

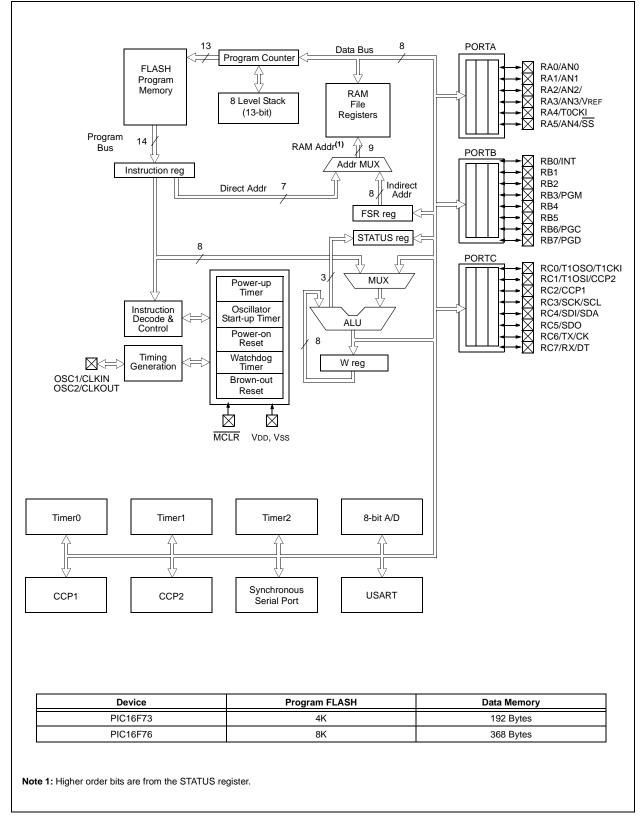
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f76-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16F7X

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. A list of these registers is given in Table 2-1. The Special Function Registers can be classified into two sets: core (CPU) and peripheral. Those registers associated with the core functions are described in detail in this section. Those related to the operation of the peripheral features are described in detail in the peripheral feature section.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Details on page
Bank 0	•					•	•	•	•		
00h ⁽⁴⁾	INDF	Addressing	g this locatio	n uses conte	nts of FSR to	address data	a memory (r	not a physica	al register)	0000 0000	27, 96
01h	TMR0	Timer0 Mc	dule Registe	er						xxxx xxxx	45, 96
02h ⁽⁴⁾	PCL	Program C	Counter (PC)	Least Signif	icant Byte					0000 0000	26, 96
03h ⁽⁴⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	19, 96
04h ⁽⁴⁾	FSR	Indirect Da	ata Memory /	Address Poir	nter			•		xxxx xxxx	27, 96
05h	PORTA	_	— PORTA Data Latch when written: PORTA pins when read								32, 96
06h	PORTB	PORTB D	PORTB Data Latch when written: PORTB pins when read								34, 96
07h	PORTC	PORTC D	PORTC Data Latch when written: PORTC pins when read								
08h (5)	PORTD	PORTD D	PORTD Data Latch when written: PORTD pins when read							xxxx xxxx	36, 96
09h (5)	PORTE	_		—	—	—	RE2	RE1	RE0	xxx	39, 96
0Ah ^(1,4)	PCLATH	_	— — Write Buffer for the upper 5 bits of the Program Counter								
0Bh ⁽⁴⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	21, 96
0Ch	PIR1	PSPIF ⁽³⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	23, 96
0Dh	PIR2	_	_	_	_	_	_	_	CCP2IF	0	24, 96
0Eh	TMR1L	Holding Re	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register								
0Fh	TMR1H	Holding Re	egister for the	e Most Signif	ficant Byte of	the 16-bit TM	IR1 Registe	r		xxxx xxxx	50, 96
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	47, 96
11h	TMR2	Timer2 Mc	dule Registe	er				-		0000 0000	52, 96
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	52, 96
13h	SSPBUF	Synchrono	ous Serial Po	ort Receive B	uffer/Transmi	t Register				xxxx xxxx	64, 68, 96
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	61, 96
15h	CCPR1L	Capture/C	ompare/PWI	M Register1	(LSB)					xxxx xxxx	56, 96
16h	CCPR1H	Capture/C	ompare/PWI	M Register1	(MSB)					xxxx xxxx	56, 96
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	54, 96
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	70, 96
19h	TXREG	USART Tr	ansmit Data	Register						0000 0000	74, 96
1Ah	RCREG	USART Re	eceive Data	Register						0000 0000	76, 96
1Bh	CCPR2L	Capture/C	ompare/PWI	M Register2	(LSB)					xxxx xxxx	58, 96
1Ch	CCPR2H	Capture/C	ompare/PWI	M Register2	(MSB)					xxxx xxxx	58, 96
1Dh	CCP2CON	_	_	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	54, 96
1Eh	ADRES	A/D Result	t Register By	rte						xxxx xxxx	88, 96
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/ DONE	—	ADON	0000 00-0	83, 96

TABLE 2-1:SPECIAL FUNCTION REGISTER SUMMARY

 $\label{eq:legend: Legend: Legend: u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. \\ Shaded locations are unimplemented, read as '0'.$

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter during branches (CALL or GOTO).

