

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	4V ~ 5.5V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f76t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16F7X

FIGURE 2-3:

PIC16F74/73 REGISTER FILE MAP

Ą	FileFileFileAddressAddressAddress					File Address	
Indirect addr.(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	180h
TMR0	01h	OPTION REG	81h	TMR0	101h	OPTION REG	181h
PCL	02h	PCI	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h		105h		185h
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h
PORTC	07h	TRISC	87h		107h		187h
PORTD ⁽¹⁾	08h	TRISD ⁽¹⁾	88h		108h		188h
PORTE ⁽¹⁾	09h	TRISE ⁽¹⁾	89h		109h		189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch	PMDATA	10Ch	PMCON1	18Ch
PIR2	0Dh	PIE2	8Dh	PMADR	10Dh		18Dh
TMR1L	0Eh	PCON	8Eh	PMDATH	10Eh		18Eh
TMR1H	0Fh		8Eh	PMADRH	10Fh		18Fh
T1CON	10h		90h		110h		190h
TMR2	11h		91h				
T2CON	12h	PR2	92h				
SSPBUF	13h	SSPADD	93h				
SSPCON	14h	SSPSTAT	94h				
CCPR1L	15h		95h				
CCPR1H	16h		96h				
CCP1CON	17h	-	97h				
RCSTA	18h	TXSTA	98h				
TXREG	19h	SPBRG	99h				
RCREG	1Ah		9Ah				
CCPR2L	1Bh		9Bh				
CCPR2H	1Ch		9Ch				
CCP2CON	1Dh		9Dh				
ADRES	1Eh		9Eh				
ADCON0	1Fh	ADCON1	9Fh		4.001		1406
	20h		A0h		120n		TAUN
			, (011				
General		General					
Purpose Register		Purpose Register		accesses		accesses	
OC Dutoo				20h-7Fh		A0h - FFh	155h
96 Bytes		96 Bytes			16Fh		1EF11
					170n		IFUN
	7Eh		FFb		17Fh		1FFh
Bank 0	/ 1 11	Bank 1		Bank 2		Bank 3	
 Unimpleme * Not a phys a 1: These reg 	ented data ical registe isters are i	memory location er. not implemented	s, read as on 28-pin	'0'. devices.			

3.3 Reading the FLASH Program Memory

A program memory location may be read by writing two bytes of the address to the PMADR and PMADRH registers and then setting control bit RD (PMCON1<0>). Once the read control bit is set, the microcontroller will use the next two instruction cycles to read the data. The data is available in the PMDATA and PMDATH registers after the second NOP instruction. Therefore, it can be read as two bytes in the following instructions. The PMDATA and PMDATH registers will hold this value until the next read operation.

3.4 Operation During Code Protect

FLASH program memory has its own code protect mechanism. External Read and Write operations by programmers are disabled if this mechanism is enabled.

The microcontroller can read and execute instructions out of the internal FLASH program memory, regardless of the state of the code protect configuration bits.

	BSF	STATUS, RP1	;
	BCF	STATUS, RP0	; Bank 2
	MOVF	ADDRH, W	;
	MOVWF	PMADRH	; MSByte of Program Address to read
	MOVF	ADDRL, W	;
	MOVWF	PMADR	; LSByte of Program Address to read
	BSF	STATUS, RP0	; Bank 3 Required
Required Sequence	BSF NOP NOP	PMCON1, RD	; EEPROM Read Sequence ; memory is read in the next two cycles after BSF PMCON1,RD ;
	BCF	STATUS, RPO	; Bank 2
	MOVF	PMDATA, W	; W = LSByte of Program PMDATA
	MOVF	PMDATH, W	; W = MSByte of Program PMDATA

EXAMPLE 3-1: FLASH PROGRAM READ

TABLE 3-1: REGISTERS ASSOCIATED WITH PROGRAM FLASH

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
10Dh	PMADR	Address I	Register Lo	xxxx xxxx	uuuu uuuu						
10Fh	PMADRH	_	_	—	— Address Register High Byte						uuuu uuuu
10Ch	PMDATA	Data Reg	ister Low Byte x:							xxxx xxxx	uuuu uuuu
10Eh	PMDATH	_	_	Data Reg	Jata Register High Byte						uuuu uuuu
18Ch	PMCON1	(1)		_	_			_	RD	10	10

Legend: x = unknown, u = unchanged, r = reserved, - = unimplemented read as '0'. Shaded cells are not used during FLASH access. **Note 1:** This bit always reads as a '1'.

