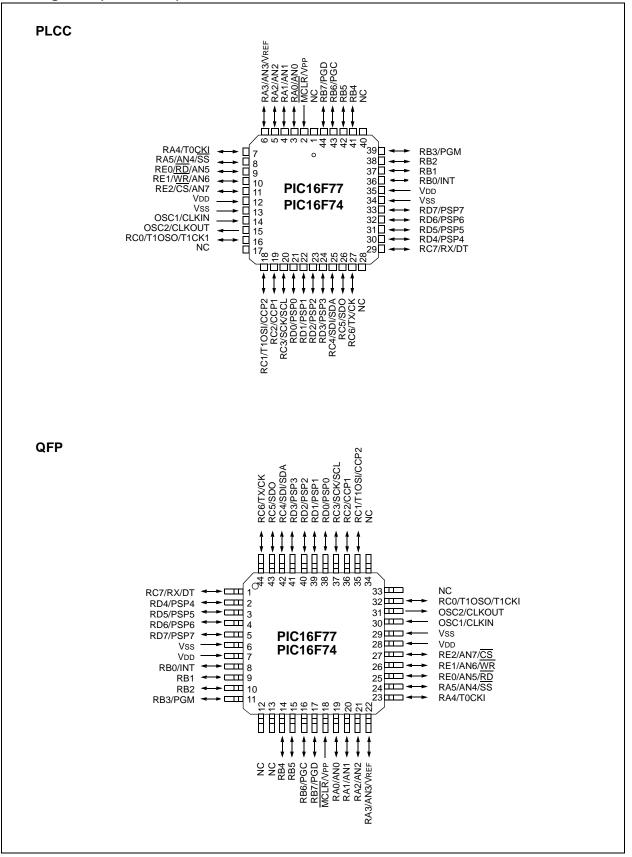


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	368 × 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f76-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

TABLE 1-3:PIC16F74 AND PIC16F77 PINOUT DESCRIPTION

OSC1/CLKI OSC1 CLKI OSC2/CLKO OSC2 CLKO MCLR/VPP MCLR VPP	13	14 15	30 31	1	ST/CMOS ⁽⁴⁾	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST buffer when configured in RC mode. Otherwise CMOS. External clock source input. Always associated with pin
CLKI OSC2/CLKO OSC2 CLKO <u>MCLR/VPP</u> MCLR	14	15	31	I		Oscillator crystal input or external clock source input. ST buffer when configured in RC mode. Otherwise CMOS. External clock source input. Always associated with pin
OSC2/CLKO OSC2 CLKO MCLR/VPP MCLR	14	15	31			CMOS. External clock source input. Always associated with pin
OSC2/CLKO OSC2 CLKO MCLR/VPP MCLR	14	15	31			External clock source input. Always associated with pin
OSC2 CLKO MCLR/VPP MCLR	14	15	31			
OSC2 CLKO MCLR/VPP MCLR	14	15	31	0		function OSC1 (see OSC1/CLKI, OSC2/CLKO pins).
CLKO MCLR/VPP MCLR				<u> </u>	I —	Oscillator crystal or clock output.
MCLR/Vpp MCLR				0		Oscillator crystal output.
MCLR/Vpp MCLR						Connects to crystal or resonator in Crystal Oscillator
MCLR/Vpp MCLR						mode.
MCLR				0		In RC mode, OSC2 pin outputs CLKO, which has 1/4
MCLR						the frequency of OSC1 and denotes the instruction
MCLR						cycle rate.
	1	2	18		ST	Master Clear (input) or programming voltage (output).
Vpp				I		Master Clear (Reset) input. This pin is an active low
VPP						RESET to the device.
				Р		Programming voltage input.
						PORTA is a bi-directional I/O port.
RA0/AN0	2	3	19		TTL	
RA0				I/O		Digital I/O.
AN0				I		Analog input 0.
RA1/AN1	3	4	20		TTL	
RA1				I/O		Digital I/O.
AN1				I		Analog input 1.
RA2/AN2	4	5	21		TTL	
RA2				I/O		Digital I/O.
AN2				I		Analog input 2.
RA3/AN3/Vref	5	6	22		TTL	
RA3				I/O		Digital I/O.
AN3				I		Analog input 3.
VREF				I		A/D reference voltage input.
RA4/T0CKI	6	7	23		ST	
RA4				I/O		Digital I/O – Open drain when configured as output.
TOCKI				I		Timer0 external clock input.
RA5/SS/AN4	7	8	24		TTL	
RA5		-		I/O		Digital I/O.
SS	1			1		SPI slave select input.
AN4					1	
Legend: I = inpu		1				Analog input 4.

