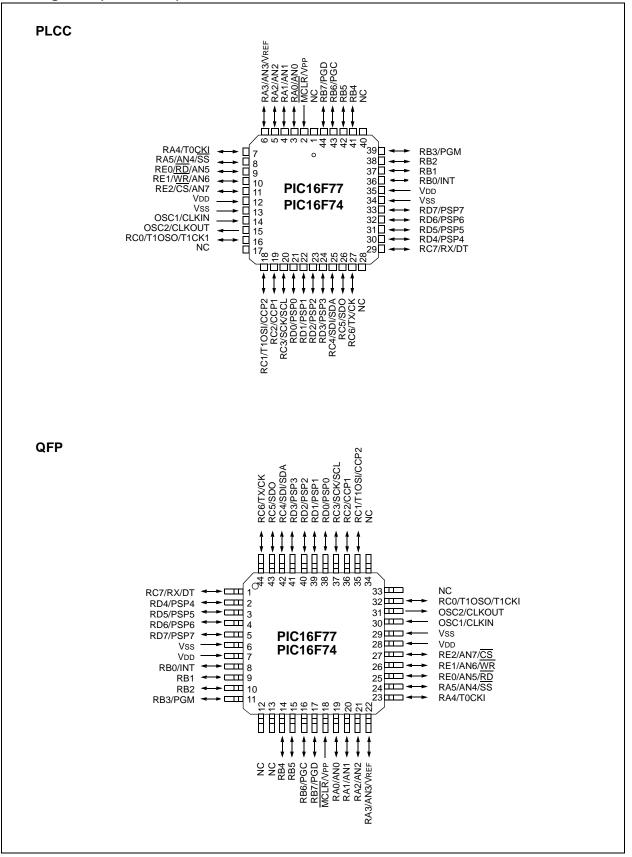


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f76-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

PIC16F73 AND PIC16F76 PINOUT DESCRIPTION **TABLE 1-2:**

Pin Name	DIP SSOP SOIC Pin#	MLF Pin#	I/O/P Type	Buffer Type	Description
OSC1/CLKI OSC1	9	6	Ι	ST/CMOS ⁽³⁾	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST buffer when configured in RC mode. Otherwise CMOS.
CLKI			I		External clock source input. Always associated with pin function OSC1 (see OSC1/CLKI, OSC2/CLKO pins).
OSC2/CLKO OSC2	10	7	0	_	Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.
CLKO			0		In RC mode, OSC2 pin outputs CLKO, which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.
MCLR/VPP MCLR	1	26	I	ST	Master Clear (input) or programming voltage (output). Master Clear (Reset) input. This pin is an active low RESET to the device.
Vpp			Р		Programming voltage input.
					PORTA is a bi-directional I/O port.
RA0/AN0	2	27		TTL	
RA0 AN0			I/O		Digital I/O. Analog input 0.
RA1/AN1	3	28	1	TTL	Analog input 0.
RA1/ANT RA1	3	20	I/O	116	Digital I/O.
AN1			"c		Analog input 1.
RA2/AN2	4	1		TTL	
RA2			I/O		Digital I/O.
AN2			I		Analog input 2.
RA3/AN3/VREF	5	2		TTL	
RA3			I/O		Digital I/O.
AN3			I		Analog input 3.
	0		I	07	A/D reference voltage input.
RA4/T0CKI RA4	6	4	I/O	ST	Digital I/O – Open drain when configured as output.
TOCKI			"U		Timer0 external clock input.
RA5/SS/AN4	7	5		TTL	
RA5		-	I/O		Digital I/O.
SS			Ι		SPI slave select input.
AN4			Ι		Analog input 4.
Legend: I = input	tucod	O = out	put	I/O = inpu	ut/output P = power

— = Not used TTL = TTL input ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

This buffer is a Schmitt Trigger input when used in Serial Programming mode.
 This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

TABLE 1-3:PIC16F74 AND PIC16F77 PINOUT DESCRIPTION

OSC1/CLKI OSC1 CLKI OSC2/CLKO OSC2 CLKO MCLR/VPP MCLR VPP	13	14 15	30 31	1	ST/CMOS ⁽⁴⁾	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST buffer when configured in RC mode. Otherwise CMOS. External clock source input. Always associated with pin
CLKI OSC2/CLKO OSC2 CLKO <u>MCLR/VPP</u> MCLR	14	15	31	I		Oscillator crystal input or external clock source input. ST buffer when configured in RC mode. Otherwise CMOS. External clock source input. Always associated with pin
OSC2/CLKO OSC2 CLKO MCLR/VPP MCLR	14	15	31			CMOS. External clock source input. Always associated with pin
OSC2/CLKO OSC2 CLKO MCLR/VPP MCLR	14	15	31			External clock source input. Always associated with pin
OSC2 CLKO MCLR/VPP MCLR	14	15	31			
OSC2 CLKO MCLR/VPP MCLR	14	15	31	0		function OSC1 (see OSC1/CLKI, OSC2/CLKO pins).
CLKO MCLR/VPP MCLR				<u> </u>	I —	Oscillator crystal or clock output.
MCLR/Vpp MCLR				0		Oscillator crystal output.
MCLR/Vpp MCLR						Connects to crystal or resonator in Crystal Oscillator
MCLR/Vpp MCLR						mode.
MCLR				0		In RC mode, OSC2 pin outputs CLKO, which has 1/4
MCLR						the frequency of OSC1 and denotes the instruction
MCLR						cycle rate.
	1	2	18		ST	Master Clear (input) or programming voltage (output).
Vpp				I		Master Clear (Reset) input. This pin is an active low
VPP						RESET to the device.
				Р		Programming voltage input.
						PORTA is a bi-directional I/O port.
RA0/AN0	2	3	19		TTL	
RA0				I/O		Digital I/O.
AN0				I		Analog input 0.
RA1/AN1	3	4	20		TTL	
RA1				I/O		Digital I/O.
AN1				I		Analog input 1.
RA2/AN2	4	5	21		TTL	
RA2				I/O		Digital I/O.
AN2				I		Analog input 2.
RA3/AN3/Vref	5	6	22		TTL	
RA3				I/O		Digital I/O.
AN3				I		Analog input 3.
VREF				I		A/D reference voltage input.
RA4/T0CKI	6	7	23		ST	
RA4				I/O		Digital I/O – Open drain when configured as output.
TOCKI				I		Timer0 external clock input.
RA5/SS/AN4	7	8	24		TTL	
RA5		-		I/O		Digital I/O.
SS	1			1		SPI slave select input.
AN4					1	
Legend: I = inpu		1				Analog input 4.