2: Other (non power-up) RESETS include external RESET through MCLR and Watchdog Timer Reset.

3: Bits PSPIE and PSPIF are reserved on the 28-pin devices; always maintain these bits clear.

4: These registers can be addressed from any bank.

5: PORTD, PORTE, TRISD, and TRISE are not physically implemented on the 28-pin devices, read as '0'.

6: This bit always reads as a '1'.

Name	Bit#	Buffer Type	Function
RE0/RD/AN5	bit0	ST/TTL ⁽¹⁾	Input/output port pin or read control input in Parallel Slave Port mode or analog input. For RD (PSP mode): 1 = IDLE 0 = Read operation. Contents of PORTD register output to PORTD I/O pins (if chip selected).
RE1/WR/AN6	bit1	ST/TTL ⁽¹⁾	Input/output port pin or write control input in Parallel Slave Port mode or analog input. For WR (PSP mode): 1 = IDLE 0 = Write operation. Value of PORTD I/O pins latched into PORTD register (if chip selected).
RE2/CS/AN7	bit2	ST/TTL ⁽¹⁾	Input/output port pin or chip select control input in Parallel Slave Port mode or analog input. For CS (PSP mode): 1 = Device is not selected 0 = Device is selected

Legend: ST = Schmitt Trigger input, TTL = TTL input **Note 1:** Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port mode.

TABLE 4-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE	TABLE 4-10 :	SUMMARY OF REGISTERS ASSOCIATED WITH PORTE
--	---------------------	--

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2 Bit 1 Bit 0		Value on: POR, BOR	Value on all other RESETS	
09h	PORTE	—	—		—		RE2	RE1	RE0	xxx	uuu
89h	TRISE	IBF	OBF	IBOV	PSPMODE	_	PORTE D	ata Directi	on bits	0000 -111	0000 -111
9Fh	ADCON1	—	_		_	_	PCFG2	PCFG1	PCFG0	000	000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PORTE.

4.6 Parallel Slave Port

The Parallel Slave Port (PSP) is not implemented on the PIC16F73 or PIC16F76.

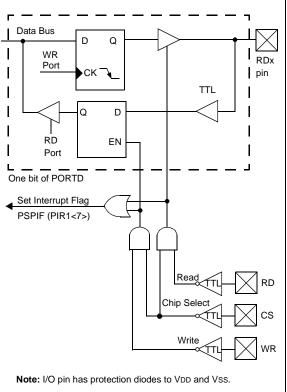
PORTD operates as an 8-bit wide Parallel Slave Port, or Microprocessor Port, when control bit PSPMODE (TRISE<4>) is set. In Slave mode, it is asynchronously readable and writable by an external system using the read control input pin RE0/RD, the write control input pin RE1/WR, and the chip select control input pin RE2/CS.

The PSP can directly interface to an 8-bit microprocessor data bus. The external microprocessor can read or write the PORTD latch as an 8-bit latch. Setting bit PSPMODE enables port pin RE0/RD to be the RD input, RE1/WR to be the WR input and RE2/CS to be the CS (chip select) input. For this functionality, the corresponding data direction bits of the TRISE register (TRISE<2:0>) must be configured as inputs (i.e., set). The A/D port configuration bits PCFG3:PCFG0 (ADCON1<3:0>) must be set to configure pins RE2:RE0 as digital I/O.

There are actually two 8-bit latches, one for data output (external reads) and one for data input (external writes). The firmware writes 8-bit data to the PORTD output data latch and reads data from the PORTD input data latch (note that they have the same address). In this mode, the TRISD register is ignored, since the external device is controlling the direction of data flow.

An external write to the PSP occurs when the \overline{CS} and \overline{WR} lines are both detected low. Firmware can read the actual data on the PORTD pins during this time. When either the CS or WR lines become high (level triggered), the data on the PORTD pins is latched, and the Input Buffer Full (IBF) status flag bit (TRISE<7>) and interrupt flag bit PSPIF (PIR1<7>) are set on the Q4 clock cycle, following the next Q2 cycle to signal the write is complete (Figure 4-9). Firmware clears the IBF flag by reading the latched PORTD data, and clears the PSPIF bit.

The Input Buffer Overflow (IBOV) status flag bit (TRISE<5>) is set if an external write to the PSP occurs while the IBF flag is set from a previous external write. The previous PORTD data is overwritten with the new data. IBOV is cleared by reading PORTD and clearing IBOV.


A read from the PSP occurs when both the \overline{CS} and \overline{RD} lines are detected low. The data in the PORTD output latch is output to the PORTD pins. The Output Buffer Full (OBF) status flag bit (TRISE<6>) is cleared immediately (Figure 4-10), indicating that the PORTD latch is being read, or has been read by the external bus. If firmware writes new data to the output latch during this time, it is immediately output to the PORTD pins, but OBF will remain cleared.