— = Not used TTL = TTL input ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel Slave Port mode (for interfacing to a microprocessor bus).

4: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

2.0 MEMORY ORGANIZATION

There are two memory blocks in each of these PICmicro[®] MCUs. The Program Memory and Data Memory have separate buses so that concurrent access can occur and is detailed in this section. The Program Memory can be read internally by user code (see Section 3.0).

Additional information on device memory may be found in the PICmicro[™] Mid-Range Reference Manual (DS33023).

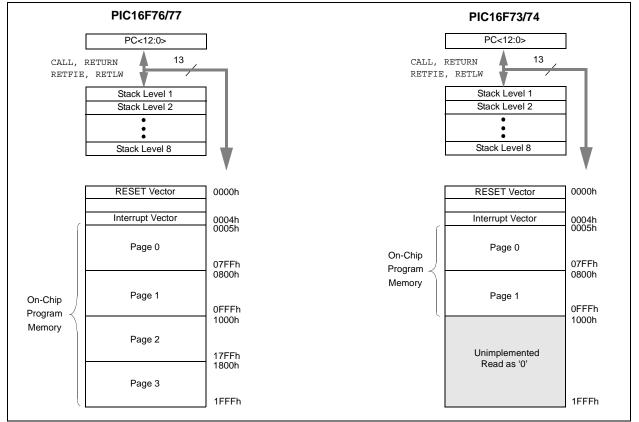
2.1 Program Memory Organization

The PIC16F7X devices have a 13-bit program counter capable of addressing an 8K word x 14-bit program memory space. The PIC16F77/76 devices have 8K words of FLASH program memory and the PIC16F73/74 devices have 4K words. The program memory maps for PIC16F7X devices are shown in Figure 2-1. Accessing a location above the physically implemented address will cause a wraparound.

The RESET Vector is at 0000h and the Interrupt Vector is at 0004h.

2.2 Data Memory Organization

The Data Memory is partitioned into multiple banks, which contain the General Purpose Registers and the Special Function Registers. Bits RP1 (STATUS<6>) and RP0 (STATUS<5>) are the bank select bits:


RP1:RP0	Bank
00	0
01	1
10	2
11	3

Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers, implemented as static RAM. All implemented banks contain Special Function Registers. Some frequently used Special Function Registers from one bank may be mirrored in another bank for code reduction and quicker access.

2.2.1 GENERAL PURPOSE REGISTER FILE

The register file (shown in Figure 2-2 and Figure 2-3) can be accessed either directly, or indirectly, through the File Select Register FSR.

FIGURE 2-1: PROGRAM MEMORY MAPS AND STACKS FOR PIC16F7X DEVICES

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Details on page
Bank 1											
80h ⁽⁴⁾	INDF	Addressin	g this locatio	n uses conte	ents of FSR to	address dat	a memory (r	not a physica	al register)	0000 0000	27, 96
81h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	20, 44, 96
82h ⁽⁴⁾	PCL	Program C	Counter's (PC	C) Least Sigr	ificant Byte					0000 0000	26, 96
83h ⁽⁴⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	19, 96
84h ⁽⁴⁾	FSR	Indirect da	ata memory a	ddress point	ier					xxxx xxxx	27, 96
85h	TRISA		_	PORTA Dat	a Direction Re	egister				11 1111	32, 96
86h	TRISB	PORTB D	ata Direction	Register		•				1111 1111	34, 96
87h	TRISC	PORTC D	ata Direction	Register						1111 1111	35, 96
88h ⁽⁵⁾	TRISD	PORTD D	ata Direction	Register						1111 1111	36, 96
89h ⁽⁵⁾	TRISE	IBF	OBF	IBOV	PSPMODE		PORTE Da	ata Direction	Bits	0000 -111	38, 96
8Ah ^(1,4)	PCLATH	_	_	_	Write Buffer f	or the upper	r 5 bits of the	Program C	0 0000	21,96	
8Bh ⁽⁴⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	23, 96
8Ch	PIE1	PSPIE ⁽³⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	22,96
8Dh	PIE2	_	_	_	_	_		_	CCP2IE	0	24, 97
8Eh	PCON	_	_	_	_		_	POR	BOR	dd	25, 97
8Fh	—	Unimplem	ented							_	_
90h	—	Unimplem	ented							_	_
91h	—	Unimplem	ented							—	—
92h	PR2	Timer2 Pe	riod Registe	r						1111 1111	52, 97
93h	SSPADD	Synchrono	ous Serial Po	ort (I ² C mode) Address Reg	gister				0000 0000	68, 97
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	60, 97
95h	—	Unimplem	ented							—	—
96h	—	Unimplem	ented							—	—
97h	—	Unimplem	ented				_		-	—	—
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	69, 97
99h	SPBRG	Baud Rate	e Generator I	Register						0000 0000	71, 97
9Ah	—	Unimplem	ented							—	
9Bh	—	Unimplem	ented							-	
9Ch	—	Unimplem	ented							_	
9Dh	—	Unimplem	ented							_	
9Eh	—	Unimplem	ented							-	
9Fh	ADCON1	_	_	_	_	_	PCFG2	PCFG1	PCFG0	000	84, 97

