

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 8x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f74-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.3 Reading the FLASH Program Memory

A program memory location may be read by writing two bytes of the address to the PMADR and PMADRH registers and then setting control bit RD (PMCON1<0>). Once the read control bit is set, the microcontroller will use the next two instruction cycles to read the data. The data is available in the PMDATA and PMDATH registers after the second NOP instruction. Therefore, it can be read as two bytes in the following instructions. The PMDATA and PMDATH registers will hold this value until the next read operation.

3.4 Operation During Code Protect

FLASH program memory has its own code protect mechanism. External Read and Write operations by programmers are disabled if this mechanism is enabled.

The microcontroller can read and execute instructions out of the internal FLASH program memory, regardless of the state of the code protect configuration bits.

	BSF	STATUS, RP1	;
	BCF	STATUS, RP0	; Bank 2
	MOVF	ADDRH, W	;
	MOVWF	PMADRH	; MSByte of Program Address to read
	MOVF	ADDRL, W	;
	MOVWF	PMADR	; LSByte of Program Address to read
	BSF	STATUS, RP0	; Bank 3 Required
Required Sequence	BSF NOP NOP	PMCON1, RD	; EEPROM Read Sequence ; memory is read in the next two cycles after BSF PMCON1,RD ;
	BCF	STATUS, RPO	; Bank 2
	MOVF	PMDATA, W	; W = LSByte of Program PMDATA
	MOVF	PMDATH, W	; W = MSByte of Program PMDATA

EXAMPLE 3-1: FLASH PROGRAM READ

TABLE 3-1: REGISTERS ASSOCIATED WITH PROGRAM FLASH

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
10Dh	PMADR	Address F	Register Lo	ow Byte						xxxx xxxx	uuuu uuuu
10Fh	PMADRH	_	—	_	Address I	xxxx xxxx	uuuu uuuu				
10Ch	PMDATA	Data Reg	Data Register Low Byte								uuuu uuuu
10Eh	PMDATH	_	_	Data Reg	Data Register High Byte						uuuu uuuu
18Ch	PMCON1	_(1)	—	_	_	—	_	—	RD	10	10

Legend: x = unknown, u = unchanged, r = reserved, - = unimplemented read as '0'. Shaded cells are not used during FLASH access. **Note 1:** This bit always reads as a '1'.

4.0 I/O PORTS

Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

Additional information on I/O ports may be found in the PICmicro[™] Mid-Range Reference Manual, (DS33023).

4.1 PORTA and the TRISA Register

PORTA is a 6-bit wide, bi-directional port. The corresponding data direction register is TRISA. Setting a TRISA bit (= '1') will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISA bit (= '0') will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin).

Reading the PORTA register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, the value is modified and then written to the port data latch.

Pin RA4 is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin. The RA4/T0CKI pin is a Schmitt Trigger input and an open drain output. All other PORTA pins have TTL input levels and full CMOS output drivers.

Other PORTA pins are multiplexed with analog inputs and analog VREF input. The operation of each pin is selected by clearing/setting the control bits in the ADCON1 register (A/D Control Register1).

Note: On a Power-on Reset, these pins are configured as analog inputs and read as '0'.

The TRISA register controls the direction of the RA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set, when using them as analog inputs.

BCF BCF CLRF	STATUS, STATUS, PORTA		; ; Bank0 ; Initialize PORTA by ; clearing output : data latches	Y
BSF MOVLW MOVWF MOVLW MOVWF	STATUS, 0x06 ADCON1 0xCF TRISA	RPO	,	

FIGURE 4-1:

BLOCK DIAGRAM OF RA3:RA0 AND RA5 PINS

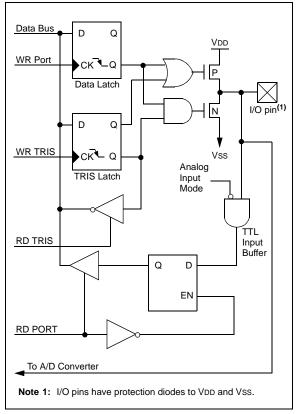
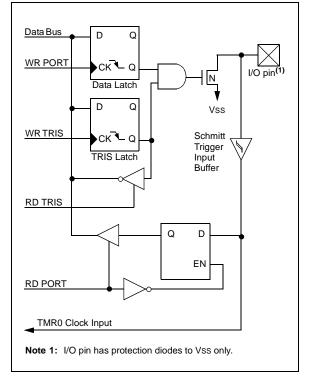
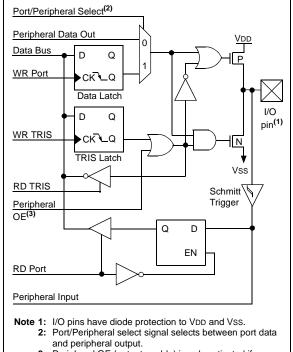



FIGURE 4-2:

BLOCK DIAGRAM OF RA4/T0CKI PIN

4.3 PORTC and the TRISC Register


PORTC is an 8-bit wide, bi-directional port. The corresponding data direction register is TRISC. Setting a TRISC bit (= '1') will make the corresponding PORTC pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISC bit (= '0') will make the corresponding PORTC pin an output (i.e., put the contents of the output latch on the selected pin).

PORTC is multiplexed with several peripheral functions (Table 4-5). PORTC pins have Schmitt Trigger input buffers.