When either the \overline{CS} or \overline{RD} pins are detected high, the PORTD outputs are disabled, and the interrupt flag bit PSPIF is set on the Q4 clock cycle following the next Q2 cycle, indicating that the read is complete. OBF remains low until firmware writes new data to PORTD.

When not in PSP mode, the IBF and OBF bits are held clear. Flag bit IBOV remains unchanged. The PSPIF bit must be cleared by the user in firmware; the interrupt can be disabled by clearing the interrupt enable bit PSPIE (PIE1<7>).

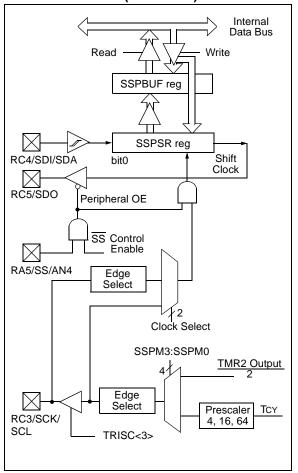
FIGURE 4-8:

PORTD AND PORTE BLOCK DIAGRAM (PARALLEL SLAVE PORT)

NOTES:

PIC16F7X

REGISTER 8-1: CCP1CON REGISTER/CCP2CON REGISTER (ADDRESS: 17h/1Dh)


bit 7-6	U-0 —	U-0	R/W-0 CCPxX	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
bit 7-6	— bit 7	_	CCDvV									
Dit 7-6	bit 7		COFXA	CCPxY	CCPxM3	CCPxM2	CCPxM1	CCPxM0				
bit 5-4 () () () () () () () () () () () () () (bit 0				
() () () () () () () () () () () () () (Unimplem	ented: Rea	ad as '0'									
1 1 1 2 2 2 2 1 2 1 2 1 1 1 1 1 1 1 1 1	CCPxX:CCPxY: PWM Least Significant bits											
bit 3-0	<u>Capture mo</u> Unused	ode:										
- bit 3-0	<u>Compare mode:</u> Unused											
bit 3-0	PWM mode:											
	These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.											
,	CCPxM3:CCPxM0: CCPx Mode Select bits											
	0000 = Capture/Compare/PWM disabled (resets CCPx module)											
	0100 = Capture mode, every falling edge											
(0101 = Capture mode, every rising edge											
(0110 = Capture mode, every 4th rising edge											
	0111 = Capture mode, every 16th rising edge											
	1000 = Compare mode, set output on match (CCPxIF bit is set)											
	1001 = Compare mode, clear output on match (CCPxIF bit is set)											
-	1010 = Compare mode, generate software interrupt on match (CCPxIF bit is set, CCPx pin is unaffected)											
:	1011 = Compare mode, trigger special event (CCPxIF bit is set, CCPx pin is unaffected); CCP1 clears Timer1; CCP2 clears Timer1 and starts an A/D conversion (if A/D module is enabled)											
:	11xx = PW	/M mode										
	Legend:											

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	l bit, read as '0'
- n = Value at POR reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 9-1: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS 94	SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS 94h)											
R/W-0 R/W-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R	-0 R-0											
SMP CKE D/A P S R/W U	A BF											
bit 7	bit C											
bit 7 SMP: SPI Data Input Sample Phase bit												
SPI Master mode:												
1 = Input data sampled at end of data output time	1 = Input data sampled at end of data output time											
0 = Input data sampled at middle of data output time (Microwire®)												
<u>SPI Slave mode:</u> SMP must be cleared when SPI is used in Slave mode												
I ² C mode:												
This bit must be maintained clear	This bit must be maintained clear											
bit 6 CKE : SPI Clock Edge Select bit (Figure 9-2, Figure 9-3, and Figure 9-4)												
<u>SPI mode, CKP = 0:</u>												
 1 = Data transmitted on rising edge of SCK (Microwire[®] alternate) 0 = Data transmitted on falling edge of SCK 	1 = Data transmitted on rising edge of SCK (Microwire [®] alternate)											
SPI mode, $CKP = 1$:												
1 = Data transmitted on falling edge of SCK (Microwire [®] default)												
	0 = Data transmitted on rising edge of SCK											
	<u>I²C mode:</u> This bit must be maintained clear											
bit 5 D/A : Data/Address bit (I ² C mode only)												
1 = Indicates that the last byte received or transmitted was data												
0 = Indicates that the last byte received or transmitted was address												
	P : STOP bit (I ² C mode only)											
	This bit is cleared when the SSP module is disabled, or when the START bit is detected last. SSPEN is cleared.											
	1 = Indicates that a STOP bit has been detected last (this bit is '0' on RESET)											
0 = STOP bit was not detected last												
bit 3 S : START bit (I ² C mode only)												
This bit is cleared when the SSP module is disabled, or when the STOP bit is SSPEN is cleared.	detected last.											
1 = Indicates that a START bit has been detected last (this bit is '0' on RESET)											
0 = START bit was not detected last												
bit 2 R/W : Read/Write bit Information (I ² C mode only)												
This bit holds the R/W bit information following the last address match. This bit i the address match to the next START bit, STOP bit, or ACK bit.	s only valid from											
1 = Read												
0 = Write												
bit 1 UA : Update Address bit (10-bit I ² C mode only)												
1 = Indicates that the user needs to update the address in the SSPADD regist	er											
 0 = Address does not need to be updated bit 0 BF: Buffer Full Status bit 												
Receive (SPI and I ² C modes):												
1 = Receive complete, SSPBUF is full												
0 = Receive not complete, SSPBUF is empty												
Transmit (I ² C mode only):												
1 = Transmit in progress, SSPBUF is full												
0 = Transmit complete, SSPBUF is empty												
Legend:												
R = Readable bit W = Writable bit U = Unimplemented bit, rea	id as '0'											
- n = Value at POR reset $'1'$ = Bit is set $'0'$ = Bit is cleared x = B	Bit is unknown											

