1CKI 12 RC1/T10SI/CCP2 12 RC1 T10SI CCP2 12	5	22	I/O	TTL	Digital I/O.					
RB6/PGC 2" RB6 PGC PGC 2% RB7/PGD 2% RB7 PGD RC0/T10S0/T1CKI 1" RC0 T10S0 T1CKI 1" RC1/T10SI/CCP2 12 RC1 T10SI CCP2 1	6	23	I/O	TTL	Digital I/O.					
RB6 PGC PGC 24 RB7/PGD 24 PGD 24 RC0/T1OSO/T1CKI 14 RC0 T1OSO T1OSO T1CKI RC1/T1OSI/CCP2 12 RC1 T1OSI CCP2 14	7	24		TTL/ST(2)						
PGC RB7/PGD 23 RB7 PGD 21 RC0/T1OSO/T1CKI 11 RC0 T1OSO T1CKI RC1/T1OSI/CCP2 112 RC1 T1OSI CCP2			I/O		Digital I/O.					
RB7/PGD 21 RB7 PGD PGD 11 RC0/T10S0/T1CKI 11 RC0 T10S0 T1CKI 12 RC1/T10SI/CCP2 12 RC1 T10SI CCP2 12			I/O		In-Circuit Debugger and ICSP programming clock.					
RB7 PGD RC0/T1OSO/T1CKI 11 RC0 110SO T1OSO 11 RC1/T1OSI/CCP2 12 RC1 110SI CCP2 12	8	25		TTL/ST ⁽²⁾						
PGD RC0/T1OSO/T1CKI 11 RC0 T1OSO T1CKI RC1/T1OSI/CCP2 112 RC1 T1OSI CCP2	-	-	I/O		Digital I/O.					
RC0/T1OSO/T1CKI 1' RC0 T1OSO T1CKI RC1/T1OSI/CCP2 12 RC1 T1OSI CCP2			I/O		In-Circuit Debugger and ICSP programming data.					
RC0/T1OSO/T1CKI 1' RC0 10SO T1OSO 1' RC1/T1OSI/CCP2 1' RC1 1' T1OSI CCP2					PORTC is a bi-directional I/O port.					
RC0 T1OSO T1CKI RC1/T1OSI/CCP2 RC1 T1OSI CCP2	1	8		ST	·					
T1OSO T1CKI RC1/T1OSI/CCP2 12 RC1 T1OSI CCP2		Ũ	I/O		Digital I/O.					
T1CKI RC1/T1OSI/CCP2 12 RC1 T1OSI CCP2			0		Timer1 oscillator output.					
RC1/T1OSI/CCP2 12 RC1 T1OSI CCP2			I		Timer1 external clock input.					
RC1 T1OSI CCP2	2	9		ST						
T1OSI CCP2			I/O		Digital I/O.					
CCP2			Ι		Timer1 oscillator input.					
			I/O		Capture2 input, Compare2 output, PWM2 output.					
RC2/CCP1 1:	3	10		ST						
RC2			I/O		Digital I/O.					
CCP1			I/O		Capture1 input/Compare1 output/PWM1 output.					
RC3/SCK/SCL 14	4	11		ST						
RC3			I/O		Digital I/O.					
SCK			I/O		Synchronous serial clock input/output for SPI mode.					
SCL			I/O		Synchronous serial clock input/output for I ² C mode.					
RC4/SDI/SDA 15	5	12		ST						
RC4			I/O		Digital I/O.					
SDI					SPI data in.					
SDA			I/O		I ² C data I/O.					
RC5/SDO 16	6	13	1/2	ST	Distribution					
RC5			1/0		Digital I/O.					
SUU	_		0	6 -	SPI data out.					
RC6/TX/CK 17	1	14	1/0	ST						
			1/0		LIGITALI/O.					
		15	1/0	6 7						
	0	сı	1/0	51						
RX			1		USART asynchronous receive					
DT			I/O		USART synchronous data					
	19	5 16	# C P		Ground reference for logic and I/O pins					
	0	17	г [.] Р							
	U	17	۲	_	Fusitive supply for logic and i/O pins.					
Legena: I = input	Legend: $I = input$ $O = output$ $I/O = input/output$ $P = power$									

This buffer is a Schmitt Trigger input when configured as the external interrupt.

This buffer is a Schmitt Trigger input when used in Serial Programming mode.
 This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

2.2.2.1 STATUS Register

The STATUS register contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC, or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable, therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as $000u \ u1uu$ (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect the Z, C, or DC bits from the STATUS register. For other instructions not affecting any status bits, see the "Instruction Set Summary."