When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTC pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. Since the TRIS bit override is in effect while the peripheral is enabled, read-modify-write instructions (BSF, BCF, XORWF) with TRISC as destination should be avoided. The user should refer to the corresponding peripheral section for the correct TRIS bit settings, and to Section 13.1 for additional information on read-modify-write operations.

FIGURE 4-5:

PORTC BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE)

3: Peripheral OE (output enable) is only activated if peripheral select is active.

Name	Bit#	Buffer Type	Function
RC0/T1OSO/T1CKI	bit0	ST	Input/output port pin or Timer1 oscillator output/Timer1 clock input.
RC1/T1OSI/CCP2	bit1	ST	Input/output port pin or Timer1 oscillator input or Capture2 input/Compare2 output/PWM2 output.
RC2/CCP1	bit2	ST	Input/output port pin or Capture1 input/Compare1 output/PWM1 output.
RC3/SCK/SCL	bit3	ST	RC3 can also be the synchronous serial clock for both SPI and I^2C modes.
RC4/SDI/SDA	bit4	ST	RC4 can also be the SPI Data In (SPI mode) or Data I/O (I ² C mode).
RC5/SDO	bit5	ST	Input/output port pin or Synchronous Serial Port data output.
RC6/TX/CK	bit6	ST	Input/output port pin or USART Asynchronous Transmit or Synchronous Clock.
RC7/RX/DT	bit7	ST	Input/output port pin or USART Asynchronous Receive or Synchronous Data.

TABLE 4-5: PORTC FUNCTIONS

Legend: ST = Schmitt Trigger input

TABLE 4-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
07h	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	uuuu uuuu
87h	TRISC	PORTC	PORTC Data Direction Register								1111 1111

Legend: x = unknown, u = unchanged

8.4.1 CCP PIN CONFIGURATION

The user must configure the RC2/CCP1 pin as an output by clearing the TRISC<2> bit.

Note:	Clearing the CCP1CON register will force
	the RC2/CCP1 compare output latch to the
	default low level. This is not the PORTC
	I/O data latch.

8.4.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work.

8.4.3 SOFTWARE INTERRUPT MODE

When Generate Software Interrupt mode is chosen, the CCP1 pin is not affected. The CCP1IF or CCP2IF bit is set, causing a CCP interrupt (if enabled).

8.4.4 SPECIAL EVENT TRIGGER

In this mode, an internal hardware trigger is generated, which may be used to initiate an action.

The special event trigger output of CCP1 resets the TMR1 register pair. This allows the CCPR1 register to effectively be a 16-bit programmable period register for Timer1.

The special event trigger output of CCP2 resets the TMR1 register pair and starts an A/D conversion (if the A/D module is enabled).

Note: The special event trigger from the CCP1 and CCP2 modules will not set interrupt flag bit TMR1IF (PIR1<0>).

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
0Dh	PIR2	—	—	—	—	_	_	_	CCP2IF	0	0
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
8Dh	PIE2	—	_	—	_	_	—	_	CCP2IE	0	0
87h	TRISC	PORTC D	ata Direc	tion Registe	er					1111 1111	1111 1111
0Eh	TMR1L	Holding R	egister fo	r the Least	Significant	Byte of the 1	6-bit TMR	1 Register		xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding R	egister fo	r the Most S	Significant E	Byte of the 16	6-bit TMR1	Register		xxxx xxxx	uuuu uuuu
10h	T1CON	—		T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
15h	CCPR1L	Capture/C	ompare/l	PWM Regis	ster1 (LSB)					xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/C	ompare/l	PWM Regis	ster1 (MSB)					xxxx xxxx	uuuu uuuu
17h	CCP1CON	—		CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
1Bh	CCPR2L	Capture/C	ompare/l	PWM Regis	ster2 (LSB)					xxxx xxxx	uuuu uuuu
1Ch	CCPR2H	Capture/C	ompare/l	PWM Regis	ster2 (MSB)					xxxx xxxx	uuuu uuuu
1Dh	CCP2CON	—	_	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000

TABLE 8-3: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, AND TIMER1

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by Capture and Timer1.

Note 1: The PSP is not implemented on the PIC16F73/76; always maintain these bits clear.

9.3.1.1 Addressing

Once the SSP module has been enabled, it waits for a START condition to occur. Following the START condition, the 8-bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register SSPSR<7:1> is compared to the value of the SSPADD register. The address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match, and the BF and SSPOV bits are clear, the following events occur:

- a) The SSPSR register value is loaded into the SSPBUF register.
- b) The buffer full bit, BF is set.
- c) An ACK pulse is generated.
- d) SSP interrupt flag bit, SSPIF (PIR1<3>) is set (interrupt is generated if enabled) - on the falling edge of the ninth SCL pulse.

In 10-bit Address mode, two address bytes need to be received by the slave (Figure 9-7). The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit R/W (SSPSTAT<2>) must specify a write so the slave device will receive the second address byte. For a 10-bit address, the first byte would equal '1111 0 A9 A8 0', where A9 and A8 are the two MSbs of the address. The sequence of events for 10-bit address is as follows, with steps 7 - 9 for slave-transmitter:

- 1. Receive first (high) byte of address (bits SSPIF, BF, and bit UA (SSPSTAT<1>) are set).
- Update the SSPADD register with second (low) byte of address (clears bit UA and releases the SCL line).
- 3. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 4. Receive second (low) byte of address (bits SSPIF, BF, and UA are set).
- 5. Update the SSPADD register with the first (high) byte of address, if match releases SCL line, this will clear bit UA.
- 6. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 7. Receive Repeated START condition.
- 8. Receive first (high) byte of address (bits SSPIF and BF are set).
- 9. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.