— = Not used TTL = TTL input ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel Slave Port mode (for interfacing to a microprocessor bus).

4: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

Pin Name	DIP Pin#	PLCC Pin#	QFP Pin#	I/O/P Type	Buffer Type	Description
						PORTB is a bi-directional I/O port. PORTB can be softwar
						programmed for internal weak pull-up on all inputs.
RB0/INT	33	36	8		TTL/ST ⁽¹⁾	
RB0				I/O		Digital I/O.
INT				I		External interrupt.
RB1	34	37	9	I/O	TTL	Digital I/O.
RB2	35	38	10	I/O	TTL	Digital I/O.
RB3/PGM	36	39	11		TTL	
RB3				I/O		Digital I/O.
PGM				I/O		Low voltage ICSP programming enable pin.
RB4	37	41	14	I/O	TTL	Digital I/O.
RB5	38	42	15	I/O	TTL	Digital I/O.
RB6/PGC	39	43	16		TTL/ST ⁽²⁾	
RB6				I/O		Digital I/O.
PGC				I/O		In-Circuit Debugger and ICSP programming clock.
RB7/PGD	40	44	17		TTL/ST ⁽²⁾	
RB7				I/O		Digital I/O.
PGD				I/O		In-Circuit Debugger and ICSP programming data.
						PORTC is a bi-directional I/O port.
RC0/T1OSO/T1CKI	15	16	32		ST	
RC0				I/O		Digital I/O.
T1OSO				0		Timer1 oscillator output.
T1CKI				I		Timer1 external clock input.
RC1/T1OSI/CCP2	16	18	35		ST	
RC1				I/O		Digital I/O.
T1OSI				1/0		Timer1 oscillator input.
CCP2	47	10	20	1/0	OT	Capture2 input, Compare2 output, PWM2 output.
RC2/CCP1 RC2	17	19	36	I/O	ST	Digital I/O.
CCP1				1/O 1/O		Capture1 input/Compare1 output/PWM1 output
RC3/SCK/SCL	18	20	37	1/0	ST	
RC3	10	20	57	I/O	31	Digital I/O
SCK				I/O		Synchronous serial clock input/output for SPI mode.
SCL				I/O		Synchronous serial clock input/output for I^2C mode.
RC4/SDI/SDA	23	25	42		ST	
RC4				I/O		Digital I/O.
SDI				I		SPI data in.
SDA				I/O		I ² C data I/O.
RC5/SDO	24	26	43		ST	
RC5				I/O		Digital I/O.
SDO				0		SPI data out.
RC6/TX/CK	25	27	44		ST	
RC6				I/O		Digital I/O.
ТХ				0		USART asynchronous transmit.
СК				I/O		USART 1 synchronous clock.
RC7/RX/DT	26	29	1		ST	
RC7				I/O		Digital I/O.
RX						USART asynchronous receive.
DT				I/O		USART synchronous data.

TABLE 1-3:	PIC16F74 AND PIC16F77	PINOUT DESCRIPTION ((CONTINUED)

Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel Slave Port mode (for interfacing to a microprocessor bus).