Note 1: The <u>C</u> and <u>DC</u> bits operate as a borrow and digit borrow bit, respectively, in subtraction. See the <u>SUBLW</u> and <u>SUBWF</u> instructions for examples.

REGISTER 2-1: STATUS REGISTER (ADDRESS 03h, 83h, 103h, 183h)

	R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x					
	IRP	RP1	RP0	TO	PD	Z	DC	С					
	bit 7							bit 0					
bit 7	IRP: Regis 1 = Bank 2 0 = Bank 0	ster Bank Sele 2, 3 (100h - 1F 0, 1 (00h - FFt	ect bit (used f Fh) n)	or indirect ac	ldressing)								
bit 6-5	RP1:RP0 : 11 = Bank 10 = Bank 01 = Bank 00 = Bank Each bank	RP1:RP0 : Register Bank Select bits (used for direct addressing) 11 = Bank 3 (180h - 1FFh) 10 = Bank 2 (100h - 17Fh) 01 = Bank 1 (80h - FFh) 00 = Bank 0 (00h - 7Fh) Each bank is 128 bytes TO : Time-out bit											
bit 4	TO : Time-0 1 = After p 0 = A WD	 FO: Time-out bit L = After power-up, CLRWDT instruction, or SLEEP instruction D = A WDT time-out occurred 											
bit 3	PD: Power-down bit 1 = After power-up or by the CLRWDT instruction 0 = By execution of the SLEEP instruction												
bit 2	z: Zero bit 1 = The re 0 = The re	sult of an arith sult of an arith	nmetic or logi nmetic or logi	c operation is	s zero s not zero								
bit 1	DC : Digit o 1 = A carry 0 = No car	carry/borrow b y-out from the ry-out from th	it (ADDWF, AD 4th low orde e 4th low ord	DLW,SUBL r bit of the re ler bit of the r	w,SUBWF(sult occurre esult	instructions d	3)						
bit 0	C: Carry/borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred												
	Legend:	complement loaded with e	of the secon	d operand. F h or low orde	For rotate (R r bit of the s	RF, RLF)	instructions	s, this bit is					

- n = Value at POR reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
Legend:			

2.2.2.2 OPTION_REG Register

The OPTION_REG register is a readable and writable register, which contains various control bits to configure the TMR0 prescaler/WDT postscaler (single assignable register known also as the prescaler), the External INT Interrupt, TMR0 and the weak pull-ups on PORTB.

Note: To achieve a 1:1 prescaler assignment for the TMR0 register, assign the prescaler to the Watchdog Timer.