TABLE 2-1: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)
--

 $\label{eq:legend: Legend: Legend: u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved.$ Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter during branches (CALL or GOTO).

2: Other (non power-up) RESETS include external RESET through MCLR and Watchdog Timer Reset. 3: Bits PSPIE and PSPIF are reserved on the 28-pin devices; always maintain these bits clear.

4: These registers can be addressed from any bank.

5: PORTD, PORTE, TRISD, and TRISE are not physically implemented on the 28-pin devices, read as '0'.

6: This bit always reads as a '1'.

TABLE 2-1:	SPECIAL FUNCTION REGISTER SUMMARY	(CONTINUED)
-------------------	-----------------------------------	-------------

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Details on page
Bank 2											
100h ⁽⁴⁾	INDF	Addressin	g this locatio	n uses conte	ents of FSR to	address data	a memory (r	not a physica	al register)	0000 0000	27, 96
101h	TMR0	Timer0 Mo	dule Registe	er						xxxx xxxx	45, 96
102h ⁽⁴⁾	PCL	Program C	Counter (PC)	Least Signif	icant Byte					0000 0000	26, 96
103h ⁽⁴⁾	STATUS	IRP	RP1	RP0	ТО	PD	Z	DC	С	0001 1xxx	19, 96
104h ⁽⁴⁾	FSR	Indirect Da	ata Memory /	Address Poir	nter					xxxx xxxx	27, 96
105h	—	Unimplem	ented							_	—
106h	PORTB	PORTB D	ata Latch wh	en written: F	ORTB pins w	hen read				xxxx xxxx	34, 96
107h	_	Unimplem	ented							—	—
108h	—	Unimplem	ented							—	—
109h	—	Unimplem	ented							_	—
10Ah ^(1,4)	PCLATH	—	_	_	Write Buffer	for the upper	5 bits of the	Program C	ounter	0 0000	21, 96
10Bh ⁽⁴⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	23, 96
10Ch	PMDATA	Data Register Low Byte							XXXX XXXX	29, 97	
10Dh	PMADR	Address R	egister Low	Low Byte							29, 97
10Eh	PMDATH	—	_	Data Register High Byte							29, 97
10Fh	PMADRH	— — Address Register High Byte							XXXX XXXX	29, 97	
Bank 3											
180h ⁽⁴⁾	INDF	Addressin	g this locatio	n uses conte	ents of FSR to	address data	a memory (r	not a physica	al register)	0000 0000	27, 96
181h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	20, 44, 96
182h ⁽⁴⁾	PCL	Program C	Counter (PC)	Least Signif	icant Byte					0000 0000	26, 96
183h ⁽⁴⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	19, 96
184h ⁽⁴⁾	FSR	Indirect Da	ata Memory /	Address Poir	nter					xxxx xxxx	27, 96
185h	—	Unimplem	ented							_	_
186h	TRISB	PORTB D	ata Direction	Register						1111 1111	34, 96
187h	—	Unimplem	ented							_	_
188h	—	Unimplem	ented							_	_
189h	—	Unimplem	ented							_	_
18Ah ^(1,4)	PCLATH	_		_	Write Buffer	for the upper	5 bits of the	Program C	ounter	0 0000	21, 96
18Bh ⁽⁴⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	23, 96
18Ch	PMCON1	(6)	_	—	—	_	_	—	RD	10	29, 97
18Dh	—	Unimplem	ented							_	
18Eh	_	Reserved	maintain clea	ar						0000 0000	
18Fh	_	Reserved	maintain clea	ar						0000 0000	

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter during branches (CALL or GOTO).