4: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Details on page
Bank 1											
80h ⁽⁴⁾	INDF	Addressin	g this locatio	n uses conte	ents of FSR to	address dat	a memory (r	not a physica	al register)	0000 0000	27, 96
81h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	20, 44, 96
82h ⁽⁴⁾	PCL	Program C	Counter's (PC	C) Least Sigr	ificant Byte					0000 0000	26, 96
83h ⁽⁴⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	19, 96
84h ⁽⁴⁾	FSR	Indirect da	ata memory a	ddress point	ier					xxxx xxxx	27, 96
85h	TRISA		_	PORTA Dat	a Direction Re	egister				11 1111	32, 96
86h	TRISB	PORTB D	ata Direction	Register		•				1111 1111	34, 96
87h	TRISC	PORTC D	ata Direction	Register						1111 1111	35, 96
88h ⁽⁵⁾	TRISD	PORTD D	ata Direction	Register						1111 1111	36, 96
89h ⁽⁵⁾	TRISE	IBF	OBF	IBOV	PSPMODE		PORTE Da	ata Direction	Bits	0000 -111	38, 96
8Ah ^(1,4)	PCLATH	_	_	_	Write Buffer f	or the upper	r 5 bits of the	Program C	ounter	0 0000	21,96
8Bh ⁽⁴⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	23, 96
8Ch	PIE1	PSPIE ⁽³⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	22,96
8Dh	PIE2	_	_	_	_	_		_	CCP2IE	0	24, 97
8Eh	PCON	_	_	_	_		_	POR	BOR	dd	25, 97
8Fh	—	Unimplem	Unimplemented							_	_
90h	—	Unimplem	Unimplemented							_	_
91h	—	Unimplem	Unimplemented —							—	
92h	PR2	Timer2 Pe	Timer2 Period Register 1111 11							1111 1111	52, 97
93h	SSPADD	Synchrono	ous Serial Po	ort (I ² C mode) Address Reg	gister				0000 0000	68, 97
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	60, 97
95h	—	Unimplemented —							—	—	
96h	—	Unimplemented							—	—	
97h	—	Unimplem	ented				_			—	—
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	69, 97
99h	SPBRG	Baud Rate Generator Register							0000 0000	71, 97	
9Ah	—	Unimplem	ented							—	
9Bh	—	Unimplem	ented							-	
9Ch	—	Unimplem	ented							_	
9Dh	—	Unimplem	ented							_	
9Eh	—	Unimplem	ented							-	
9Fh	ADCON1	_	_	_	_	_	PCFG2	PCFG1	PCFG0	000	84, 97

TABLE 2-1: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)
--

 $\label{eq:legend: Legend: Legend: u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved.$ Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter during branches (CALL or GOTO).

2: Other (non power-up) RESETS include external RESET through MCLR and Watchdog Timer Reset. 3: Bits PSPIE and PSPIF are reserved on the 28-pin devices; always maintain these bits clear.

4: These registers can be addressed from any bank.

5: PORTD, PORTE, TRISD, and TRISE are not physically implemented on the 28-pin devices, read as '0'.

6: This bit always reads as a '1'.

x = Bit is unknown

PCON Register 2.2.2.8

The Power Control (PCON) register contains flag bits to allow differentiation between a Power-on Reset (POR), a Brown-out Reset (BOR), a Watchdog Reset (WDT) and an external MCLR Reset.

BOR is unknown on POR. It must be set by Note: the user and checked on subsequent RESETS to see if BOR is clear, indicating a brown-out has occurred. The BOR status bit is not predictable if the brown-out circuit is disabled (by clearing the BODEN bit in the configuration word).

REGISTER 2-8: PCON REGISTER (ADDRESS 8Eh)

- n = Value at POR reset

	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-1	
	_	_	_		—		POR	BOR	
	bit 7							bit 0	
bit 7-2	Unimplemented: Read as '0'								
bit 1	POR: Pow	er-on Reset	Status bit						
	1 = No Power-on Reset occurred								
	0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)							ccurs)	
bit 0	BOR: Brown-out Reset Status bit								
	1 = No Brown-out Reset occurred								
	0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)								
	Legend:								
	R = Reada	ble bit	W = W	ritable bit	U = Unim	plemented l	bit, read as	'0'	

'0' = Bit is cleared

'1' = Bit is set

5.0 TIMER0 MODULE

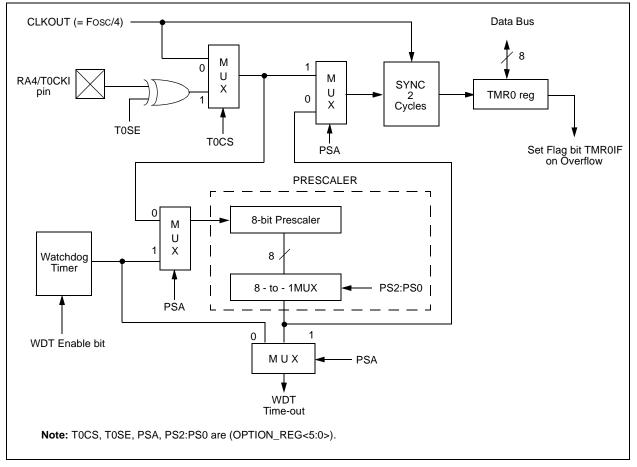
The Timer0 module timer/counter has the following features:

- 8-bit timer/counter
- Readable and writable
- 8-bit software programmable prescaler
- · Internal or external clock select
- Interrupt on overflow from FFh to 00h
- Edge select for external clock

Additional information on the Timer0 module is available in the PICmicro[™] Mid-Range MCU Family Reference Manual (DS33023).

Figure 5-1 is a block diagram of the Timer0 module and the prescaler shared with the WDT.

Timer0 operation is controlled through the OPTION_REG register (Register 5-1 on the following page). Timer mode is selected by clearing bit TOCS (OPTION_REG<5>). In Timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0 register is written, the increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0 register.


Counter mode is selected by setting bit T0CS (OPTION_REG<5>). In Counter mode, Timer0 will increment, either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit T0SE (OPTION_REG<4>). Clearing bit T0SE selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 5.2.