REGISTER 2-2: OPTION_REG REGISTER (ADDRESS 81h, 181h)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0				
bit 7							bit 0				
RBPU: PORTB Pull-up Enable bit											
1 = PORTB pull-ups are disabled											
INTEDG: Interrupt Edge Select bit											
1 = Interru	nt on rising e	dae of RB0/	INT nin								
0 = Interrupt on falling edge of RB0/INT pin											
T0CS : TM	R0 Clock Sou	rce Select b	bit								
1 = Transi	tion on RA4/T	0CKI pin									
0 = Interna	0 = Internal instruction cycle clock (CLKOUT)										
T0SE: TMR0 Source Edge Select bit											
1 = Increm 0 = Increm	ient on high-to ient on low-to	o-low transit -high transit	ion on RA4/T ion on RA4/T	OCKI pin OCKI pin							
PSA: Pres	caler Assignn	nent bit									
1 = Presca 0 = Presca	aler is assigne aler is assigne	d to the WE d to the Tim)T her0 module								
PS2:PS0: Prescaler Rate Select bits											
Bit Va	alue TMR0	Rate WDT	Rate								
0.0	0 1:2	1:1									
00	1 1:4 0 1:9	1:2	1								
01	1 1:10	 	r }								
10	0 1:3	2 1:1	6								
10 11	$\begin{array}{c c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	4 1:3	32 34								
11	1 1:2	56 1:1	28								
Legend:											
R = Reada	able bit	W = W	ritable bit	U = Unimp	blemented	bit, read as	'0'				
- n = Value	e at POR rese	t '1' = Bit	t is set	'0' = Bit is	cleared	x = Bit is ι	unknown				
	R/W-1 RBPU bit 7 RBPU: PC 1 = PORTI 0 = PORTI ITEDG: I 1 = Interru 0 = Interru TOCS: TM 1 = Incerm 0 = Interru TOSE: TM 1 = Incerm 0 = Incerm PSA: Presca 0 = Presca 0 = Presca 0 = Presca 0 = 000 0 = 000 0 = 000 0 = 000 0 = 000 0 = 000 0 = 000 0 = 000 0 = 000 0 = 000 0 = 000 0 = 000 0 = 0000 0 = 00000 0 = 000000000 0 = 0000000000000000000000000000000000	R/W-1R/W-1RBPUINTEDGbit 7RBPU: PORTB Pull-up I1 = PORTB pull-ups are0 = PORTB pull-ups areINTEDG: Interrupt Edge1 = Interrupt on rising ed0 = Interrupt on falling eTOCS: TMR0 Clock Sout1 = Transition on RA4/T0 = Internal instruction ofTOSE: TMR0 Source Ed1 = Increment on high-td0 = Increment on low-toPSA: Prescaler Assigne1 = Prescaler is assigne0 = Prescaler is assigne0 = Prescaler is assigne0 = Rescaler is assigne0 = 1:20011:11:20011:40101:31011:41001:11:2Legend:R = Readable bit- n = Value at POR rese	R/W-1R/W-1R/W-1RBPUINTEDGTOCSbit 7 RBPU: PORTB Pull-up Enable bit1 = PORTB pull-ups are disabled0 = PORTB pull-ups are enabled byINTEDG: Interrupt Edge Select bit1 = Interrupt on rising edge of RB0/0 = Interrupt on falling edge of RB0/0 = Interrupt on RA4/TOCKI pin0 = Internal instruction cycle clock (TOSE: TMR0 Source Edge Select b1 = Increment on high-to-low transit0 = Increment on low-to-high transitPSA: Prescaler Assignment bit1 = Prescaler is assigned to the WE0 = Prescaler is assigned to the TimePS2:PS0: Prescaler Rate Select bit1 = Bit ValueTMR0 Rate0001 : 20111 : 40121 : 11011 : 641101 : 2561111 : 2561111 : 2561111 : 2561111 : 2561111 : 2561111 : 2561111 : 2561111 : 2561111 : 2561111 : 2561111 : 2561111 : 2561121 : 641131 : 641141 : 2561151 : 641161 : 641171 : 641181 : 64<	R/W-1R/W-1R/W-1R/W-1RBPUINTEDGTOCSTOSEbit 7RBPU: PORTB Pull-up Enable bit1 = PORTB pull-ups are disabled0 = PORTB pull-ups are enabled by individual porINTEDG: Interrupt Edge Select bit1 = Interrupt on rising edge of RB0/INT pin0 = Interrupt on falling edge of RB0/INT pin0 = Interrupt on falling edge of RB0/INT pinTOCS: TMR0 Clock Source Select bit1 = Transition on RA4/T0CKI pin0 = Internal instruction cycle clock (CLKOUT)TOSE: TMR0 Source Edge Select bit1 = Increment on high-to-low transition on RA4/T0 = Increment on low-to-high transition on RA4/T0 = Increment on low-to-high transition on RA4/T0 = Prescaler is assigned to the WDT0 = Prescaler is assigned to the Timer0 modulePS2:PS0: Prescaler Rate Select bitsBit ValueTMR0 Rate0001 : 20111 : 641: 20101 : 321: 101: 1: 281: 101: 1: 281: 111: 2561: 1: 1281: 1281: 1281: 128Legend:R = Readable bitN = Value at POR reset'1' = Bit is set	R/W-1R/W-1R/W-1R/W-1R/W-1RBPUINTEDGTOCSTOSEPSAbit 7 RBPU: PORTB Pull-up Enable bit1 = PORTB pull-ups are disabled0 = PORTB pull-ups are enabled by individual port latch valueINTEDG:Interrupt Edge Select bit1 = Interrupt on rising edge of RB0/INT pin0 = Interrupt on falling edge of RB0/INT pin TOCS: TMR0 Clock Source Select bit1 = Transition on RA4/T0CKI pin0 = Internal instruction cycle clock (CLKOUT) TOSE: TMR0 Source Edge Select bit1 = Increment on high-to-low transition on RA4/T0CKI pin0 = Increment on low-to-high transition on RA4/T0CKI pin0 = Increment on low-to-high transition on RA4/T0CKI pin0 = Prescaler is assigned to the WDT0 = Prescaler is assigned to the Timer0 module PS2:PS0: Prescaler Rate Select bitsBit ValueTMR0 Rate 000 1 : 2 111 $1:26$ $1:128$ $1:01$ $1:26$ $1:128$ Legend:R = Readable bitW = Writable bitU = Unimp- n = Value at POR reset $1'$ = Bit is set $0'$ = Bit is	R/W-1R/W-1R/W-1R/W-1R/W-1R/W-1RBPUINTEDGTOCSTOSEPSAPS2bit 7 RBPU: PORTB pull-up Enable bit1 = PORTB pull-ups are disabled0 = PORTB pull-ups are enabled by individual port latch values INTEDG: Interrupt Edge Select bit1 = Interrupt on rising edge of RB0/INT pin0 = Interrupt on falling edge of RB0/INT pin0 = Interrupt on falling edge of RB0/INT pin0 = Interrupt on falling edge of CLKOUT) TOCS: TMR0 Clock Source Select bit1 = Transition on RA4/TOCKI pin0 = Internal instruction cycle clock (CLKOUT) TOSE: TMR0 Source Edge Select bit1 = Increment on high-to-low transition on RA4/T0CKI pin0 = Increment on low-to-high transition on RA4/T0CKI pin0 = Prescaler Assignment bit1 = Prescaler is assigned to the WDT0 = Prescaler is assigned to the Timer0 module PS2:PS0: Prescaler Rate Select bitsBit ValueTMR0 Rate WDT Rate0011 : 81: 161: 181001: 321101: 1281101: 1281101: 128Legend:R = Readable bitN = Writable bitU = Unimplemented- n = Value at POR reset'1' = Bit is set'0' = Bit is cleared	R.W-1 <th< td=""></th<>				