2: Other (non power-up) RESETS include external RESET through MCLR and Watchdog Timer Reset.

3: Bits PSPIE and PSPIF are reserved on the 28-pin devices; always maintain these bits clear.

4: These registers can be addressed from any bank.

5: PORTD, PORTE, TRISD, and TRISE are not physically implemented on the 28-pin devices, read as '0'.

6: This bit always reads as a '1'.

2.2.2.1 STATUS Register

The STATUS register contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC, or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable, therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as $000u \ u1uu$ (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect the Z, C, or DC bits from the STATUS register. For other instructions not affecting any status bits, see the "Instruction Set Summary."

Note 1: The <u>C</u> and <u>DC</u> bits operate as a borrow and digit borrow bit, respectively, in subtraction. See the <u>SUBLW</u> and <u>SUBWF</u> instructions for examples.

REGISTER 2-1: STATUS REGISTER (ADDRESS 03h, 83h, 103h, 183h)

	R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x			
	IRP	RP1	RP0	TO	PD	Z	DC	С			
	bit 7							bit 0			
bit 7	1 = Bank 2	ter Bank Sele 2, 3 (100h - 1F	Fh)	or indirect ac	ldressing)						
		0 = Bank 0, 1 (00h - FFh)									
bit 6-5		Register Ban		(used for dire	ect addressi	ng)					
	10 = Bank 01 = Bank 00 = Bank	3 (180h - 1FF 2 (100h - 17F 1 (80h - FFh) 0 (00h - 7Fh) is 128 bytes	⁻ h)								
bit 4	TO: Time-c	out bit									
		ower-up, CLR time-out occ		on, or SLEEP	o instruction						
bit 3	PD: Power	-down bit									
		ower-up or by cution of the									
bit 2	z: Zero bit										
		sult of an arith sult of an arith									
bit 1	DC: Digit c	arry/borrow b	it (addwf, ae	DLW, SUBL	W, SUBWF	instructions	5)				
	•	r-out from the ry-out from th				d					
bit 0	C: Carry/b	orrow bit (ADI	WF, ADDLW	, SUBLW, S	SUBWF instr	uctions)					
		-out from the ry-out from th									
	Note:	For borrow, t complement loaded with e	of the secon	d operand. F	or rotate (R	RF, RLF)	instruction				
	Legend:										

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
 n = Value at POR reset 	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

2.2.2.3 INTCON Register

The INTCON register is a readable and writable register, which contains various enable and flag bits for the TMR0 register overflow, RB Port change and External RB0/INT pin interrupts.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-3: INTCON REGISTER (ADDRESS 0Bh, 8Bh, 10Bh, 18Bh)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF
	bit 7							bit 0
bit 7	GIE: Globa	al Interrupt E	nable bit					
	1 = Enable	•	ked interrupt	S				
bit 6			upt Enable b	oit				
			ked peripher eral interrup		i			
bit 5	TMR0IE: T	MR0 Overfl	ow Interrupt	Enable bit				
		es the TMR0 es the TMR0						
bit 4	INTE: RB0	/INT Externa	al Interrupt E	nable bit				
			NT external i NT external	•				
bit 3	RBIE: RB	Port Change	e Interrupt Er	nable bit				
			ort change in ort change in					
bit 2	TMR0IF: T	MR0 Overfle	ow Interrupt	Flag bit				
			overflowed not overflow	(must be cle	eared in soft	ware)		
bit 1	INTF: RB0	/INT Externa	al Interrupt F	lag bit				
			nal interrupt nal interrupt			red in softwa	are)	
bit 0	A mismatc	h condition v	e Interrupt Fla will continue g bit RBIF to	to set flag b		ding PORTE	3 will end the	e mismatch
			RB7:RB4 pi B4 pins hav			be cleared i	n software)	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

3.0 **READING PROGRAM MEMORY**

The FLASH Program Memory is readable during normal operation over the entire VDD range. It is indirectly addressed through Special Function Registers (SFR). Up to 14-bit numbers can be stored in memory for use as calibration parameters, serial numbers, packed 7-bit ASCII, etc. Executing a program memory location containing data that forms an invalid instruction results in a NOP.