Status Bits as Data Transfer is Received		$SSPSR \to SSPBUF$	Generate ACK Pulse	Set bit SSPIF (SSP Interrupt occurs		
BF	SSPOV		Fuise	if enabled)		
0	0	Yes	Yes	Yes		
1	0	No	No	Yes		
1	1	No	No	Yes		
0	1	No	No	Yes		

TABLE 9-2: DATA TRANSFER RECEIVED BYTE ACTIONS

Note: Shaded cells show the conditions where the user software did not properly clear the overflow condition.

9.3.1.2 Reception

When the R/W bit of the address byte is clear and an address match occurs, the R/W bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register.

When the address byte overflow condition exists, then no Acknowledge (ACK) pulse is given. An overflow condition is defined as either bit BF (SSPSTAT<0>) is set, or bit SSPOV (SSPCON<6>) is set. This is an error condition due to the user's firmware. An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF (PIR1<3>) must be cleared in software. The SSPSTAT register is used to determine the status of the byte.

9.3.2 MASTER MODE

Master mode of operation is supported in firmware using interrupt generation on the detection of the START and STOP conditions. The STOP (P) and START (S) bits are cleared from a RESET or when the SSP module is disabled. The STOP (P) and START (S) bits will toggle based on the START and STOP conditions. Control of the I²C bus may be taken when the P bit is set, or the bus is IDLE and both the S and P bits are clear.

In Master mode, the SCL and SDA lines are manipulated by clearing the corresponding TRISC<4:3> bit(s). The output level is always low, irrespective of the value(s) in PORTC<4:3>. So when transmitting data, a '1' data bit must have the TRISC<4> bit set (input) and a '0' data bit must have the TRISC<4> bit cleared (output). The same scenario is true for the SCL line with the TRISC<3> bit. Pull-up resistors must be provided externally to the SCL and SDA pins for proper operation of the I²C module.

The following events will cause SSP Interrupt Flag bit, SSPIF, to be set (SSP Interrupt will occur if enabled):

- START condition
- STOP condition
- Data transfer byte transmitted/received

Master mode of operation can be done with either the Slave mode IDLE (SSPM3:SSPM0 = 1011), or with the Slave active. When both Master and Slave modes are enabled, the software needs to differentiate the source(s) of the interrupt.

9.3.3 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the START and STOP conditions, allows the determination of when the bus is free. The STOP (P) and START (S) bits are cleared from a RESET or when the SSP module is disabled. The STOP (P) and START (S) bits will toggle based on the START and STOP conditions. Control of the I^2C bus may be taken when bit P (SSPSTAT<4>) is set, or the bus is IDLE and both the S and P bits clear. When the bus is busy, enabling the SSP Interrupt will generate the interrupt when the STOP condition occurs.

In Multi-Master operation, the SDA line must be monitored to see if the signal level is the expected output level. This check only needs to be done when a high level is output. If a high level is expected and a low level is present, the device needs to release the SDA and SCL lines (set TRISC<4:3>). There are two stages where this arbitration can be lost, these are:

- Address Transfer
- Data Transfer

When the slave logic is enabled, the slave continues to receive. If arbitration was lost during the address transfer stage, communication to the device may be in progress. If addressed, an ACK pulse will be generated. If arbitration was lost during the data transfer stage, the device will need to retransfer the data at a later time.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
13h	SSPBUF	Synchrono	us Serial	Port Rece	eive Buff	er/Transn	nit Registe	ər		xxxx xxxx	uuuu uuuu
93h	SSPADD	Synchrono	us Serial	Port (I ² C	mode) A	ddress R	egister			0000 0000	0000 0000
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
94h	SSPSTAT	SMP ⁽²⁾	CKE ⁽²⁾	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
87h	TRISC	PORTC Da	ata Direct	•	1111 1111	1111 1111					

 TABLE 9-3:
 REGISTERS ASSOCIATED WITH I²C OPERATION

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by SSP module in I²C mode. **Note 1:** PSPIF and PSPIE are reserved on the PIC16F73/76; always maintain these bits clear.

2: Maintain these bits clear in I²C mode.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
19h	TXREG	USART Tr	ansmit R	egister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Baud Rate Generator Register								0000 0000

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous slave transmission.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76 devices; always maintain these bits clear.

10.4.2 USART SYNCHRONOUS SLAVE RECEPTION

The operation of the Synchronous Master and Slave modes is identical, except in the case of the SLEEP mode. Bit SREN is a "don't care" in Slave mode.