INDIDECT ADDESSING

2.5 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.

Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses the register pointed to by the File Select Register, FSR. Reading the INDF register itself indirectly (FSR = '0') will read 00h. Writing to the INDF register indirectly results in a no operation (although status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 2-5.

A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 2-2.

	- LL Z-Z.		
	MOVLW	0x20	;initialize pointer
	MOVWF	FSR	;to RAM
NEXT	CLRF	INDF	clear INDF register;
	INCF	FSR,F	;inc pointer
	BTFSS	FSR,4	;all done?
	GOTO	NEXT	;no clear next
CONTIN	IUE		
:			;yes continue

EVAMPLE 2.2.

FIGURE 2-5: DIRECT/INDIRECT ADDRESSING

4.5 PORTE and TRISE Register

This section is not applicable to the PIC16F73 or PIC16F76.

PORTE has three pins, RE0/RD/AN5, RE1/WR/AN6 and RE2/CS/AN7, which are individually configureable as inputs or outputs. These pins have Schmitt Trigger input buffers.

I/O PORTE becomes control inputs for the microprocessor port when bit PSPMODE (TRISE<4>) is set. In this mode, the user must make sure that the TRISE<2:0> bits are set (pins are configured as digital inputs). Ensure ADCON1 is configured for digital I/O. In this mode, the input buffers are TTL.

Register 4-1 shows the TRISE register, which also controls the parallel slave port operation.

PORTE pins are multiplexed with analog inputs. When selected as an analog input, these pins will read as '0's.

TRISE controls the direction of the RE pins, even when they are being used as analog inputs. The user must make sure to keep the pins configured as inputs when using them as analog inputs.

Note: On a Power-on Reset, these pins are configured as analog inputs and read as '0'.

FIGURE 4-7: PORTE BLOCK DIAGRAM (IN I/O PORT MODE)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh,8Bh. 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 0002	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
87h	TRISC	PORTC Da	ta Directio	on Registe	r					1111 1111	1111 1111
13h	SSPBUF	Synchronou	us Serial F	Port Recei	ve Buff	er/Transm	it Register	r		XXXX XXXX	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
85h	TRISA	_		PORTA D	PORTA Data Direction Register					11 1111	11 1111
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000

TABLE 9-1:REGISTERS ASSOCIATED WITH SPI OPERATION

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the SSP in SPI mode.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76; always maintain these bits clear.

		Fosc = 20 M	lHz		Fosc = 16 M	IHz	Fosc = 10 MHz		
BAUD RATE	BAUD	% ERROR	SPBRG VALUE (DECIMAL)	BAUD	% ERROR	SPBRG VALUE (DECIMAL)	BAUD	% ERROR	SPBRG VALUE (DECIMAL)
1200	1,221	1.73%	255	1,202	0.16%	207	1,202	0.16%	129
2400	2,404	0.16%	129	2,404	0.16%	103	2,404	0.16%	64
9600	9,470	-1.36%	32	9,615	0.16%	25	9,766	1.73%	15
19,200	19,531	1.73%	15	19,231	0.16%	12	19,531	1.73%	7
38,400	39,063	1.73%	7	35,714	-6.99%	6	39,063	1.73%	3
57,600	62,500	8.51%	4	62,500	8.51%	3	52,083	-9.58%	2
76,800	78,125	1.73%	3	83,333	8.51%	2	78,125	1.73%	1
96,000	104,167	8.51%	2	83,333	-13.19%	2	78,125	-18.62%	1
115,200	104,167	-9.58%	2	125,000	8.51%	1	78,125	-32.18%	1
250,000	312,500	25.00%	0	250,000	0.00%	0	156,250	-37.50%	0