PIC16F7X

NOTES:

_

6.0 TIMER1 MODULE

The Timer1 module is a 16-bit timer/counter consisting of two 8-bit registers (TMR1H and TMR1L), which are readable and writable. The TMR1 Register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The TMR1 Interrupt, if enabled, is generated on overflow, which is latched in interrupt flag bit TMR1IF (PIR1<0>). This interrupt can be enabled/disabled by setting/clearing TMR1 interrupt enable bit TMR1IE (PIE1<0>).

Timer1 can operate in one of two modes:

- As a timer
- · As a counter

The operating mode is determined by the clock select bit, TMR1CS (T1CON<1>).

In Timer mode, Timer1 increments every instruction cycle. In Counter mode, it increments on every rising edge of the external clock input.

Timer1 can be enabled/disabled by setting/clearing control bit TMR1ON (T1CON<0>).

Timer1 also has an internal "RESET input". This RESET can be generated by either of the two CCP modules as the special event trigger (see Sections 8.1 and 8.2). Register 6-1 shows the Timer1 Control register.

When the Timer1 oscillator is enabled (T1OSCEN is set), the RC1/T1OSI/CCP2 and RC0/T1OSO/T1CKI pins become inputs. That is, the TRISC<1:0> value is ignored and these pins read as '0'.

Additional information on timer modules is available in the PICmicro[™] Mid-Range MCU Family Reference Manual (DS33023).

REGISTER 6-1: T1CON: TIMER1 CONTROL REGISTER (ADDRESS 10h)

	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	_	—	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N			
	bit 7							bit 0			
bit 7-6	Unimplem	nented: Rea	ad as '0'								
bit 5-4	T1CKPS1	:T1CKPS0:	Timer1 Inpu	ut Clock Pres	scale Select I	bits					
	11 = 1:8 P	rescale valu	he								
	10 = 1:4 P	rescale valu	Je								
	01 = 1:2 P 00 = 1:1 P	rescale vali rescale vali	re Te								
bit 3	TIOSCEN: Timer1 Oscillator Enable Control bit										
	1 = Oscillator is enabled										
	0 = Oscilla	ator is shut-o	off (the oscill	ator inverter	is turned off	to eliminate	power draii	ר)			
bit 2	T1SYNC:	Timer1 Exte	ernal Clock I	nput Synchr	onization Co	ntrol bit					
	TMR1CS :	<u>= 1:</u>									
	1 = Do not	t synchroniz	e external c	lock input							
	0 = Synch	ronize exter	nal clock inp	out							
	TMR1CS :	<u>= 0:</u>			I I 						
		ignorea. Tin	neri uses th		JCK when TW	$ \mathbf{R} ^{1}\mathbf{CS}=0.$					
Dit 1	IMR1CS:	Timer1 Clo	ck Source S	elect bit							
	1 = Extern 0 = Interna	al clock from	m pin RC0/T sc/4)	1050/110	(I (on the risi	ng edge)					
bit 0	TMR10N:	Timer1 On	bit								
	1 = Enable	es Timer1									
	0 = Stops	Timer1									
	Legend:										
	R = Reada	able bit	W = V	Nritable bit	U = Unin	nplemented	bit, read as	'0'			
	- n = Value	e at POR re	set '1' = l	Bit is set	'0' = Bit i	s cleared	x = Bit is ι	Inknown			

8.5 PWM Mode (PWM)

In Pulse Width Modulation mode, the CCPx pin produces up to a 10-bit resolution PWM output. Since the CCP1 pin is multiplexed with the PORTC data latch, the TRISC<2> bit must be cleared to make the CCP1 pin an output.

Note:	Clearing the CCP1CON register will force
	the CCP1 PWM output latch to the default
	low level. This is not the PORTC I/O data
	latch.

Figure 8-3 shows a simplified block diagram of the CCP module in PWM mode.

For a step-by-step procedure on how to set up the CCP module for PWM operation, see Section 8.5.3.

FIGURE 8-3: SIMPLIFIED PWM BLOCK DIAGRAM

A PWM output (Figure 8-4) has a time-base (period) and a time that the output stays high (duty cycle). The frequency of the PWM is the inverse of the period (1/period).

8.5.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula:

 $PWM period = [(PR2) + 1] \cdot 4 \cdot Tosc \cdot (TMR2 prescale value)$

PWM frequency is defined as 1 / [PWM period].

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set (exception: if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is latched from CCPR1L into CCPR1H

Note: The Timer2 postscaler (see Section 8.3) is not used in the determination of the PWM frequency. The postscaler could be used to have a servo update rate at a different frequency than the PWM output.

8.5.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available. The CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The following equation is used to calculate the PWM duty cycle in time:

```
PWM duty cycle = (CCPR1L:CCP1CON<5:4>)•
TOSC • (TMR2 prescale value)
```

CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not latched into CCPR1H until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read only register.