If receive is enabled by setting bit CREN prior to the SLEEP instruction, then a word may be received during SLEEP. On completely receiving the word, the RSR register will transfer the data to the RCREG register and if enable bit RCIE bit is set, the interrupt generated will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Follow these steps when setting up a Synchronous Slave Reception:

- Enable the synchronous master serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. If interrupts are desired, set enable bit RCIE.
- 3. If 9-bit reception is desired, set bit RX9.
- 4. To enable reception, set enable bit CREN.
- 5. Flag bit RCIF will be set when reception is complete and an interrupt will be generated, if enable bit RCIE was set.
- Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 7. Read the 8-bit received data by reading the RCREG register.
- 8. If any error occurred, clear the error by clearing bit CREN.
- 9. If using interrupts, ensure that GIE and PEIE in the INTCON register are set.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
1Ah	RCREG	USART R	eceive R	egister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	e Genera	ator Registe	er					0000 0000	0000 0000

TABLE 10-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous slave reception. Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76 devices, always maintain these bits clear.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/P-1	U-0	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
_				_			BOREN	_	CP0	PWRTEN	WDTEN	FOSC1	FOSC0
bit13													bit0
bit 13-7		Unimp	lemente	d: Read	as '1'								
bit 6		BORE	: Browr	out Re	set Ena	ble bit							
		1 = BO	R enable	ed									
		0 = BO	R disabl	ed									
bit 5		Unimp	Unimplemented: Read as '1'										
bit 4		CP0: F	LASH P	rogram I	Memory	Code F	Protection b	oit					
		1 = Coo	de prote	ction off									
		0 = All I	memory	location	s code	protecte	d						
bit 3		PWRTE	EN: Pow	er-up Ti	mer Ena	able bit							
		1 = PW	/RT disa	bled									
		0 = PW	RT enab	oled									
bit 2		WDTE	N: Watch	ndog Tim	er Enal	ole bit							
		1 = WD	T enabl	ed									
		0 = WD)T disabl	ed									
bit 1-0		FOSC1	:FOSCO	: Oscilla	tor Sele	ection bi	ts						
		11 = R0	C oscilla	tor									
			S oscilla										
			T oscillat										
		00 = LF	oscillat	or									
		Note	1. The	erased	lunnroc	iramme	d) value of	the co	onfigura	tion word is	3FFFh		

REGISTER 12-1: CONFIGURATION WORD (ADDRESS 2007h)⁽¹⁾

Note 1: The erased (unprogrammed) value of the configuration word is 3FFFh.

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
- n = Value when device is ur	nprogrammed	u = Unchanged from programmed state

Register		Dev	ices		Power-on Reset, Brown-out Reset	MCLR Reset, WDT Reset	Wake-up via WDT or Interrupt	
W	73	74	76	77	xxxx xxxx	uuuu uuuu	uuuu uuuu	
INDF	73	74	76	77	N/A	N/A	N/A	
TMR0	73	74	76	77	XXXX XXXX	uuuu uuuu	uuuu uuuu	
PCL	73	74	76	77	0000h	0000h	PC + 1 ⁽²⁾	
STATUS	73	74	76	77	0001 1xxx	000q quuu (3)	uuuq quuu (3)	
FSR	73	74	76	77	xxxx xxxx	uuuu uuuu	uuuu uuuu	
PORTA	73	74	76	77	0x 0000	0u 0000	uu uuuu	
PORTB	73	74	76	77	XXXX XXXX	uuuu uuuu	uuuu uuuu	
PORTC	73	74	76	77	XXXX XXXX	uuuu uuuu	uuuu uuuu	
PORTD	73	74	76	77	XXXX XXXX	uuuu uuuu	uuuu uuuu	
PORTE	73	74	76	77	xxx	uuu	uuu	
PCLATH	73	74	76	77	0 0000	0 0000	u uuuu	
INTCON	73	74	76	77	0000 000x	0000 000u	uuuu uuuu (1)	
PIR1	73	74	76	77	r000 0000	r000 0000	ruuu uuuu (1)	
	73	74	76	77	0000 0000	0000 0000	uuuu uuuu (1)	
PIR2	73	74	76	77	0	0	u(1)	
TMR1L	73	74	76	77	XXXX XXXX	uuuu uuuu	uuuu uuuu	
TMR1H	73	74	76	77	XXXX XXXX	uuuu uuuu	uuuu uuuu	
T1CON	73	74	76	77	00 0000	uu uuuu	uu uuuu	
TMR2	73	74	76	77	0000 0000	0000 0000	uuuu uuuu	
T2CON	73	74	76	77	-000 0000	-000 0000	-uuu uuuu	
SSPBUF	73	74	76	77	XXXX XXXX	uuuu uuuu	uuuu uuuu	
SSPCON	73	74	76	77	0000 0000	0000 0000	uuuu uuuu	
CCPR1L	73	74	76	77	XXXX XXXX	uuuu uuuu	uuuu uuuu	
CCPR1H	73	74	76	77	XXXX XXXX	uuuu uuuu	uuuu uuuu	
CCP1CON	73	74	76	77	00 0000	00 0000	uu uuuu	
RCSTA	73	74	76	77	0000 -00x	0000 -00x	uuuu -uuu	
TXREG	73	74	76	77	0000 0000	0000 0000	uuuu uuuu	
RCREG	73	74	76	77	0000 0000	0000 0000	uuuu uuuu	
CCPR2L	73	74	76	77	XXXX XXXX	uuuu uuuu	uuuu uuuu	
CCPR2H	73	74	76	77	XXXX XXXX	uuuu uuuu	uuuu uuuu	
CCP2CON	73	74	76	77	0000 0000	0000 0000	uuuu uuuu	
ADRES	73	74	76	77	XXXX XXXX	uuuu uuuu	uuuu uuuu	
ADCON0	73	74	76	77	0000 00-0	0000 00-0	uuuu uu-u	
OPTION_REG	73	74	76	77	1111 1111	1111 1111	uuuu uuuu	
TRISA	73	74	76	77	11 1111	11 1111	uu uuuu	
TRISB	73	74	76	77	1111 1111	1111 1111	uuuu uuuu	
TRISC	73	74	76	77	1111 1111	1111 1111	uuuu uuuu	
TRISD	73	74	76	77	1111 1111	1111 1111	uuuu uuuu	
TRISE	73	74	76	77	0000 -111	0000 -111	uuuu -uuu	
PIE1	73	74	76	77	r000 0000	r000 0000	ruuu uuuu	
	73	74	76	77	0000 0000	0000 0000	uuuu uuuu	

TABLE 12-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition, r = reserved, maintain clear

Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 12-5 for RESET value for specific condition.