TABLE 10-3:BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)

		Fosc = 4 MI	Hz		Fosc = 3.6864	MHz	Fosc = 3.579545 MHz		
BAUD RATE	BAUD	% ERROR	SPBRG VALUE (DECIMAL)	BAUD	% ERROR	SPBRG VALUE (DECIMAL)	BAUD	% ERROR	SPBRG VALUE (DECIMAL)
300	300	0.16%	207	300	0.00%	191	301	0.23%	185
1200	1,202	0.16%	51	1,200	0.00%	47	1,190	-0.83%	46
2400	2,404	0.16%	25	2,400	0.00%	23	2,432	1.32%	22
9600	8,929	-6.99%	6	9,600	0.00%	5	9,322	-2.90%	5
19,200	20,833	8.51%	2	19,200	0.00%	2	18,643	-2.90%	2
38,400	31,250	-18.62%	1	28,800	-25.00%	1	27,965	-27.17%	1
57,600	62,500	8.51%	0	57,600	0.00%	0	55,930	-2.90%	0
76,800	62,500	-18.62%	0	—	_	_	—	—	—

TABLE 10-4: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)

		Fosc = 20 M	Hz		Fosc = 16 M	Hz	Fosc = 10 MHz		
BAUD RATE	BAUD	% ERROR	SPBRG VALUE (DECIMAL)	BAUD	% ERROR	SPBRG VALUE (DECIMAL)	BAUD	% ERROR	SPBRG VALUE (DECIMAL)
2400	_	—	_	—	—	_	2,441	1.73%	255
9600	9,615	0.16%	129	9,615	0.16%	103	9,615	0.16%	64
19,200	19,231	0.16%	64	19,231	0.16%	51	18,939	-1.36%	32
38,400	37,879	-1.36%	32	38,462	0.16%	25	39,063	1.73%	15
57,600	56,818	-1.36%	21	58,824	2.12%	16	56,818	-1.36%	10
76,800	78,125	1.73%	15	76,923	0.16%	12	78,125	1.73%	7
96,000	96,154	0.16%	12	100,000	4.17%	9	89,286	-6.99%	6
115,200	113,636	-1.36%	10	111,111	-3.55%	8	125,000	8.51%	4
250,000	250,000	0.00%	4	250,000	0.00%	3	208,333	-16.67%	2
300,000	312,500	4.17%	3	333,333	11.11%	2	312,500	4.17%	1

BAUD		Fosc = 4 MH	Iz	F	osc = 3.6864	MHz	Fosc = 3.579545 MHz			
RATE (K)	BAUD	% ERROR	SPBRG VALUE (DECIMAL)	BAUD	% ERROR	SPBRG VALUE (DECIMAL)	BAUD	% ERROR	SPBRG VALUE (DECIMAL)	
1200	1,202	0.16%	207	1,200	0.00%	191	1,203	0.23%	185	
2400	2,404	0.16%	103	2,400	0.00%	95	2,406	0.23%	92	
9600	9,615	0.16%	25	9,600	0.00%	23	9,727	1.32%	22	
19,200	19,231	0.16%	12	19,200	0.00%	11	18,643	-2.90%	11	
38,400	35,714	-6.99%	6	38,400	0.00%	5	37,287	-2.90%	5	
57,600	62,500	8.51%	3	57,600	0.00%	3	55,930	-2.90%	3	
76,800	83,333	8.51%	2	76,800	0.00%	2	74,574	-2.90%	2	
96,000	83,333	-13.19%	2	115,200	20.00%	1	111,861	16.52%	1	
115,200	125,000	8.51%	1	115,200	0.00%	1	111,861	-2.90%	1	
250,000	250,000	0.00%	0	230,400	-7.84%	0	223,722	-10.51%	0	

Steps to follow when setting up an Asynchronous Transmission:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH (Section 10.1).
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set transmit bit TX9.

- 5. Enable the transmission by setting bit TXEN, which will also set bit TXIF.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Load data to the TXREG register (starts transmission).
- 8. If using interrupts, ensure that GIE and PEIE in the INTCON register are set.

FIGURE 10-2: ASYNCHRONOUS MASTER TRANSMISSION

FIGURE 10-3: ASYNCHRONOUS MASTER TRANSMISSION (BACK TO BACK)

TABLE 10-5: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN		FERR	OERR	RX9D	x00- 0000	x000 -000x
19h	TXREG	USART Tra	ansmit Re	egister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate Generator Register						0000 0000	0000 0000		

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for asynchronous transmission. Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76; always maintain these bits clear.