There are five SFRs used to read the program and memory. These registers are:

- PMCON1
- PMDATA
- PMDATH
- PMADR
- PMADRH

The program memory allows word reads. Program memory access allows for checksum calculation and reading calibration tables.

When interfacing to the program memory block, the PMDATH:PMDATA registers form a two-byte word, which holds the 14-bit data for reads. The PMADRH:PMADR registers form a two-byte word, which holds the 13-bit address of the FLASH location being accessed. These devices can have up to 8K words of program FLASH, with an address range from Oh to 3FFFh. The unused upper bits in both the PMDATH and PMADRH registers are not implemented and read as "0's".

3.1 **PMADR**

The address registers can address up to a maximum of 8K words of program FLASH.

When selecting a program address value, the MSByte of the address is written to the PMADRH register and the LSByte is written to the PMADR register. The upper MSbits of PMADRH must always be clear.

3.2 PMCON1 Register

PMCON1 is the control register for memory accesses.

The control bit RD initiates read operations. This bit cannot be cleared, only set, in software. It is cleared in hardware at the completion of the read operation.

REGISTER 3-1: PMCON1 REGISTER (ADDRESS 18Ch)

	R-1	U-0	U-0	U-0	U-x	U-0	U-0	R/S-0
	reserved	_	—	_	_	—	—	RD
	bit 7							bit 0
bit 7	Reserved:	Read as '1	,					
bit 6-1	Unimplem	ented: Rea	d as '0'					
bit 0	RD: Read	Control bit						
	1 = Initiates in softw		ead, RD is c	leared in har	dware. The	RD bit can c	only be set (n	ot cleared)
	0 = FLASH	l read comp	leted					
	_							
	Legend:							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

4.0 I/O PORTS

Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

Additional information on I/O ports may be found in the PICmicro[™] Mid-Range Reference Manual, (DS33023).

4.1 PORTA and the TRISA Register

PORTA is a 6-bit wide, bi-directional port. The corresponding data direction register is TRISA. Setting a TRISA bit (= '1') will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISA bit (= '0') will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin).

Reading the PORTA register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, the value is modified and then written to the port data latch.

Pin RA4 is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin. The RA4/T0CKI pin is a Schmitt Trigger input and an open drain output. All other PORTA pins have TTL input levels and full CMOS output drivers.

Other PORTA pins are multiplexed with analog inputs and analog VREF input. The operation of each pin is selected by clearing/setting the control bits in the ADCON1 register (A/D Control Register1).

Note: On a Power-on Reset, these pins are configured as analog inputs and read as '0'.

The TRISA register controls the direction of the RA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set, when using them as analog inputs.

BCF BCF CLRF	STATUS, STATUS, PORTA		; ; Bank0 ; Initialize PORTA by ; clearing output : data latches	Y
BSF MOVLW MOVWF MOVLW MOVWF	STATUS, 0x06 ADCON1 0xCF TRISA	RPO	,	

FIGURE 4-1:

BLOCK DIAGRAM OF RA3:RA0 AND RA5 PINS

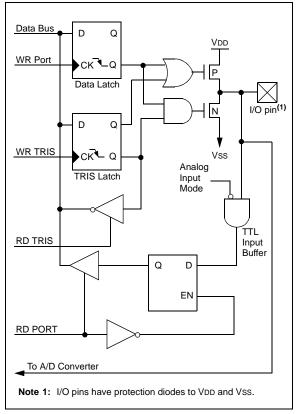
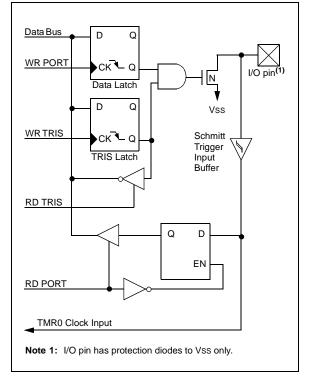



FIGURE 4-2:

BLOCK DIAGRAM OF RA4/T0CKI PIN

Name	Bit#	Buffer	Function
RB0/INT	bit0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input. Internal software programmable weak pull-up.
RB1	bit1	TTL	Input/output pin. Internal software programmable weak pull-up.
RB2	bit2	TTL	Input/output pin. Internal software programmable weak pull-up.
RB3	bit3	TTL	Input/output pin. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB5	bit5	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB6	bit6	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming clock.
RB7	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming data.