12.11.1 INT INTERRUPT

External interrupt on the RB0/INT pin is edge triggered, either rising, if bit INTEDG (OPTION_REG<6>) is set, or falling, if the INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, flag bit INTF (INTCON<1>) is set. This interrupt can be disabled by clearing enable bit INTE (INTCON<4>). Flag bit INTF must be cleared in software in the Interrupt Service Routine before re-enabling this interrupt. The INT interrupt can wake-up the processor from SLEEP, if bit INTE was set prior to going into SLEEP. The status of global interrupt enable bit GIE decides whether or not the processor branches to the interrupt vector following wakeup. See Section 12.14 for details on SLEEP mode.

12.11.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set flag bit TMR0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit TMR0IE (INTCON<5>). (Section 5.0)

12.11.3 PORTB INTCON CHANGE

An input change on PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit RBIE (INTCON<4>), see Section 4.2.

12.12 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt (i.e., W, PCLATH and STA-TUS registers). This will have to be implemented in software, as shown in Example 12-1.

For the PIC16F73/74 devices, the register W_TEMP must be defined in both banks 0 and 1 and must be defined at the same offset from the bank base address (i.e., If W_TEMP is defined at 20h in bank 0, it must also be defined at A0h in bank 1.). The registers, PCLATH_TEMP and STATUS_TEMP, are only defined in bank 0.

Since the upper 16 bytes of each bank are common in the PIC16F76/77 devices, temporary holding registers W_TEMP, STATUS_TEMP and PCLATH_TEMP should be placed in here. These 16 locations don't require banking and, therefore, make it easier for context save and restore. The same code shown in Example 12-1 can be used.

	LIZ-I. SAVING S	TATUS, W, AND FCEATH REGISTERS IN RAM
MOVWF	W_TEMP	;Copy W to TEMP register
SWAPF	STATUS,W	;Swap status to be saved into W
CLRF	STATUS	;bank 0, regardless of current bank, Clears IRP,RP1,RP0
MOVWF	STATUS_TEMP	;Save status to bank zero STATUS_TEMP register
MOVF	PCLATH, W	;Only required if using pages 1, 2 and/or 3
MOVWF	F PCLATH_TEMP	;Save PCLATH into W
CLRF	PCLATH	;Page zero, regardless of current page
:		
:(ISR	2)	;Insert user code here
:		
MOVF	PCLATH_TEMP, W	;Restore PCLATH
MOVWF	7 PCLATH	;Move W into PCLATH
SWAPF	<pre>STATUS_TEMP,W</pre>	;Swap STATUS_TEMP register into W
		;(sets bank to original state)
MOVWF	r status	;Move W into STATUS register
SWAPF	F W_TEMP,F	;Swap W_TEMP
SWAPF	F W_TEMP,W	;Swap W_TEMP into W

EXAMPLE 12-1: SAVING STATUS, W, AND PCLATH REGISTERS IN RAM

NOTES:

PIC16F7X

SWAPF	Swap Nibbles in f
Syntax:	[label] SWAPF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$
Operation:	$(f<3:0>) \rightarrow (destination<7:4>), (f<7:4>) \rightarrow (destination<3:0>)$
Status Affected:	None
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed in register 'f'.

XORWF	Exclusive OR W with f
Syntax:	[label] XORWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$
Operation:	(W) .XOR. (f) \rightarrow (destination)
Status Affected:	Z
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

XORLW	Exclusive OR Literal with W
Syntax:	[<i>label</i>] XORLW k
Operands:	$0 \le k \le 255$
Operation:	(W) .XOR. $k \rightarrow (W)$
Status Affected:	Z
Description:	The contents of the W register are XOR'ed with the eight-bit literal 'k'. The result is placed in the W register.

14.13 PICDEM 3 Low Cost PIC16CXXX Demonstration Board

The PICDEM 3 demonstration board is a simple demonstration board that supports the PIC16C923 and PIC16C924 in the PLCC package. It will also support future 44-pin PLCC microcontrollers with an LCD Module. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM 3 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer with an adapter socket, and easily test firmware. The MPLAB ICE in-circuit emulator may also be used with the PICDEM 3 demonstration board to test firmware. A prototype area has been provided to the user for adding hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push button switches, a potentiometer for simulated analog input, a thermistor and separate headers for connection to an external LCD module and a keypad. Also provided on the PICDEM 3 demonstration board is a LCD panel, with 4 commons and 12 segments, that is capable of displaying time, temperature and day of the week. The PICDEM 3 demonstration board provides an additional RS-232 interface and Windows software for showing the demultiplexed LCD signals on a PC. A simple serial interface allows the user to construct a hardware demultiplexer for the LCD signals.