FIGURE 10-6: SYNCHRONOUS TRANSMISSION

FIGURE 10-7: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

TABLE 10-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	USART Tr	ansmit R	egister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Baud Rate Generator Register								0000 0000

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76 devices; always maintain these bits clear.

11.7 Use of the CCP Trigger

An A/D conversion can be started by the "special event trigger" of the CCP2 module. This requires that the CCP2M3:CCP2M0 bits (CCP2CON<3:0>) be programmed as 1011 and that the A/D module is enabled (ADON bit is set). When the trigger occurs, the GO/DONE bit will be set, starting the A/D conversion, and the Timer1 counter will be reset to zero. Timer1 is reset to automatically repeat the A/D acquisition period with minimal software overhead (moving the ADRES to the desired location). The appropriate analog input channel must be selected and an appropriate acquisition time should pass before the "special event trigger" sets the GO/DONE bit (starts a conversion).

If the A/D module is not enabled (ADON is cleared), then the "special event trigger" will be ignored by the A/D module, but will still reset the Timer1 counter.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value PC BC	e on:)R,)R	Value on all other RESETS	
0Bh,8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
0Dh	PIR2	_	_	—	—		—		CCP2IF		0		0
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
8Dh	PIE2	—	—	—	—	—	—	_	CCP2IE		0		0
1Eh	ADRES	A/D Resu	ılt Registe	ər						xxxx	xxxx	uuuu	uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	—	ADON	0000	00-0	0000	00-0
9Fh	ADCON1	_	_	_	—	_	PCFG2	PCFG1	PCFG0		-000		-000
05h	PORTA	_		RA5	RA4	RA3	RA2	RA1	RA0	0x	0000	0u	0000
85h	TRISA	_		PORTA I	Data Directio	n Regist	er			11	1111	11	1111
09h	PORTE ⁽²⁾			_	_		RE2	RE1	RE0		-xxx		-uuu
89h	TRISE ⁽²⁾	IBF	OBF	IBOV	PSPMODE	_	PORTE Da	ta Directio	on Bits	0000	-111	0000	-111

TABLE 11-2: SUMMARY OF A/D REGISTERS

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76; always maintain these bits clear.

2: These registers are reserved on the PIC16F73/76.

PIC16F7X

FIGURE 12-8: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

FIGURE 12-9: SLOW RISE TIME (MCLR TIED TO VDD THROUGH RC NETWORK)

12.13 Watchdog Timer (WDT)

The Watchdog Timer is a free running on-chip RC oscillator, which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin. That means that the WDT will run, even if the clock on the OSC1/CLKIN and OSC2/ CLKOUT pins of the device has been stopped, for example, by execution of a SLEEP instruction.

During normal operation, a WDT time-out generates a device RESET (Watchdog Timer Reset). If the device is in SLEEP mode, a WDT time-out causes the device to wake-up and continue with normal operation (Watchdog Timer Wake-up). The $\overline{\text{TO}}$ bit in the STATUS register will be cleared upon a Watchdog Timer time-out.

The WDT can be permanently disabled by clearing configuration bit, WDTE (Section 12.1).

WDT time-out period values may be found in the Electrical Specifications section under parameter #31. Values for the WDT prescaler (actually a postscaler, but shared with the Timer0 prescaler) may be assigned using the OPTION_REG register.

- Note 1: The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device RESET condition.
 - 2: When a CLRWDT instruction is executed and the prescaler is assigned to the WDT, the prescaler count will be cleared, but the prescaler assignment is not changed.

FIGURE 12-11: WATCHDOG TIMER BLOCK DIAGRAM

TABLE 12-7: SUMMARY OF WATCHDOG TIMER REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
2007h	Config. bits	(1)	BODEN ⁽¹⁾	—	CP0	PWRTE ⁽¹⁾	WDTE	FOSC1	FOSC0
81h,181h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0

Legend: Shaded cells are not used by the Watchdog Timer.

Note 1: See Register 12-1 for operation of these bits.

12.14 Power-down Mode (SLEEP)

Power-down mode is entered by executing a $\ensuremath{\mathtt{SLEEP}}$ instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the PD bit (STATUS<3>) is cleared, the TO (STATUS<4>) bit is set, and the oscillator driver is turned off. The I/O ports maintain the status they had before the SLEEP instruction was executed (driving high, low, or hi-impedance).