TABLE 4-3: PORTB FUNCTIONS

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

TABLE 4-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
06h, 106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
86h, 186h	TRISB	PORTB I	PORTB Data Direction Register					1111 1111	1111 1111		
81h, 181h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.

5.0 TIMER0 MODULE

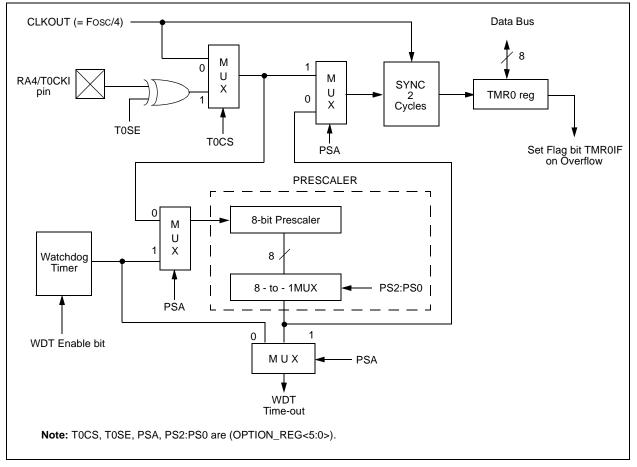
The Timer0 module timer/counter has the following features:

- 8-bit timer/counter
- Readable and writable
- 8-bit software programmable prescaler
- · Internal or external clock select
- Interrupt on overflow from FFh to 00h
- Edge select for external clock

Additional information on the Timer0 module is available in the PICmicro[™] Mid-Range MCU Family Reference Manual (DS33023).

Figure 5-1 is a block diagram of the Timer0 module and the prescaler shared with the WDT.

Timer0 operation is controlled through the OPTION_REG register (Register 5-1 on the following page). Timer mode is selected by clearing bit TOCS (OPTION_REG<5>). In Timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0 register is written, the increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0 register.


Counter mode is selected by setting bit T0CS (OPTION_REG<5>). In Counter mode, Timer0 will increment, either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit T0SE (OPTION_REG<4>). Clearing bit T0SE selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 5.2.

The prescaler is mutually exclusively shared between the Timer0 module and the Watchdog Timer. The prescaler is not readable or writable. Section 5.3 details the operation of the prescaler.

5.1 Timer0 Interrupt

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h. This overflow sets bit TMR0IF (INTCON<2>). The interrupt can be masked by clearing bit TMR0IE (INTCON<5>). Bit TMR0IF must be cleared in software by the Timer0 module Interrupt Service Routine, before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from SLEEP, since the timer is shut-off during SLEEP.

5.2 Using Timer0 with an External Clock

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI, with the internal phase clocks, is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks. Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device.

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	
	bit 7							bit 0	
bit 7	RBPU: PC	ORTB Pull-up	Enable bit	(see Sectior	n 2.2.2.2)				
bit 6	INTEDG:	INTEDG : Interrupt Edge Select bit (see Section 2.2.2.2)							
bit 5	TOCS: TM	IR0 Clock Sc	ource Select	bit					
		tion on TOCk al instruction		(CLKOUT)					
bit 4	TOSE: TM	R0 Source E	dge Select	bit					
	1 = Incren	nent on high-	to-low trans	ition on TOC	KI pin				
	0 = Incren	nent on low-t	o-high trans	ition on TOC	KI pin				
bit 3	PSA: Pres	scaler Assigr	ment bit						
	1 = Presca	aler is assign	ed to the W	DT					
	0 = Presca	aler is assign	ed to the Ti	mer0 modul	e				
bit 2-0	PS2:PS0:	Prescaler R	ate Select b	its					
	Bit Value	TMR0 Rate	WDT Rate						
	000 1:2 1:1								
	001 010	1:4 1:8	1:2 1:4						
	010	1:16	1:4						
	100	1:32	1:16						
	101	1:64	1:32						
	110 111	1 : 128 1 : 256	1 : 64 1 : 128						
	111	1.200	1.120						
	Legend:								
	R = Readable bit $W = Writable bit$ $U = Unimplemented bit, read as '0'$							'0'	
	- n = Value	n = Value at POR reset '1' = Bit is set '0' = Bit is cleared $x = Bit$ is unknown							
								-	
		To avoid ar							
		Example 5-1							
	caler assignment between Timer0 and the WDT. This sequence must be followed even if the WDT is disabled.							be followed	
	even i the wort is disabled.								