_

FIGURE 9-1: SSP BLOCK DIAGRAM (SPI MODE)

To enable the serial port, SSP enable bit, SSPEN (SSPCON<5>) must be set. To reset or reconfigure SPI mode, clear bit SSPEN, re-initialize the SSPCON register, and then set bit SSPEN. This configures the SDI, SDO, SCK, and SS pins as serial port pins. For the pins to behave as the serial port function, they must have their data direction bits (in the TRISC register) appropriately programmed. That is:

- SDI must have TRISC<4> set
- SDO must have TRISC<5> cleared
- SCK (Master mode) must have TRISC<3> cleared
- SCK (Slave mode) must have TRISC<3> set
- SS must have TRISA<5> set and ADCON must be configured such that RA5 is a digital I/O

Note 1: When the SPI is in Slave mode with SS pin control enabled (SSPCON<3:0> = 0100), the SPI module will reset if the SS pin is set to VDD.

- 2: If the SPI is used in Slave mode with CKE = '1', then the SS pin control must be enabled.
- 3: When the SPI is in Slave mode with \overline{SS} pin control enabled (SSPCON<3:0> = '0100'), the state of the \overline{SS} pin can affect the state read back from the TRISC<5> bit. The Peripheral OE signal from the SSP module into PORTC controls the state that is read back from the TRISC<5> bit (see Section 4.3 for information on PORTC). If Read-Modify-Write instructions, such as BSF are performed on the TRISC register while the \overline{SS} pin is high, this will cause the TRISC<5> bit to be set, thus disabling the SDO output.

9.3.2 MASTER MODE

Master mode of operation is supported in firmware using interrupt generation on the detection of the START and STOP conditions. The STOP (P) and START (S) bits are cleared from a RESET or when the SSP module is disabled. The STOP (P) and START (S) bits will toggle based on the START and STOP conditions. Control of the I²C bus may be taken when the P bit is set, or the bus is IDLE and both the S and P bits are clear.

In Master mode, the SCL and SDA lines are manipulated by clearing the corresponding TRISC<4:3> bit(s). The output level is always low, irrespective of the value(s) in PORTC<4:3>. So when transmitting data, a '1' data bit must have the TRISC<4> bit set (input) and a '0' data bit must have the TRISC<4> bit cleared (output). The same scenario is true for the SCL line with the TRISC<3> bit. Pull-up resistors must be provided externally to the SCL and SDA pins for proper operation of the I²C module.

The following events will cause SSP Interrupt Flag bit, SSPIF, to be set (SSP Interrupt will occur if enabled):

- START condition
- STOP condition
- Data transfer byte transmitted/received

Master mode of operation can be done with either the Slave mode IDLE (SSPM3:SSPM0 = 1011), or with the Slave active. When both Master and Slave modes are enabled, the software needs to differentiate the source(s) of the interrupt.

9.3.3 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the START and STOP conditions, allows the determination of when the bus is free. The STOP (P) and START (S) bits are cleared from a RESET or when the SSP module is disabled. The STOP (P) and START (S) bits will toggle based on the START and STOP conditions. Control of the I^2C bus may be taken when bit P (SSPSTAT<4>) is set, or the bus is IDLE and both the S and P bits clear. When the bus is busy, enabling the SSP Interrupt will generate the interrupt when the STOP condition occurs.

In Multi-Master operation, the SDA line must be monitored to see if the signal level is the expected output level. This check only needs to be done when a high level is output. If a high level is expected and a low level is present, the device needs to release the SDA and SCL lines (set TRISC<4:3>). There are two stages where this arbitration can be lost, these are:

- Address Transfer
- Data Transfer

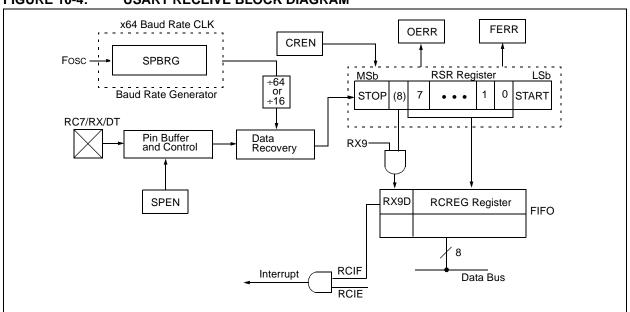
When the slave logic is enabled, the slave continues to receive. If arbitration was lost during the address transfer stage, communication to the device may be in progress. If addressed, an ACK pulse will be generated. If arbitration was lost during the data transfer stage, the device will need to retransfer the data at a later time.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
13h	SSPBUF	Synchrono	us Serial	Port Rece	eive Buff	er/Transn	nit Registe	ər		xxxx xxxx	uuuu uuuu
93h	SSPADD	Synchrono	us Serial	Port (I ² C	mode) A	ddress R	egister			0000 0000	0000 0000
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
94h	SSPSTAT	SMP ⁽²⁾	CKE ⁽²⁾	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
87h	TRISC	PORTC Da	ata Direct	•	1111 1111	1111 1111					

 TABLE 9-3:
 REGISTERS ASSOCIATED WITH I²C OPERATION

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by SSP module in I²C mode. **Note 1:** PSPIF and PSPIE are reserved on the PIC16F73/76; always maintain these bits clear.

2: Maintain these bits clear in I²C mode.


10.2.2 USART ASYNCHRONOUS RECEIVER

The receiver block diagram is shown in Figure 10-4. The data is received on the RC7/RX/DT pin and drives the data recovery block. The data recovery block is actually a high speed shifter operating at x16 times the baud rate, whereas the main receive serial shifter operates at the bit rate, or at FOSC.

Once Asynchronous mode is selected, reception is enabled by setting bit CREN (RCSTA<4>).

The heart of the receiver is the receive (serial) shift register (RSR). After sampling the STOP bit, the received data in the RSR is transferred to the RCREG register (if it is empty). If the transfer is complete, flag bit RCIF (PIR1<5>) is set. The actual interrupt can be enabled/ disabled by setting/clearing enable bit RCIE (PIE1<5>). Flag bit RCIF is a read only bit which is cleared by the hardware. It is cleared when the RCREG register has been read and is empty. The RCREG is a double buffered register (i.e., it is a two deep FIFO). It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting to the RSR register. On the detection of the STOP bit of the third byte, if the RCREG register is still full, the overrun error bit OERR (RCSTA<1>) will be set. The word in the RSR will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Overrun bit OERR has to be cleared in software. This is done by resetting the receive logic (CREN is cleared and then set). If bit OERR is set, transfers from the RSR register to the RCREG register are inhibited and no further data will be received, therefore, it is essential to clear error bit OERR if it is set. Framing error bit FERR (RCSTA<2>) is set if a STOP bit is detected as clear. Bit FERR and the 9th receive bit are buffered the same way as the receive data. Reading the RCREG will load bits RX9D and FERR with new values, therefore, it is essential for the user to read the RCSTA register before reading RCREG register, in order not to lose the old FERR and RX9D information.

11.7 Use of the CCP Trigger

An A/D conversion can be started by the "special event trigger" of the CCP2 module. This requires that the CCP2M3:CCP2M0 bits (CCP2CON<3:0>) be programmed as 1011 and that the A/D module is enabled (ADON bit is set). When the trigger occurs, the GO/DONE bit will be set, starting the A/D conversion, and the Timer1 counter will be reset to zero. Timer1 is reset to automatically repeat the A/D acquisition period with minimal software overhead (moving the ADRES to the desired location). The appropriate analog input channel must be selected and an appropriate acquisition time should pass before the "special event trigger" sets the GO/DONE bit (starts a conversion).

If the A/D module is not enabled (ADON is cleared), then the "special event trigger" will be ignored by the A/D module, but will still reset the Timer1 counter.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1 Bit 0		Value on: POR, BOR	Value on all other RESETS
0Bh,8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
0Dh	PIR2		_	_	_	—		_	CCP2IF	0	0
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
8Dh	PIE2						_		CCP2IE	0	0
1Eh	ADRES	A/D Resu	It Registe	er						XXXX XXXX	uuuu uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	—	ADON	0000 00-0	0000 00-0
9Fh	ADCON1	—	—	—	_		PCFG2	PCFG1	PCFG0	000	000
05h	PORTA	—	_	RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
85h	TRISA	—	_	PORTA I	Data Directio	n Regist	er			11 1111	11 1111
09h	PORTE ⁽²⁾	_	_	_	_	_	RE2	RE1	RE0	xxx	uuu
89h	TRISE ⁽²⁾	IBF	OBF	IBOV	PSPMODE	_	PORTE Da	ta Directio	on Bits	0000 -111	0000 -111

TABLE 11-2: SUMMARY OF A/D REGISTERS

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76; always maintain these bits clear.

2: These registers are reserved on the PIC16F73/76.