For lowest current consumption in this mode, place all I/O pins at either VDD or Vss, ensure no external circuitry is drawing current from the I/O pin, power-down the A/D and disable external clocks. Pull all I/O pins that are hi-impedance inputs, high or low externally, to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or Vss for lowest current consumption. The contribution from on-chip pull-ups on PORTB should also be considered.

The $\overline{\text{MCLR}}$ pin must be at a logic high level (VIHMC).

12.14.1 WAKE-UP FROM SLEEP

The device can wake-up from SLEEP through one of the following events:

- 1. External RESET input on MCLR pin.
- 2. Watchdog Timer wake-up (if WDT was enabled).
- 3. Interrupt from INT pin, RB port change or a Peripheral Interrupt.

External MCLR Reset will cause a device RESET. All other events are considered a continuation of program execution and cause a "wake-up". The TO and PD bits in the STATUS register can be used to determine the cause of device RESET. The PD bit, which is set on power-up, is cleared when SLEEP is invoked. The TO bit is cleared if a WDT time-out occurred and caused wake-up.

The following peripheral interrupts can wake the device from SLEEP:

- 1. PSP read or write (PIC16F74/77 only).
- 2. TMR1 interrupt. Timer1 must be operating as an asynchronous counter.
- 3. CCP Capture mode interrupt.
- 4. Special event trigger (Timer1 in Asynchronous mode, using an external clock).
- 5. SSP (START/STOP) bit detect interrupt.
- SSP transmit or receive in Slave mode (SPI/I²C).
- 7. USART RX or TX (Synchronous Slave mode).
- 8. A/D conversion (when A/D clock source is RC).

Other peripherals cannot generate interrupts, since during SLEEP, no on-chip clocks are present.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up occurs, regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

12.14.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs **before** the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared.
- If the interrupt occurs during or after the execution of a SLEEP instruction, the device will immediately wake-up from SLEEP. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

13.0 INSTRUCTION SET SUMMARY

The PIC16 instruction set is highly orthogonal and is comprised of three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

Each PIC16 instruction is a 14-bit word divided into an **opcode**, which specifies the instruction type and one or more **operands**, which further specify the operation of the instruction. The formats for each of the categories are presented in Figure 13-1, while the various opcode fields are summarized in Table 13-1.

Table 13-2 lists the instructions recognized by the MPASM[™] Assembler. A complete description of each instruction is also available in the PICmicro[™] Mid-Range Reference Manual (DS33023).

For **byte-oriented** instructions, ' \pm ' represents a file register designator and 'a' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator, which selects the bit affected by the operation, while 'f' represents the address of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight- or eleven-bit constant or literal value

One instruction cycle consists of four oscillator periods; for an oscillator frequency of 4 MHz, this gives a normal instruction execution time of 1 μ s. All instructions are executed within a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of an instruction. When this occurs, the execution takes two instruction cycles, with the second cycle executed as a NOP.

Note:	То	maintain	upward	compatibility	with
	futu	ire PIC16F	7X produ	icts, <u>do not us</u>	<u>e</u> the
	OP	TION and T	TRIS inst	ructions.	

All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

13.1 READ-MODIFY-WRITE OPERATIONS

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified, and the result is stored according to either the instruction, or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register. For example, a "clrf PORTB" instruction will read PORTB, clear all the data bits, then write the result back to PORTB. This example would have the unintended result that the condition that sets the RBIF flag would be cleared for pins configured as inputs and using the PORTB interrupt-on-change feature.

TABLE 13-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with x = 0 . It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; $d = 0$: store result in W, d = 1: store result in file register f. Default is $d = 1$.
PC	Program Counter
ТО	Time-out bit
PD	Power-down bit

FIGURE 13-1: GENERAL FORMAT FOR INSTRUCTIONS

15.3 Timing Parameter Symbology

The timing parameter symbols have been created using one of the following formats:

1. TppS2ppS	3	3. Tcc:st	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	Т	Time
Lowercase	e letters (pp) and their meanings:		
рр			
сс	CCP1	OSC	OSC1
ck	CLKOUT	rd	RD
cs	CS	rw	RD or WR
di	SDI	SC	SCK
do	SDO	SS	SS
dt	Data in	tO	ТОСКІ
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
Uppercase	e letters and their meanings:	-	
S			
F	Fall	Р	Period
Н	High	R	Rise
I	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
TCC:ST (I ²	C specifications only)		
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	STOP condition
STA	START condition		

FIGURE 15-9: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)

TABLE 15-5: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)