14.14 PICDEM 17 Demonstration Board

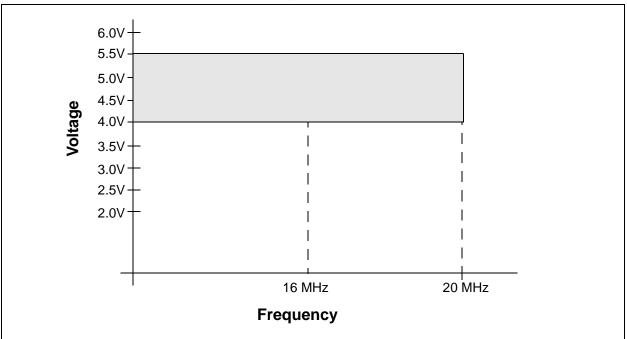
The PICDEM 17 demonstration board is an evaluation board that demonstrates the capabilities of several Microchip microcontrollers, including PIC17C752, PIC17C756A, PIC17C762 and PIC17C766. All necessary hardware is included to run basic demo programs, which are supplied on a 3.5-inch disk. A programmed sample is included and the user may erase it and program it with the other sample programs using the PRO MATE II device programmer, or the PICSTART Plus development programmer, and easily debug and test the sample code. In addition, the PICDEM 17 demonstration board supports downloading of programs to and executing out of external FLASH memory on board. The PICDEM 17 demonstration board is also usable with the MPLAB ICE in-circuit emulator, or the PICMASTER emulator and all of the sample programs can be run and modified using either emulator. Additionally, a generous prototype area is available for user hardware.

14.15 KEELOQ Evaluation and Programming Tools

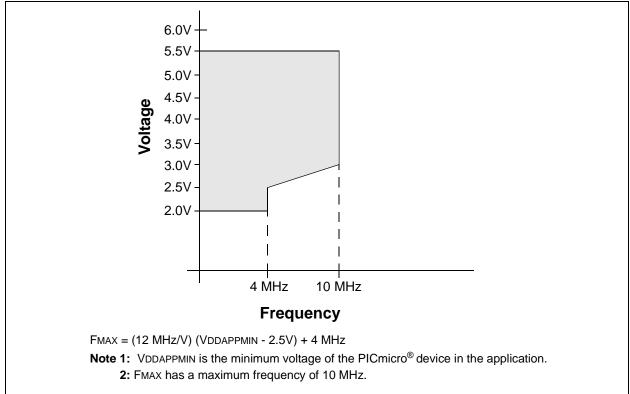
KEELOQ evaluation and programming tools support Microchip's HCS Secure Data Products. The HCS evaluation kit includes a LCD display to show changing codes, a decoder to decode transmissions and a programming interface to program test transmitters.

15.0 ELECTRICAL CHARACTERISTICS

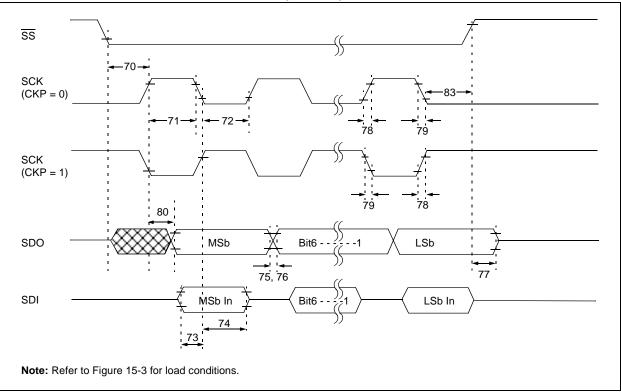
Absolute Maximum Ratings †


Ambient temperature under bias	55 to +125°C
Storage temperature	
Voltage on any pin with respect to Vss (except VDD, MCLR. and RA4)	
Voltage on VDD with respect to Vss	
Voltage on MCLR with respect to Vss (Note 2)	
Voltage on RA4 with respect to Vss	
Total power dissipation (Note 1)	
Maximum current out of Vss pin	
Maximum current into VDD pin	
Input clamp current, Iк (Vi < 0 or Vi > VDD)	
Output clamp current, loк (Vo < 0 or Vo > Voo)	
Maximum output current sunk by any I/O pin	
Maximum output current sourced by any I/O pin	
Maximum current sunk by PORTA, PORTB, and PORTE (combined) (Note 3)	200 mA
Maximum current sourced by PORTA, PORTB, and PORTE (combined) (Note 3)	
Maximum current sunk by PORTC and PORTD (combined) (Note 3)	200 mA
Maximum current sourced by PORTC and PORTD (combined) (Note 3)	
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD - V	$√$ ОН) x IOH} + Σ (VOI x IOL)
 Voltage spikes at the MCLR pin may cause latchup. A series resistor of greater the to pull MCLR to VDD, rather than tying the pin directly to VDD. 	nan 1 k Ω should be used

3: PORTD and PORTE are not implemented on the PIC16F73/76 devices.


† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

PIC16F7X



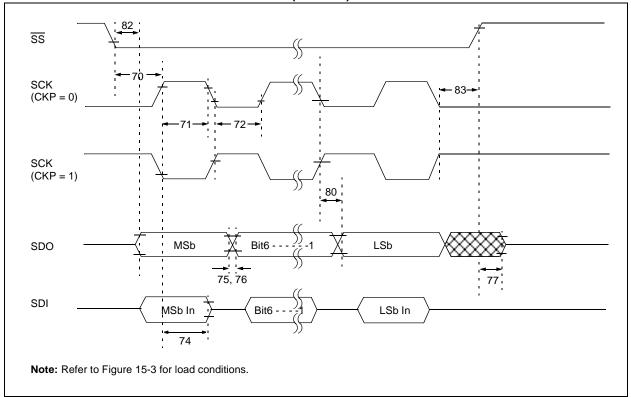
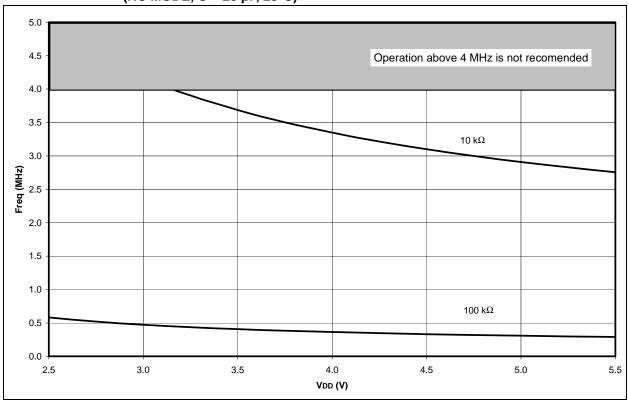
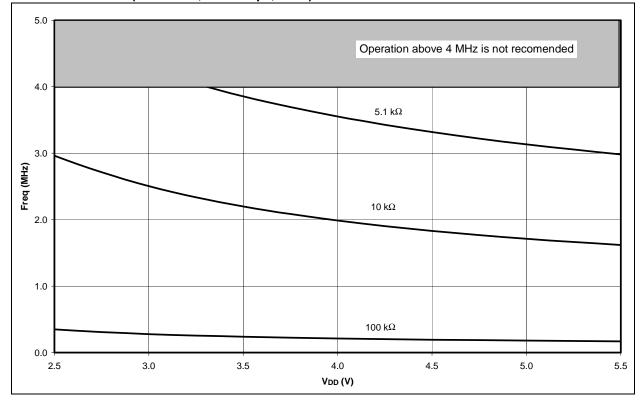
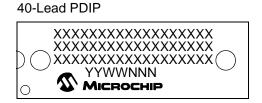
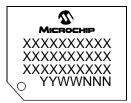


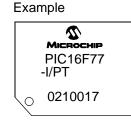
FIGURE 15-2: PIC16LF7X VOLTAGE-FREQUENCY GRAPH

FIGURE 15-14: SPI SLAVE MODE TIMING (CKE = 1)

FIGURE 16-7: AVERAGE FOSC vs. VDD FOR VARIOUS VALUES OF R (RC MODE, C = 20 pF, 25°C)

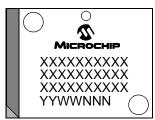





FIGURE 16-8: AVERAGE Fosc vs. VDD FOR VARIOUS VALUES OF R (RC MODE, C = 100 pF, 25°C)



Package Marking Information (Cont'd)

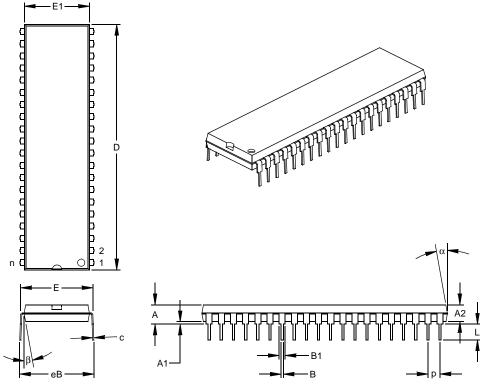
44-Lead TQFP


Example

Ο

PIC16F77-I/P

0210017


44-Lead PLCC

Example

40-Lead Plastic Dual In-line (P) - 600 mil (PDIP)

Units		INCHES*		MILLIMETERS			
n Limits	MIN	NOM	MAX	MIN	NOM	MAX	
n		40			40		
р		.100			2.54		
Α	.160	.175	.190	4.06	4.45	4.83	
A2	.140	.150	.160	3.56	3.81	4.06	
A1	.015			0.38			
Е	.595	.600	.625	15.11	15.24	15.88	
E1	.530	.545	.560	13.46	13.84	14.22	
D	2.045	2.058	2.065	51.94	52.26	52.45	
L	.120	.130	.135	3.05	3.30	3.43	
С	.008	.012	.015	0.20	0.29	0.38	
B1	.030	.050	.070	0.76	1.27	1.78	
В	.014	.018	.022	0.36	0.46	0.56	
eB	.620	.650	.680	15.75	16.51	17.27	
α	5	10	15	5	10	15	
β	5	10	15	5	10	15	
	n Limits n P A A2 A1 E E1 D L c B1 B eB α	n Limits MIN n p A .160 A2 .140 A1 .015 E .595 E1 .530 D 2.045 L .120 c .008 B1 .030 B .014 eB .620 α 5	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-011