TABLE 13-2: PIC16F7X INSTRUCTION SET

Mnemo	onic,	Description	Cycles		14-Bit	Opcode	•	Status	Notes
Opera	nds	Description	Cycles	MSb			LSb	Affected	Notes
		BYTE-ORIENTED FILE RE	EGISTER OPE	RATIC	NS				
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
		BIT-ORIENTED FILE REG		RATION	IS				
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
		LITERAL AND CONT	ROL OPERAT	IONS					
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into Standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	
Note 1: V	Vhen an	I/O register is modified as a function of itself (e.g., MOVF POI	RTB, :	1), the v	alue use	ed will b	e that value	present

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 module.

3: If Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

Note: Additional information on the mid-range instruction set is available in the PICmicro[™] Mid-Range MCU Family Reference Manual (DS33023).

13.2 Instruction Descriptions

ADDLW	Add Literal and W
Syntax:	[<i>label</i>] ADDLW k
Operands:	$0 \le k \le 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Description:	The contents of the W register are added to the eight-bit literal 'k' and the result is placed in the W register.

ADDWF	Add W and f
Syntax:	[label] ADDWF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(W) + (f) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Add the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

BCF	Bit Clear f
Syntax:	[<i>label</i>] BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

BSF	Bit Set f
Syntax:	[<i>label</i>] BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

ANDLW	AND Literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \le k \le 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of W register are AND'ed with the eight-bit literal 'k'. The result is placed in the W register.

BTFSS	Bit Test f, Skip if Set
Syntax:	[label] BTFSS f,b
Operands:	$0 \le f \le 127$ $0 \le b < 7$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruc- tion is discarded and a NOP is executed instead, making this a 2TcY instruction.

ANDWF	AND W with f
Syntax:	[label] ANDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1 \right] \end{array}$
Operation:	(W) .AND. (f) \rightarrow (destination)
Status Affected:	Z
Description:	AND the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

BTFSC	Bit Test, Skip if Clear
Syntax:	[label] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2TCY instruction.

PIC16F7X

SWAPF	Swap Nibbles in f
Syntax:	[label] SWAPF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$
Operation:	$(f<3:0>) \rightarrow (destination<7:4>), (f<7:4>) \rightarrow (destination<3:0>)$
Status Affected:	None
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed in register 'f'.

XORWF	Exclusive OR W with f
Syntax:	[label] XORWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$
Operation:	(W) .XOR. (f) \rightarrow (destination)
Status Affected:	Z
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

XORLW	Exclusive OR Literal with W
Syntax:	[<i>label</i>] XORLW k
Operands:	$0 \le k \le 255$
Operation:	(W) .XOR. $k \rightarrow (W)$
Status Affected:	Z
Description:	The contents of the W register are XOR'ed with the eight-bit literal 'k'. The result is placed in the W register.

14.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK object linker combines relocatable objects created by the MPASM assembler and the MPLAB C17 and MPLAB C18 C compilers. It can also link relocatable objects from pre-compiled libraries, using directives from a linker script.

The MPLIB object librarian is a librarian for precompiled code to be used with the MPLINK object linker. When a routine from a library is called from another source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications. The MPLIB object librarian manages the creation and modification of library files.

The MPLINK object linker features include:

- Integration with MPASM assembler and MPLAB C17 and MPLAB C18 C compilers.
- Allows all memory areas to be defined as sections to provide link-time flexibility.

The MPLIB object librarian features include:

- Easier linking because single libraries can be included instead of many smaller files.
- Helps keep code maintainable by grouping related modules together.
- Allows libraries to be created and modules to be added, listed, replaced, deleted or extracted.

14.5 MPLAB SIM Software Simulator

The MPLAB SIM software simulator allows code development in a PC-hosted environment by simulating the PICmicro series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user-defined key press, to any of the pins. The execution can be performed in single step, execute until break, or trace mode.

The MPLAB SIM simulator fully supports symbolic debugging using the MPLAB C17 and the MPLAB C18 C compilers and the MPASM assembler. The software simulator offers the flexibility to develop and debug code outside of the laboratory environment, making it an excellent multiproject software development tool.

14.6 MPLAB ICE High Performance Universal In-Circuit Emulator with MPLAB IDE

The MPLAB ICE universal in-circuit emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PICmicro microcontrollers (MCUs). Software control of the MPLAB ICE in-circuit emulator is provided by the MPLAB Integrated Development Environment (IDE), which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the MPLAB ICE in-circuit emulator allows expansion to support new PICmicro microcontrollers.

The MPLAB ICE in-circuit emulator system has been designed as a real-time emulation system, with advanced features that are generally found on more expensive development tools. The PC platform and Microsoft[®] Windows environment were chosen to best make these features available to you, the end user.

14.7 ICEPIC In-Circuit Emulator

The ICEPIC low cost, in-circuit emulator is a solution for the Microchip Technology PIC16C5X, PIC16C6X, PIC16C7X and PIC16CXXX families of 8-bit One-Time-Programmable (OTP) microcontrollers. The modular system can support different subsets of PIC16C5X or PIC16CXXX products through the use of interchangeable personality modules, or daughter boards. The emulator is capable of emulating without target application circuitry being present.