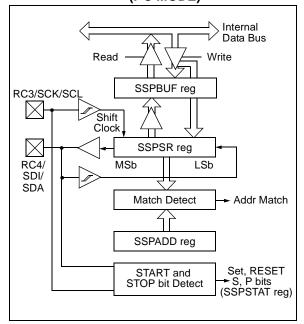
The prescaler is mutually exclusively shared between the Timer0 module and the Watchdog Timer. The prescaler is not readable or writable. Section 5.3 details the operation of the prescaler.

5.1 Timer0 Interrupt

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h. This overflow sets bit TMR0IF (INTCON<2>). The interrupt can be masked by clearing bit TMR0IE (INTCON<5>). Bit TMR0IF must be cleared in software by the Timer0 module Interrupt Service Routine, before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from SLEEP, since the timer is shut-off during SLEEP.

EGISTER 9-1: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS 94h)												
R/W-0 R/W-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R	-0 R-0											
SMP CKE D/A P S R/W U	A BF											
bit 7	bit C											
bit 7 SMP: SPI Data Input Sample Phase bit												
SPI Master mode:												
1 = Input data sampled at end of data output time												
	0 = Input data sampled at middle of data output time (Microwire [®])											
<u>SPI Slave mode:</u> SMP must be cleared when SPI is used in Slave mode												
I ² C mode:												
This bit must be maintained clear												
bit 6 CKE : SPI Clock Edge Select bit (Figure 9-2, Figure 9-3, and Figure 9-4)												
<u>SPI mode, CKP = 0:</u>												
 1 = Data transmitted on rising edge of SCK (Microwire[®] alternate) 0 = Data transmitted on falling edge of SCK 												
SPI mode, $CKP = 1$:												
1 = Data transmitted on falling edge of SCK (Microwire [®] default)												
0 = Data transmitted on rising edge of SCK												
I ² C mode: This bit must be maintained clear												
bit 5 D/A : Data/Address bit (I ² C mode only)												
1 = Indicates that the last byte received or transmitted was data												
0 = Indicates that the last byte received or transmitted was address												
bit 4 P : STOP bit (I ² C mode only)												
	This bit is cleared when the SSP module is disabled, or when the START bit is detected last. SSPEN is cleared.											
	1 = Indicates that a STOP bit has been detected last (this bit is '0' on RESET)											
0 = STOP bit was not detected last												
	S: START bit (I ² C mode only)											
This bit is cleared when the SSP module is disabled, or when the STOP bit is detected I SSPEN is cleared.												
1 = Indicates that a START bit has been detected last (this bit is '0' on RESET)											
0 = START bit was not detected last												
bit 2 R/W : Read/Write bit Information (I ² C mode only)												
	This bit holds the R/W bit information following the last address match. This bit is only valid from the address match to the next START bit, STOP bit, or ACK bit.											
1 = Read												
0 = Write												
bit 1 UA : Update Address bit (10-bit I ² C mode only)												
1 = Indicates that the user needs to update the address in the SSPADD regist	er											
 0 = Address does not need to be updated bit 0 BF: Buffer Full Status bit 												
Receive (SPI and I ² C modes):												
	1 = Receive complete, SSPBUF is full											
0 = Receive not complete, SSPBUF is empty												
Transmit (I ² C mode only):												
1 = Transmit in progress, SSPBUF is full												
0 = Transmit complete, SSPBUF is empty												
Legend:												
R = Readable bit W = Writable bit U = Unimplemented bit, rea	id as '0'											
- n = Value at POR reset $'1'$ = Bit is set $'0'$ = Bit is cleared x = B	Bit is unknown											

_


9.3 SSP I²C Operation

The SSP module in l^2C mode, fully implements all slave functions, except general call support, and provides interrupts on START and STOP bits in hardware to facilitate firmware implementations of the master functions. The SSP module implements the standard mode specifications as well as 7-bit and 10-bit addressing.

Two pins are used for data transfer. These are the RC3/ SCK/SCL pin, which is the clock (SCL), and the RC4/ SDI/SDA pin, which is the data (SDA). The user must configure these pins as inputs or outputs through the TRISC<4:3> bits.

The SSP module functions are enabled by setting SSP enable bit SSPEN (SSPCON<5>).

FIGURE 9-5: SSP BLOCK DIAGRAM (I²C MODE)

The SSP module has five registers for $\mathsf{I}^2\mathsf{C}$ operation. These are the:

- SSP Control Register (SSPCON)
- SSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer (SSPBUF)
- SSP Shift Register (SSPSR) Not directly accessible
- SSP Address Register (SSPADD)

The SSPCON register allows control of the I^2C operation. Four mode selection bits (SSPCON<3:0>) allow one of the following I^2C modes to be selected:

- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- I²C Slave mode (7-bit address), with START and STOP bit interrupts enabled to support Firmware Master mode
- I²C Slave mode (10-bit address), with START and STOP bit interrupts enabled to support Firmware Master mode
- I²C START and STOP bit interrupts enabled to support Firmware Master mode, Slave is IDLE

Selection of any I^2C mode with the SSPEN bit set, forces the SCL and SDA pins to be open drain, provided these pins are programmed to inputs by setting the appropriate TRISC bits. Pull-up resistors must be provided externally to the SCL and SDA pins for proper operation of the I^2C module.