The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

When the CCPR1H and 2-bit latch match TMR2, concatenated with an internal 2-bit Q clock or 2 bits of the TMR2 prescaler, the CCP1 pin is cleared.

The maximum PWM resolution (bits) for a given PWM frequency is given by the formula:

Resolution =
$$\frac{\log(\frac{FOSC}{FPWM})}{\log(2)}$$
 bits

Note: If the PWM duty cycle value is longer than the PWM period, the CCP1 pin will not be cleared.

REGISTER 9-1:	SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS 94h)											
	R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0				
	SMP	CKE	D/A	Р	S	R/W	UA	BF				
	bit 7	1 1						bit 0				
bit 7	SMP: SPI Data Input Sample Phase bit											
	SPI Master	SPI Master mode:										
	1 = Input data sampled at end of data output time											
	SPI Slave r	0 = Input data sampled at middle of data output time (Microwire®)										
	SMP must	<u>SPI Slave mode:</u> SMP must be cleared when SPI is used in Slave mode										
	I ² C mode:											
	This bit mu	This bit must be maintained clear										
bit 6	CKE: SPI (CKE: SPI Clock Edge Select bit (Figure 9-2, Figure 9-3, and Figure 9-4)										
	<u>SPI mode,</u>	<u>CKP = 0:</u>			. ®							
	1 = Data tra	ansmitted on I	ising edge	of SCK (Mi	crowire [®] alte	ernate)						
	SPI mode	CKP = 1	annig euge									
	1 = Data tra	ansmitted on 1	alling edge	of SCK (M	icrowire [®] de	fault)						
	0 = Data tra	0 = Data transmitted on rising edge of SCK (Microwne default)										
	I ² C mode:											
	This bit must be maintained clear $\mathbf{P}(\mathbf{A}, \mathbf{P})$											
bit 5	D/A: Data/Address bit (I ² C mode only)											
	1 = Indicate	es that the las	t byte rece t byte rece	ved or trans	smitted was a	data address						
bit 4	P: STOP bi	P : STOP bit (I ² C mode only)										
	This bit is cleared when the SSP module is disabled, or when the START bit is detected last. SSPEN is cleared.											
	 1 = Indicates that a STOP bit has been detected last (this bit is '0' on RESET) 0 = STOP bit was not detected last 											
bit 3	S: START bit (I ² C mode only) This bit is cleared when the SSP module is disabled, or when the STOP bit is detected last. SSPEN is cleared.											
	 1 = Indicates that a START bit has been detected last (this bit is '0' on RESET) 0 = START bit was not detected last 											
bit 2	R/W : Read/Write bit Information (I ² C mode only)											
	This bit holds the R/W bit information following the last address match. This bit is only valid from the address match to the next STAPT bit STAPT bit or \overline{ACK} bit											
	1 = Read	the address match to the next START bit, STOP bit, or ACK bit.										
	0 = Write											
bit 1	UA: Update	e Address bit	(10-bit I ² C	mode only)								
	1 = Indicate 0 = Addres	es that the use is does not ne	er needs to ed to be up	update the dated	address in t	he SSPADD) register					
bit 0	BF: Buffer	Full Status bit										
	Receive (SPI and I ² C modes):											
	1 = Receive complete, SSPBUF is full											
	0 = Receive not complete, SSPBUF is empty											
	<u>1 ransmit (i</u>	-C mode only	<u>):</u> 	io full								
	 1 = Transmit in progress, SSPBUF is full 0 = Transmit complete, SSPBUF is empty 											
	Legend:											
	R = Readab	ole bit	W = W	ritable bit	U = Unim	plemented	bit, read as '	0'				
	- n = Value	at POR reset	'1' = Bi	t is set	'0' = Bit is	s cleared	x = Bit is u	nknown				