TABLE 14-1: DEVELOPMENT TOOLS FROM MICROCHIP

	PIC12	PIC1	PIC16	PIC16	PIC160	PIC16	PIC16	PIC16	PIC16	PIC16	PIC160	71)Iq	DTIDIA	PIC180	PIC18F	83C) 52C) 54C)	(SOH	мскғ	МСР2
MPLAB [®] Integrated Development Environment	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>				
MPLAB [®] C17 C Compiler												>	>						
MPLAB [®] C18 C Compiler														~	~				
MPASM TM Assembler/ MPLINK TM Object Linker	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	~	>		
MPLAB® ICE In-Circuit Emulator	>	>	>	>	~	**`	>	>	>	>	>	>	>	>	~				
ICEPIC TM In-Circuit Emulator	>		>	>	>		>	>	>		>								
eb MPLAB® ICD In-Circuit Debugger				*>			*		<u> </u>	>					>				
PICSTART [®] Plus Entry Level Development Programmer	>	>	>	>	>	**`	>	>	>	>	>	>	>	>	>				
ner	>	>	>	>	>	** >	>	>	>	>	>	>	>	>	~	~	>		
PICDEM TM 1 Demonstration Board			>		>		÷,		>			>							
PICDEM TM 2 Demonstration Board				+			÷,							>	^				
PICDEM TM 3 Demonstration Board											>								
ट्र PICDEM TM 14A Demonstration छ Board		>																	
PICDEM TM 17 Demonstration Board							1						>						
																	>		
KEELoa® Transponder Kit																	>		
e microlD™ Programmer's Kit																		~	
0 125 kHz microID™ Developer's Kit																		>	
125 kHz Anticollision microlD™ Developer's Kit																		>	
13.56 MHz Anticollision microlD TM Developer's Kit																		>	
MCP2510 CAN Developer's Kit																			>

© 2002 Microchip Technology Inc.

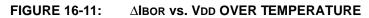
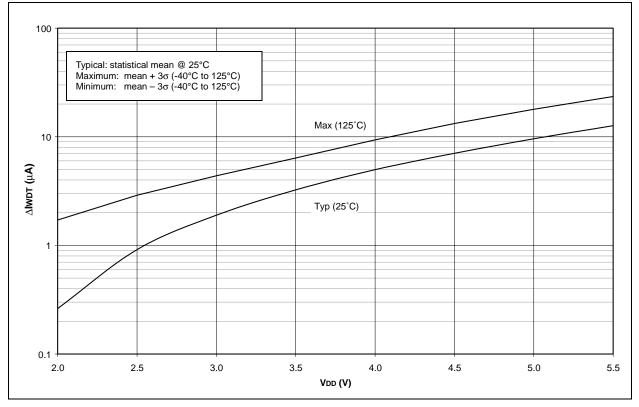
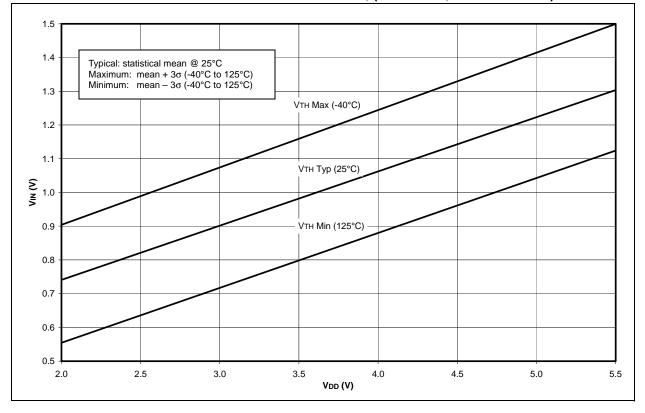

Param. No.	Symbol	Characte	eristic	Min	Max	Units	Conditions
100*	Тнідн	Clock high time	100 kHz mode	4.0	.0 —	μs	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6		μs	Device must operate at a minimum of 10 MHz
			SSP Module	1.5Tcy			
101*	TLOW	Clock low time	100 kHz mode	4.7		μs	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3		μs	Device must operate at a minimum of 10 MHz
			SSP Module	1.5Tcy			
102*	TR	SDA and SCL rise time	100 kHz mode	—	1000	ns	
			400 kHz mode	20 + 0.1Св	300	ns	CB is specified to be from 10 - 400 pF
103*	TF	SDA and SCL fall time	100 kHz mode		300	ns	
			400 kHz mode	20 + 0.1Св	300	ns	CB is specified to be from 10 - 400 pF
90*	Tsu:sta	START condition setup time	100 kHz mode	4.7		μs	Only relevant for Repeated START condition
			400 kHz mode	0.6		μs	
91*	THD:STA	START condition hold time	100 kHz mode	4.0	_	μs	After this period the first clock pulse is generated
			400 kHz mode	0.6	_	μs	
106*	THD:DAT	Data input hold time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μs	
107*	TSU:DAT	Data input setup time	100 kHz mode	250	—	ns	(Note 2)
			400 kHz mode	100	—	ns	
92*	Tsu:sto	STOP condition setup time	100 kHz mode	4.7	—	μs	
			400 kHz mode	0.6	_	μs	
109*	ΤΑΑ	Output valid from clock	100 kHz mode	—	3500	ns	(Note 1)
			400 kHz mode	—	—	ns	
110*	TBUF	Bus free time	100 kHz mode	4.7	_	μs	Time the bus must be free
			400 kHz mode	1.3	—	μs	before a new transmission can start
	Св	Bus capacitive loading	ng	-	400	pF	