Additional information on SSP I²C operation can be found in the PICmicro[™] Mid-Range MCU Family Reference Manual (DS33023A).

9.3.1 SLAVE MODE

In Slave mode, the SCL and SDA pins must be configured as inputs (TRISC<4:3> set). The SSP module will override the input state with the output data when required (slave-transmitter).

When an address is matched, or the data transfer after an address match is received, the hardware automatically will generate the Acknowledge (\overline{ACK}) pulse, and then load the SSPBUF register with the received value currently in the SSPSR register.

There are certain conditions that will cause the SSP module not to give this ACK pulse. They include (either or both):

- a) The buffer full bit BF (SSPSTAT<0>) was set before the transfer was received.
- b) The overflow bit SSPOV (SSPCON<6>) was set before the transfer was received.

In this case, the SSPSR register value is not loaded into the SSPBUF, but bit SSPIF (PIR1<3>) is set. Table 9-2 shows what happens when a data transfer byte is received, given the status of bits BF and SSPOV. The shaded cells show the condition where user software did not properly clear the overflow condition. Flag bit BF is cleared by reading the SSPBUF register, while bit SSPOV is cleared through software.

The SCL clock input must have a minimum high and low for proper operation. The high and low times of the I^2C specification, as well as the requirements of the SSP module, are shown in timing parameter #100 and parameter #101.

9.3.2 MASTER MODE

Master mode of operation is supported in firmware using interrupt generation on the detection of the START and STOP conditions. The STOP (P) and START (S) bits are cleared from a RESET or when the SSP module is disabled. The STOP (P) and START (S) bits will toggle based on the START and STOP conditions. Control of the I²C bus may be taken when the P bit is set, or the bus is IDLE and both the S and P bits are clear.

In Master mode, the SCL and SDA lines are manipulated by clearing the corresponding TRISC<4:3> bit(s). The output level is always low, irrespective of the value(s) in PORTC<4:3>. So when transmitting data, a '1' data bit must have the TRISC<4> bit set (input) and a '0' data bit must have the TRISC<4> bit cleared (output). The same scenario is true for the SCL line with the TRISC<3> bit. Pull-up resistors must be provided externally to the SCL and SDA pins for proper operation of the I²C module.

The following events will cause SSP Interrupt Flag bit, SSPIF, to be set (SSP Interrupt will occur if enabled):

- START condition
- STOP condition
- Data transfer byte transmitted/received

Master mode of operation can be done with either the Slave mode IDLE (SSPM3:SSPM0 = 1011), or with the Slave active. When both Master and Slave modes are enabled, the software needs to differentiate the source(s) of the interrupt.

9.3.3 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the START and STOP conditions, allows the determination of when the bus is free. The STOP (P) and START (S) bits are cleared from a RESET or when the SSP module is disabled. The STOP (P) and START (S) bits will toggle based on the START and STOP conditions. Control of the I^2C bus may be taken when bit P (SSPSTAT<4>) is set, or the bus is IDLE and both the S and P bits clear. When the bus is busy, enabling the SSP Interrupt will generate the interrupt when the STOP condition occurs.

In Multi-Master operation, the SDA line must be monitored to see if the signal level is the expected output level. This check only needs to be done when a high level is output. If a high level is expected and a low level is present, the device needs to release the SDA and SCL lines (set TRISC<4:3>). There are two stages where this arbitration can be lost, these are:

- Address Transfer
- Data Transfer

When the slave logic is enabled, the slave continues to receive. If arbitration was lost during the address transfer stage, communication to the device may be in progress. If addressed, an ACK pulse will be generated. If arbitration was lost during the data transfer stage, the device will need to retransfer the data at a later time.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
13h	SSPBUF	Synchrono	Synchronous Serial Port Receive Buffer/Transmit Register							xxxx xxxx	uuuu uuuu
93h	SSPADD	Synchrono	Synchronous Serial Port (I ² C mode) Address Register							0000 0000	0000 0000
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
94h	SSPSTAT	SMP ⁽²⁾	CKE ⁽²⁾	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
87h	TRISC	PORTC Da	PORTC Data Direction Register							1111 1111	1111 1111

 TABLE 9-3:
 REGISTERS ASSOCIATED WITH I²C OPERATION

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by SSP module in I²C mode. **Note 1:** PSPIF and PSPIE are reserved on the PIC16F73/76; always maintain these bits clear.

2: Maintain these bits clear in I²C mode.

12.0 SPECIAL FEATURES OF THE CPU

These devices have a host of features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- Oscillator Selection
- RESET
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP
- Code Protection
- ID Locations
- In-Circuit Serial Programming

These devices have a Watchdog Timer, which can be enabled or disabled, using a configuration bit. It runs off its own RC oscillator for added reliability.

There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only. It is designed to keep the part in RESET while the power supply stabilizes, and is enabled or disabled, using a configuration bit. With these two timers on-chip, most applications need no external RESET circuitry. SLEEP mode is designed to offer a very low current power-down mode. The user can wake-up from SLEEP through external RESET, Watchdog Timer Wake-up, or through an interrupt.

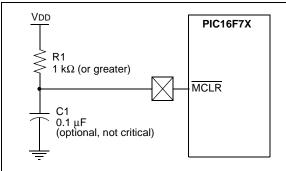
Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. Configuration bits are used to select the desired oscillator mode.