Param No.	Symbol	(Min	Тур†	Max	Units	Conditions		
50*	TccL	CCP1 and CCP2	No Prescaler		0.5Tcy + 20	—	—	ns	
		input low time		Standard(F)	10	_	_	ns	
			With Prescaler	Extended(LF)	20	_	_	ns	
51*	ТссН	CCP1 and CCP2	No Prescaler		0.5Tcy + 20	_	_	ns	
		input high time		Standard(F)	10			ns	
			With Prescaler	Extended(LF)	20			ns	
52*	TccP	CCP1 and CCP2 in	nput period		<u>3Tcy + 40</u> N			ns	N = prescale value (1,4 or 16)
53*	TccR	CCP1 and CCP2 c	utput rise time	Standard(F)	—	10	25	ns	
				Extended(LF)	—	25	50	ns	
54*	TccF	CCP1 and CCP2 c	output fall time	Standard(F)	—	10	25	ns	
				Extended(LF)	—	25	45	ns	
*	These	narameters are cha	racterized but no	nt tested					

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 15-6: PARALLEL SLAVE PORT REQUIREMENTS (PIC16F74/77 DEVICES ONLY)

Parameter No.	Symbol	Characteristic			Тур†	Max	Units	Conditions
62	TdtV2wrH	Data in valid before WR↑ or CS´	`(setup time)	20 25	_		ns ns	Extended range only
63*	TwrH2dtl	WR↑ or CS↑ to data in invalid (hold time)	Standard(F)	20 35	_		ns ns	
64	TrdL2dtV	$\overline{RD}\downarrow$ and $\overline{CS}\downarrow$ to data out valid				80 90	ns ns	Extended range only
65	TrdH2dtl	\overline{RD} for \overline{CS} to data out invalid		10		30	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

NOTES:

USART Synchronous Transmission	
(Through TXEN)	78
Wake-up from SLEEP via Interrupt	103
Watchdog Timer	128
Timing Parameter Symbology	125
Timing Requirements	
Capture/Compare/PWM (CCP1 and CCP2)	130
CLKOUT and I/O	127
External Clock	126
I ² C Bus Data	136
I2C Bus START/STOP Bits	135
Parallel Slave Port	131
RESET, Watchdog Timer, Oscillator	
Start-up Timer, Power-up Timer	
and Brown-out Reset	128
SPI Mode	134
Timer0 and Timer1 External Clock	129
USART Synchronous Receive	137
USART Synchronous Transmission	137
TMR1CS bit	47
TMR1ON bit	47
TMR2ON bit	52
TOUTPS<3:0> bits	52
TRISA Register	31
TRISB Register	33
TRISC Register	35
TRISD Register	36
TRISE Register	37
IBF Bit	38
IBOV Bit	
PSPMODE bit 36	. 37
TXSTA Register	, c.
SYNC bit	69
TRMT bit	69
TX9 bit	69
TX9D bit	69
TXEN bit	69
U	

UA	60
Universal Synchronous Asynchronous	
Receiver Transmitter. See USART	
Update Address bit, UA	60
USART	69
Asynchronous Mode	73
Asynchronous Receiver	75
Asynchronous Reception	76
Associated Registers	76
Asynchronous Transmission	
Associated Registers	74
Asynchronous Transmitter	73

Baud Rate Generator (BRG)71
Baud Rate Formula
Baud Rates, Asynchronous Mode
(BRGH = 0)
Baud Rates, Asynchronous Mode
(BRGH = 1)
Sampling71
Mode Select (SYNC Bit) 69
Overrun Error (OERR Bit)
RC6/TX/CK Pin9, 11
RC7/RX/DT Pin9, 11
Serial Port Enable (SPEN Bit)
Single Receive Enable (SREN Bit)70
Synchronous Master Mode77
Synchronous Master Reception
Associated Registers 80
Synchronous Master Transmission
Associated Registers
Synchronous Slave Mode 80
Synchronous Slave Reception
Associated Registers 81
Synchronous Slave Transmission
Associated Registers81
Transmit Data, 9th Bit (TX9D)69
Transmit Enable (TXEN bit)69
Transmit Enable, Nine-bit (TX9 bit)
Transmit Shift Register Status (TRMT bit)

W

Wake-up from SLEEP	
Interrupts	
MCLR Reset	
WDT Reset	
Wake-up Using Interrupts	102
Watchdog Timer (WDT)	
Associated Registers	101
Enable (WDTE Bit)	101
Postscaler. See Postscaler, WDT	
Programming Considerations	101
RC Oscillator	101
Time-out Period	101
WDT Reset, Normal Operation	93, 95, 96
WDT Reset, SLEEP	93, 95, 96
WCOL bit	
Write Collision Detect bit (WCOL)	61
WWW, On-Line Support	