TABLE 15-9: I²C BUS DATA REQUIREMENTS

* These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

2: A Fast mode (400 kHz) I²C bus device can be used in a Standard mode (100 kHz) I²C bus system, but the requirement TsU:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.

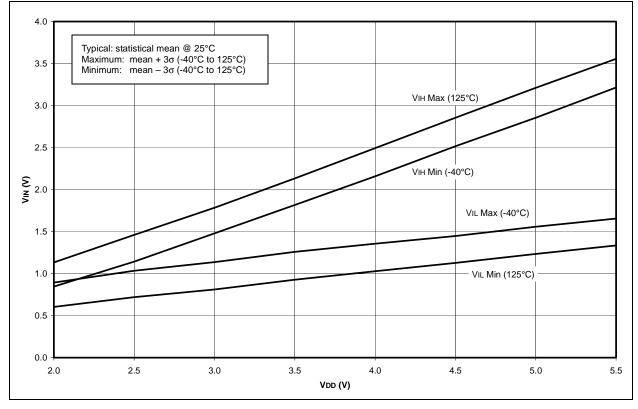

FIGURE 16-12: TYPICAL AND MAXIMUM AlwDT vs. VDD OVER TEMPERATURE

FIGURE 16-19: MINIMUM AND MAXIMUM VIN vs. VDD, (TTL INPUT, -40°C TO 125°C)

USART Synchronous Transmission	
(Through TXEN)	
Wake-up from SLEEP via Interrupt1	
Watchdog Timer1	
Timing Parameter Symbology1	25
Timing Requirements	
Capture/Compare/PWM (CCP1 and CCP2)1	
CLKOUT and I/O1	
External Clock1	-
I ² C Bus Data1	36
I2C Bus START/STOP Bits1	35
Parallel Slave Port1	31
RESET, Watchdog Timer, Oscillator	
Start-up Timer, Power-up Timer	
and Brown-out Reset1	28
SPI Mode1	34
Timer0 and Timer1 External Clock1	29
USART Synchronous Receive1	
USART Synchronous Transmission1	
TMR1CS bit	
TMR10N bit	47
TMR2ON bit	
TOUTPS<3:0> bits	-
TRISA Register	-
TRISB Register	
TRISC Register	
TRISD Register	
TRISE Register	
IBF Bit	
IBOV Bit	
PSPMODE bit	
TXSTA Register	01
SYNC bit	69
TRMT bit	
TX9 bit	
TX9 bit	
TXEN bit	
	09
U	

UA6	60
Universal Synchronous Asynchronous	
Receiver Transmitter. See USART	
Update Address bit, UA6	60
USART6	39
Asynchronous Mode7	'3
Asynchronous Receiver7	'5
Asynchronous Reception7	'6
Associated Registers7	<i>'</i> 6
Asynchronous Transmission	
Associated Registers7	' 4
Asynchronous Transmitter7	'3

Baud Rate Generator (BRG)71
Baud Rate Formula
Baud Rates, Asynchronous Mode
(BRGH = 0)
Baud Rates, Asynchronous Mode
(BRGH = 1)
Sampling71
Mode Select (SYNC Bit) 69
Overrun Error (OERR Bit)
RC6/TX/CK Pin9, 11
RC7/RX/DT Pin9, 11
Serial Port Enable (SPEN Bit)
Single Receive Enable (SREN Bit)70
Synchronous Master Mode77
Synchronous Master Reception
Associated Registers 80
Synchronous Master Transmission
Associated Registers
Synchronous Slave Mode 80
Synchronous Slave Reception
Associated Registers 81
Synchronous Slave Transmission
Associated Registers81
Transmit Data, 9th Bit (TX9D)69
Transmit Enable (TXEN bit)69
Transmit Enable, Nine-bit (TX9 bit)
Transmit Shift Register Status (TRMT bit) 69

W

Wake-up from SLEEP	
Interrupts	
MCLR Reset	
WDT Reset	
Wake-up Using Interrupts	102
Watchdog Timer (WDT)	
Associated Registers	101
Enable (WDTE Bit)	101
Postscaler. See Postscaler, WDT	
Programming Considerations	101
RC Oscillator	101
Time-out Period	101
WDT Reset, Normal Operation	93, 95, 96
WDT Reset, SLEEP	93, 95, 96
WCOL bit	
Write Collision Detect bit (WCOL)	61
WWW, On-Line Support	