Additional information on special features is available in the PICmicro[™] Mid-Range Reference Manual (DS33023).

12.1 Configuration Bits

The configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space, which can be accessed only during programming.


12.4 MCLR

PIC16F7X devices have a noise filter in the $\overline{\text{MCLR}}$ Reset path. The filter will detect and ignore small pulses.

It should be noted that a WDT Reset does not drive MCLR pin low.

The behavior of the ESD protection on the $\overline{\text{MCLR}}$ pin has been altered from previous devices of this family. Voltages applied to the pin that exceed its specification can result in both $\overline{\text{MCLR}}$ Resets and excessive current beyond the device specification during the ESD event. For this reason, Microchip recommends that the $\overline{\text{MCLR}}$ pin no longer be tied directly to VDD. The use of an RC network, as shown in Figure 12-5, is suggested.

12.5 Power-on Reset (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.2V - 1.7V). To take advantage of the POR, tie the MCLR pin to VDD as described in Section 12.4. A maximum rise time for VDD is specified. See the Electrical Specifications for details.

When the device starts normal operation (exits the RESET condition), device operating parameters (voltage, frequency, temperature,...) must be met to ensure operation. If these conditions are not met, the device must be held in RESET until the operating conditions are met. For additional information, refer to Application Note, AN607, "Power-up Trouble Shooting" (DS00607).

12.6 Power-up Timer (PWRT)

The Power-up Timer provides a fixed 72 ms nominal time-out on power-up only from the POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in RESET as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an accept-able level. A configuration bit is provided to enable/ disable the PWRT.

The power-up time delay will vary from chip to chip, due to VDD, temperature and process variation. See DC parameters for details (TPWRT, parameter #33).

12.7 Oscillator Start-up Timer (OST)

The Oscillator Start-up Timer (OST) provides 1024 oscillator cycles (from OSC1 input) delay after the PWRT delay is over (if enabled). This helps to ensure that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset, or wake-up from SLEEP.

12.8 Brown-out Reset (BOR)

The configuration bit, BODEN, can enable or disable the Brown-out Reset circuit. If VDD falls below VBOR (parameter D005, about 4V) for longer than TBOR (parameter #35, about 100 μ S), the brown-out situation will reset the device. If VDD falls below VBOR for less than TBOR, a RESET may not occur.

Once the brown-out occurs, the device will remain in Brown-out Reset until VDD rises above VBOR. The Power-up Timer then keeps the device in RESET for TPWRT (parameter #33, about 72 mS). If VDD should fall below VBOR during TPWRT, the Brown-out Reset process will restart when VDD rises above VBOR, with the Power-up Timer Reset. The Power-up Timer is always enabled when the Brown-out Reset circuit is enabled, regardless of the state of the PWRT configuration bit.

12.9 Time-out Sequence

On power-up, the time-out sequence is as follows: the PWRT delay starts (if enabled) when a POR Reset occurs. Then, OST starts counting 1024 oscillator cycles when PWRT ends (LP, XT, HS). When the OST ends, the device comes out of RESET.

If MCLR is kept low long enough, all delays will expire. Bringing MCLR high will begin execution immediately. This is useful for testing purposes or to synchronize more than one PIC16F7X device operating in parallel.

Table 12-5 shows the RESET conditions for the STATUS, PCON and PC registers, while Table 12-6 shows the RESET conditions for all the registers.

NOTES:

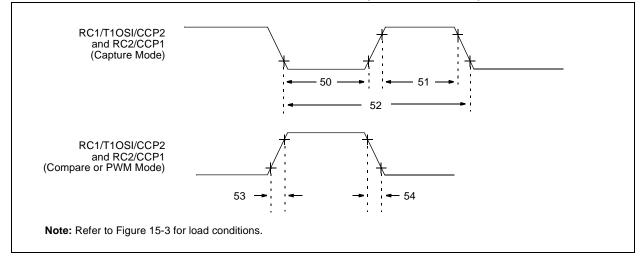
13.2 Instruction Descriptions

ADDLW	Add Literal and W
Syntax:	[label] ADDLW k
Operands:	$0 \le k \le 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Description:	The contents of the W register are added to the eight-bit literal 'k' and the result is placed in the W register.

ADDWF	Add W and f				
Syntax:	[label] ADDWF f,d				
Operands:	$0 \le f \le 127$ $d \in [0,1]$				
Operation:	(W) + (f) \rightarrow (destination)				
Status Affected:	C, DC, Z				
Description:	Add the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.				

BCF	Bit Clear f
Syntax:	[<i>label</i>] BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

BSF	Bit Set f
Syntax:	[<i>label</i>] BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.


ANDLW	AND Literal with W			
Syntax:	[<i>label</i>] ANDLW k			
Operands:	$0 \le k \le 255$			
Operation:	(W) .AND. (k) \rightarrow (W)			
Status Affected:	Z			
Description:	The contents of W register are AND'ed with the eight-bit literal 'k'. The result is placed in the V register.			

BTFSS	Bit Test f, Skip if Set
Syntax:	[label] BTFSS f,b
Operands:	$0 \le f \le 127$ $0 \le b < 7$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruc- tion is discarded and a NOP is executed instead, making this a 2TcY instruction.