Drawing No. C04-016

PORTE Register			. 37
Postscaler, WDT			
Assignment (PSA bit)			
Rate Select (PS2:PS0 bits)			. 20
Power-down Mode. See SLEEP			
Power-on Reset (POR)89,			
Oscillator Start-up Timer (OST)		89,	94
POR Status (POR bit)			.25
Power Control (PCON) Register			. 95
Power-down (PD bit)			.93
Power-up Timer (PWRT)		89,	94
Time-out (TO bit)			
PR2 Register			.51
Prescaler, Timer0			
Assignment (PSA bit)			.20
Rate Select (PS2:PS0 bits)			
PRO MATE II Universal Device Programmer			
Program Counter			
RESET Conditions			. 95
Program Memory			
Associated Registers			
Interrupt Vector			.13
Memory and Stack Maps			
Operation During Code Protect			
Organization			
Paging			
PMADR Register			
PMADRH Register			
Reading FLASH			
Reading, PMADR Register			
Reading, PMADRH Register			
Reading, PMCON1 Register			
Reading, PMDATA Register			
Reading, PMDATH Register			
RESET Vector			
Program Verification			
Programming Pin (VPP)			
Programming, Device Instructions			
PUSH			
R			
R/W bit	.60.	66.	67
		ο Ω	

RA0/AN0 Pin	8,	10
RA1/AN1 Pin	8,	10
RA2/AN2 Pin	8,	10
RA3/AN3/VREF Pin	8,	10
RA4/T0CKI Pin		
RA5/SS/AN4 Pin		
RAM. See Data Memory	í	
RB0/INT Pin	9,	11
RB1 Pin	9,	11
RB2 Pin		
RB3/PGM Pin	9,	11
RB4 Pin	9,	11
RB5 Pin	9,	11
RB6/PGC Pin	9,	11
RB7/PGD Pin	9,	11
RC0/T1OSO/T1CKI Pin	9,	11
RC1/T1OSI/CCP2 Pin		
RC2/CCP1 Pin		
RC3/SCK/SCL Pin	9,	11
RC4/SDI/SDA Pin	9,	11
RC5/SDO Pin	9,	11
RC6/TX/CK Pin		
RC7/RX/DT Pin	9,	11

RCSTA Register	
CREN bit	
OERR bit	
SPEN bit	
SREN bit	
RD0/PSP0 Pin	
RD1/PSP1 Pin	
RD2/PSP2 Pin	
RD3/PSP3 Pin	
RD4/PSP4 Pin	
RD5/PSP5 Pin RD6/PSP6 Pin	
RD7/PSP7 Pin	
RE0/RD/AN5 Pin	
RE1/WR/AN6 Pin	
RE2/CS/AN7 Pin	
Read-Modify-Write Operations	
Receive Overflow Indicator bit (SSPOV)	
Register File	
Registers	
ADCON0 (A/D Control 0)	83
ADCON0 (A/D Control 0) Register	
ADCON1 (A/D Control 1)	
ADCON1 (A/D Control 1) Register	
ADRES (A/D Result)	
CCP1CON/CCP2CON (CCP Control) Registers	s 54
Configuration Word Register	
Initialization Conditions (table)	96—97
INTCON (Interrupt Control)	21
INTCON (Interrupt Control) Register	21
OPTION_REG	
OPTION_REG Register	
PCON (Power Control)	
PCON (Power Control) Register	
PIE1 (Peripheral Interrupt Enable 1)	
PIE1 (Peripheral Interrupt Enable 1) Register	
PIE2 (Peripheral Interrupt Enable 2)	
PIE2 (Peripheral Interrupt Enable 2) Register	
PIR1 (Peripheral Interrupt Request 1) PIR1 (Peripheral Interrupt Request 1) Register	
PIR2 (Peripheral Interrupt Request 2)	
PIR2 (Peripheral Interrupt Request 2) PIR2 (Peripheral Interrupt Request 2) Register	
PMCON1 (Program Memory Control 1)	
Register	20
RCSTA (Receive Status and Control) Register	
Special Function, Summary	16-18
SSPCON (Sync Serial Port Control) Register	
SSPSTAT (Sync Serial Port Status) Register	
STATUS Register	
T1CON (Timer 1 Control) Register	
T2CON (Timer2 Control) Register	
TRISE Register	
TXSTA (Transmit Status and Control) Register	69
RESET	
	89, 93
Brown-out Reset (BOR). See Brown-out Reset	
MCLR Reset. See MCLR	(BOR)
MCLR Reset. See MCLR Power-on Reset (POR). See Power-on Reset (I	(BOR) POR)
MCLR Reset. See MCLR Power-on Reset (POR). See Power-on Reset (I RESET Conditions for All Registers	(BOR) POR) 96
MCLR Reset. See MCLR Power-on Reset (POR). See Power-on Reset (I RESET Conditions for All Registers RESET Conditions for PCON Register	(BOR) POR) 96 95
MCLR Reset. See MCLR Power-on Reset (POR). See Power-on Reset (I RESET Conditions for All Registers RESET Conditions for PCON Register RESET Conditions for Program Counter	(BOR) POR) 96 95 95
MCLR Reset. See MCLR Power-on Reset (POR). See Power-on Reset (I RESET Conditions for All Registers RESET Conditions for PCON Register RESET Conditions for Program Counter RESET Conditions for STATUS Register	(BOR) POR) 96 95 95
MCLR Reset. See MCLR Power-on Reset (POR). See Power-on Reset (I RESET Conditions for All Registers RESET Conditions for PCON Register RESET Conditions for Program Counter RESET Conditions for STATUS Register RESET	(BOR) POR) 96 95 95
MCLR Reset. See MCLR Power-on Reset (POR). See Power-on Reset (I RESET Conditions for All Registers RESET Conditions for PCON Register RESET Conditions for Program Counter RESET Conditions for STATUS Register	(BOR) POR)