NOTES:

NOTES:

DECFSZ	Decrement f, Skip if 0
Syntax:	[label] DECFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are decremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruc- tion is executed. If the result is 0, then a NOP is executed instead, making it a 2TCY instruction.

INCFSZ	Increment f, Skip if 0
Syntax:	[label] INCFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruc- tion is executed. If the result is 0, a NOP is executed instead, making it a 2TCY instruction.

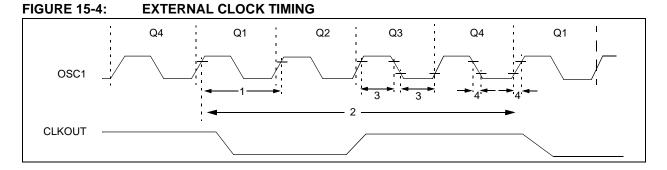
GOTO	Unconditional Branch					
Syntax:	[<i>label</i>] GOTO k					
Operands:	$0 \le k \le 2047$					
Operation:	$k \rightarrow PC < 10:0>$ PCLATH<4:3> \rightarrow PC<12:11>					
Status Affected:	None					
Description:	GOTO is an unconditional branch. The eleven-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two- cycle instruction.					

IORLW	Inclusive OR Literal with W					
Syntax:	[<i>label</i>] IORLW k					
Operands:	$0 \le k \le 255$					
Operation:	(W) .OR. $k \rightarrow$ (W)					
Status Affected:	Z					
Description:	The contents of the W register are OR'ed with the eight-bit literal 'k'. The result is placed in the W register.					

INCF	Increment f	IORWF	Inclusive OR W with f
Syntax:	[label] INCF f,d	Syntax:	[<i>label</i>] IORWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$	Operands:	0 ≤ f ≤ 127 d ∈ [0,1]
Operation:	(f) + 1 \rightarrow (destination)	Operation:	(W) .OR. (f) \rightarrow (destination)
Status Affected:	Z	Status Affected:	Z
Description:	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.	Description:	Inclusive OR the W register with register 'f'. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.

PIC16F7X

MOVF	Move f
Syntax:	[<i>label</i>] MOVF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$
Operation:	(f) \rightarrow (destination)
Status Affected:	Z
Description:	The contents of register f are moved to a destination dependant upon the status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. d = 1 is useful to test a file register, since status flag Z is affected.


NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.

MOVLW	Move Literal to W							
Syntax:	[<i>label</i>] MOVLW k							
Operands:	$0 \le k \le 255$							
Operation:	$k \rightarrow (W)$							
Status Affected:	None							
Description:	The eight-bit literal 'k' is loaded into W register. The don't cares will assemble as 0's.							

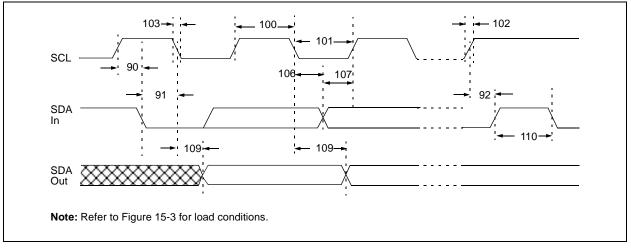
RETFIE	Return from Interrupt						
Syntax:	[label] RETFIE						
Operands:	None						
Operation:	$\begin{array}{l} TOS \to PC, \\ 1 \to GIE \end{array}$						
Status Affected:	None						

MOVWF	Move W to f							
Syntax:	[<i>label</i>] MOVWF f							
Operands:	$0 \le f \le 127$							
Operation:	$(W) \to (f)$							
Status Affected:	None							
Description:	Move data from W register to register 'f'.							