ANDWF	AND W with f			
Syntax:	[label] ANDWF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1 \right] \end{array}$			
Operation:	(W) .AND. (f) \rightarrow (destination)			
Status Affected:	Z			
Description:	AND the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.			

BTFSC	Bit Test, Skip if Clear
Syntax:	[label] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2TCY instruction.

FIGURE 15-9: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)

TABLE 15-5: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)

Param No.	Symbol	Characteristic			Min	Тур†	Max	Units	Conditions
50*	TccL	CCP1 and CCP2	No Prescaler		0.5Tcy + 20			ns	
		input low time		Standard(F)	10	—		ns	
			With Prescaler	Extended(LF)	20	—		ns	
51*	ТссН	CCP1 and CCP2	No Prescaler		0.5Tcy + 20	—		ns	
		input high time	With Prescaler	Standard(F)	10	—		ns	
				Extended(LF)	20	—		ns	
52*	TccP	CCP1 and CCP2 input period		<u>3Tcy + 40</u> N	-	_	ns	N = prescale value (1,4 or 16)	
53*	TccR	CCP1 and CCP2 output rise time		Standard(F)	—	10	25	ns	
				Extended(LF)	—	25	50	ns	
54*	TccF	CCP1 and CCP2 output fall time		Standard(F)	—	10	25	ns	
				Extended(LF)	—	25	45	ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

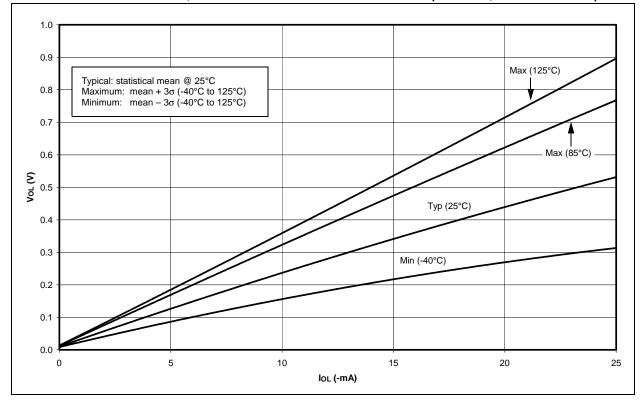
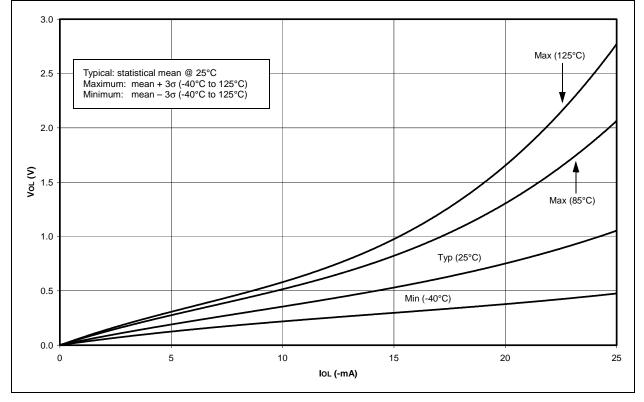
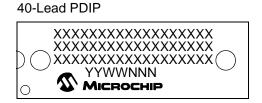
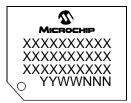
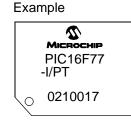




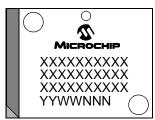
FIGURE 16-17: TYPICAL, MINIMUM AND MAXIMUM Vol vs. lol (VDD = 5V, -40°C TO 125°C)





Package Marking Information (Cont'd)

44-Lead TQFP

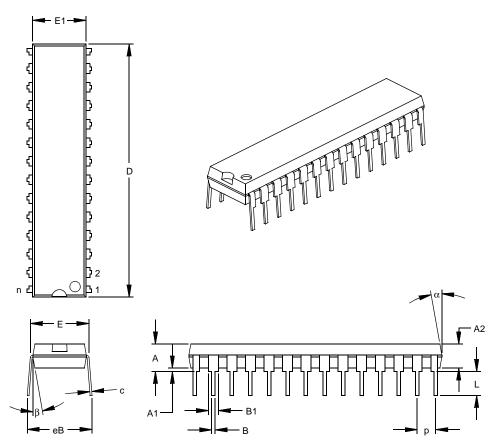

Example

Ο

PIC16F77-I/P

0210017

44-Lead PLCC


Example

17.2 **Package Details**

The following sections give the technical details of the packages.

28-Lead Skinny Plastic Dual In-line (SP) – 300 mil (PDIP)

	INCHES*			MILLIMETERS			
Dimensior	n Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.100			2.54	
Top to Seating Plane	А	.140	.150	.160	3.56	3.81	4.06
Molded Package Thickness	A2	.125	.130	.135	3.18	3.30	3.43
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	Е	.300	.310	.325	7.62	7.87	8.26
Molded Package Width	E1	.275	.285	.295	6.99	7.24	7.49
Overall Length	D	1.345	1.365	1.385	34.16	34.67	35.18
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.040	.053	.065	1.02	1.33	1.65
Lower Lead Width	В	.016	.019	.022	0.41	0.48	0.56
Overall Row Spacing §	eB	.320	.350	.430	8.13	8.89	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter

§ Significant Characteristic

Dimension D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed

.010" (0.254mm) per side. JEDEC Equivalent: MO-095

Drawing No. C04-070

Notes:

PIC16F7X

S

•	
S (START) bit	60
SCI. See USART	
SCL	65
Serial Communication Interface. See USART	
SLEEP	89, 93, 102
SMP bit	60
Software Simulator (MPLAB SIM)	
Special Features of the CPU	89
Special Function Registers	
Speed, Operating	1
SPI Mode	
Associated Registers	64
Serial Clock (SCK pin)	
Serial Data In (SDI pin)	
Serial Data Out (SDO pin)	
Slave Select	
SSP	
Overview	
RA5/SS/AN4 Pin	
RC3/SCK/SCL Pin	
RC4/SDI/SDA Pin	- ,
RC5/SDO Pin	
SSP I ² C Operation	
Slave Mode	
SSPEN bit	
SSPIF bit	-
SSPM<3:0> bits	
SSPOV bit	
Stack	
Overflows	
Underflow	
STATUS Register	
DC Bit	10
IRP Bit	
PD Bit	
TO Bit	
Z Bit	
Synchronous Serial Port Enable bit (SSPEN) .	
Synchronous Serial Port Interrupt bit (SSPER) .	
Synchronous Serial Port Mode Select bits	23
(SSPM<3:0>)	64
Synchronous Serial Port. See SSP	
т	
T1CKPS0 bit	17
T1CKPS1 bit	

T1CKPS0 bit	
T1CKPS1 bit	
T1OSCEN bit	
T1SYNC bit	
T2CKPS0 bit	
T2CKPS1 bit	
TAD	87
Time-out Sequence	
Timer0	
Associated Registers	
Clock Source Edge Select (T0SE bit)	
Clock Source Select (T0CS bit)	
External Clock	
Interrupt	
Overflow Enable (TMR0IE bit)	
Overflow Flag (TMR0IF bit)	100
Overflow Interrupt	100
Prescaler	45
RA4/T0CKI Pin, External Clock	
TOCKI	

Timer1	47
Associated Registers	
Asynchronous Counter Mode	
Capacitor Selection	
Counter Operation	
Operation in Timer Mode	
Oscillator	50
Prescaler	
RC0/T1OSO/T1CKI Pin	9, 11
RC1/T1OSI/CCP2 Pin	9, 11
Resetting of Timer1 Registers	
Resetting Timer1 using a CCP Trigger Output	
Synchronized Counter Mode	
TMR1H Register	
TMR1L Register	49
Timer2	51
Associated Registers	52
Output	
Postscaler	51
Prescaler	
Prescaler and Postscaler	51
Timing Diagrams	
A/D Conversion	139
Brown-out Reset	
Capture/Compare/PWM (CCP1 and CCP2)	
CLKOUT and I/O	
External Clock	
I ² C Bus Data	135
I ² C Bus START/STOP bits	134
I ² C Reception (7-bit Address)	67
I ² C Transmission (7-bit Address)	67
Parallel Slave Port	131
Parallel Slave Port Read Waveforms	41
Parallel Slave Port Write Waveforms	41
Power-up Timer	
PWM Output	
RESET	
Slow Rise Time (MCLR Tied to VDD Through	
RC Network)	98
SPI Master Mode (CKE = 0, SMP = 0)	132
SPI Master Mode (CKE = 1, SMP = 1)	132
SPI Mode (Master Mode)	
SPI Mode (Slave Mode with CKE = 0)	63
SPI Mode (Slave Mode with CKE = 1)	
SPI Slave Mode (CKE = 0)	133
SPI Slave Mode (CKE = 1)	133
Start-up Timer	
Time-out Sequence on Power-up (MCLR Not	
Tied to VDD)	
Case 1	98
Case 2	98
Time-out Sequence on Power-up (MCLR Tied	
Through RC Network)	97
Timer0	129
Timer1	129
USART Asynchronous Master Transmission	74
USART Asynchronous Master Transmission	
(Back to Back)	74
USART Asynchronous Reception	
USART Synchronous Receive (Master/Slave)	
USART Synchronous Reception	
(Master Mode, SREN)	79
USART Synchronous Transmission	
USART Synchronous Transmission	
(Master/Slave)	137

PIC16F7X PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	X /XX XXX Temperature Package Pattern	Examples: a) PIC16F77-I/P 301 = Industrial temp., PDIP
Device	Range PIC16F7X ⁽¹⁾ , PIC16F7XT ⁽¹⁾ ; VDD range 4.0V to 5.5V PIC16LF7X ⁽¹⁾ , PIC16LF7XT ⁽¹⁾ ; VDD range 2.0V to 5.5V	 package, normal VDD limits, QTP pattern #301. b) PIC16LF76-I/SO = Industrial temp., SOIC package, Extended VDD limits. c) PIC16F74-E/P = Extended temp., PDIP package, normal VDD limits.
Temperature Range	I = -40° C to $+85^{\circ}$ C (Industrial) E = -40° C to $+125^{\circ}$ C (Extended)	Note 1: F = CMOS FLASH LF = Low Power CMOS FLASH
Package	$\begin{array}{llllllllllllllllllllllllllllllllllll$	2: T = in tape and reel - SOIC, PLCC, SSOP, TQFP packages only.
Pattern	QTP, SQTP, Code or Special Requirements (blank otherwise)	

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
- 3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.