RETLW	Return with Literal in W							
Syntax:	[<i>label</i>] RETLW k							
Operands:	$0 \le k \le 255$							
Operation:	$k \rightarrow (W);$ TOS $\rightarrow PC$							
Status Affected:	None							
Description:	The W register is loaded with the eight-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.							

TABLE 15-1: EXTERNAL CLOCK TIMING REQUIREMENTS

Parameter No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKIN Frequency	DC		1	MHz	XT osc mode
		(Note 1)	DC	—	20	MHz	HS osc mode
			DC	_	32	kHz	LP osc mode
		Oscillator Frequency	DC	_	4	MHz	RC osc mode
		(Note 1)	0.1	_	4	MHz	XT osc mode
			4	—	20	MHz	HS osc mode
			5	_	200	kHz	LP osc mode
1	Tosc	External CLKIN Period	1000	_	_	ns	XT osc mode
		(Note 1)	50	—		ns	HS osc mode
			5	—		ms	LP osc mode
		Oscillator Period	250	_		ns	RC osc mode
		(Note 1)	250	—	10,000	ns	XT osc mode
			50	—	250	ns	HS osc mode
			5	—		ms	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	200	Тсү	DC	ns	Tcy = 4/Fosc
3	TosL,	External Clock in (OSC1)	500			ns	XT oscillator
	TosH	High or Low Time	2.5	—	—	ms	LP oscillator
			15	—	—	ns	HS oscillator
4	TosR,	External Clock in (OSC1)	—	—	25	ns	XT oscillator
	TosF	Rise or Fall Time	—	—	50	ns	LP oscillator
			—	—	15	ns	HS oscillator


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions, with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

Param No.	Symbol	Characteristic		Min	Тур	Max	Units	Conditions	
90*	TSU:STA	START condition	100 kHz mode	4700		_	ns	Only relevant for Repeated	
		Setup time	400 kHz mode	600	_	—		START condition	
91*	THD:STA	START condition	100 kHz mode	4000	_	—	ns	After this period, the first clock	
		Hold time	400 kHz mode	600	_	—		pulse is generated	
92*	TSU:STO	STOP condition	100 kHz mode	4700	_	_	ns		
		Setup time	400 kHz mode	600	_	—			
93	THD:STO	STOP condition	100 kHz mode	4000	_		ns		
		Hold time	400 kHz mode	600	_				

TABLE 15-8: I²C BUS START/STOP BITS REQUIREMENTS

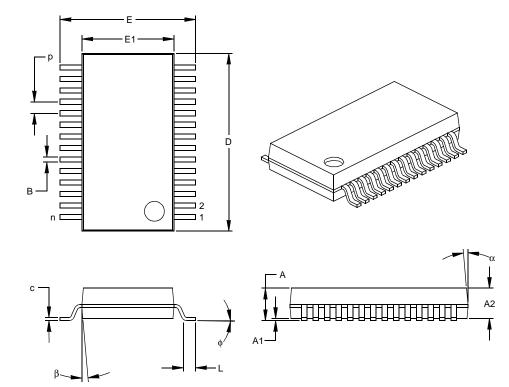

* These parameters are characterized but not tested.

FIGURE 15-16: I²C BUS DATA TIMING

NOTES:

28-Lead Plastic Shrink Small Outline (SS) – 209 mil, 5.30 mm (SSOP)

	Units	INCHES			MILLIMETERS*		
Dimensior	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		28			28	
Pitch	р		.026			0.65	
Overall Height	Α	.068	.073	.078	1.73	1.85	1.98
Molded Package Thickness	A2	.064	.068	.072	1.63	1.73	1.83
Standoff §	A1	.002	.006	.010	0.05	0.15	0.25
Overall Width	Е	.299	.309	.319	7.59	7.85	8.10
Molded Package Width	E1	.201	.207	.212	5.11	5.25	5.38
Overall Length	D	.396	.402	.407	10.06	10.20	10.34
Foot Length	L	.022	.030	.037	0.56	0.75	0.94
Lead Thickness	С	.004	.007	.010	0.10	0.18	0.25
Foot Angle	¢	0	4	8	0.00	101.60	203.20
Lead Width	В	.010	.013	.015	0.25	0.32	0.38
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-150 Drawing No. C04-073