_

	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R-0	R-0	R-x			
	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D			
	bit 7							bit 0			
bit 7	SPEN: Se 1 = Serial 0 = Serial	rial Port Ena port enabled port disabled	ble bit I (configures d	RC7/RX/DT a	and RC6/TX	C/CK pins a	s serial por	t pins)			
bit 6	RX9 : 9-bit 1 = Select: 0 = Select:	Receive Ena s 9-bit recep s 8-bit recep	able bit tion tion								
bit 5	SREN: Sin Asynchron Don't care Synchronc 1 = Enable 0 = Disable This bit is o Synchronc Don't care	ngle Receive nous mode: hous mode - M es single rec es single rec cleared after hous mode - S	Enable bit <u>Master:</u> eive eive reception is <u>slave:</u>	complete.							
bit 4	CREN: Co Asynchron 1 = Enable 0 = Disable Synchronc 1 = Enable 0 = Disable	Don't care CREN : Continuous Receive Enable bit <u>Asynchronous mode:</u> 1 = Enables continuous receive 0 = Disables continuous receive <u>Synchronous mode:</u> 1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN)									
bit 3	Unimplem	ented: Rea	d as '0'								
bit 2	FERR: Fra 1 = Framir 0 = No fra	uming Error b ng error (can ming error	bit be updated	by reading R	CREG regis	ter and rec	ceive next v	alid byte)			
bit 1	OERR : Ov 1 = Overru 0 = No ove	verrun Error I in error (can errun error	oit be cleared b	by clearing bit	CREN)						
bit 0	RX9D: 9th Can be pa	bit of Recei rity bit (parity	ved Data / to be calcu	ated by firmw	vare)						
	Legend:										
	R = Reada	able bit	W = W	/ritable bit	U = Unim	plemented	bit, read as	s 'O'			

'1' = Bit is set

'0' = Bit is cleared

REGISTER 10-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER (ADDRESS 18h)

- n = Value at POR reset

x = Bit is unknown

Steps to follow when setting up an Asynchronous Transmission:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH (Section 10.1).
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set transmit bit TX9.

- 5. Enable the transmission by setting bit TXEN, which will also set bit TXIF.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Load data to the TXREG register (starts transmission).
- 8. If using interrupts, ensure that GIE and PEIE in the INTCON register are set.

FIGURE 10-2: ASYNCHRONOUS MASTER TRANSMISSION

FIGURE 10-3: ASYNCHRONOUS MASTER TRANSMISSION (BACK TO BACK)

TABLE 10-5: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN		FERR	OERR	RX9D	x000 - 0000	x000 -000x
19h	TXREG	USART Tra	ansmit Re	egister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Generat	or Registe	r					0000 0000	0000 0000

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for asynchronous transmission. Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76; always maintain these bits clear.

TABLE 10-8:	REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION
-------------	---

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00x
1Ah	RCREG	USART Re	eceive Re	gister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	3aud Rate Generator Register								0000 0000

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous master reception. **Note** 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76 devices; always maintain these bits clear.

10.4 USART Synchronous Slave Mode

Synchronous Slave mode differs from the Master mode, in that the shift clock is supplied externally at the RC6/TX/CK pin (instead of being supplied internally in Master mode). This allows the device to transfer or receive data while in SLEEP mode. Slave mode is entered by clearing bit CSRC (TXSTA<7>).

10.4.1 USART SYNCHRONOUS SLAVE TRANSMIT

The operation of the Synchronous Master and Slave modes are identical except in the case of the SLEEP mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit when the master device drives the CK line.
- b) The second word will remain in TXREG register.
- c) Flag bit TXIF will not be set.
- d) When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit TXIF will now be set.
- e) If enable bit TXIE is set, the interrupt will wake the chip from SLEEP and if the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Follow these steps when setting up a Synchronous Slave Transmission:

- 1. Enable the synchronous slave serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. Clear bits CREN and SREN.
- 3. If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set bit TX9.
- 5. Enable the transmission by setting enable bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.
- 8. If using interrupts, ensure that GIE and PEIE in the INTCON register are set.

PIC16F7X

REGISTER 11-2: ADCON1 REGISTER (ADDRESS 9Fh)

U-0	U-0	R/W-0	R/W-0	R/W-0			
—	—	—	—	—	PCFG2	PCFG1	PCFG0
bit 7							bit 0

bit 7-3 Unimplemented: Read as '0'

bit 2-0 PCFG2:PCFG0: A/D Port Configuration Control bits

PCFG2:PCFG0	RA0	RA1	RA2	RA5	RA3	RE0 ⁽¹⁾	RE1 ⁽¹⁾	RE2 ⁽¹⁾	VREF
000	А	Α	Α	Α	Α	Α	А	А	Vdd
001	Α	Α	Α	А	VREF	Α	А	А	RA3
010	А	Α	Α	А	Α	D	D	D	Vdd
011	А	Α	Α	А	Vref	D	D	D	RA3
100	Α	Α	D	D	Α	D	D	D	Vdd
101	А	Α	D	D	VREF	D	D	D	RA3
11x	D	D	D	D	D	D	D	D	Vdd

A = Analog input

D = Digital I/O

Note 1: RE0, RE1 and RE2 are implemented on the PIC16F74/77 only.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

11.2 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 9.0 TAD per 8-bit conversion. The source of the A/D conversion clock is software selectable. The four possible options for TAD are:

- 2 Tosc (Fosc/2)
- 8 Tosc (Fosc/8)
- 32 Tosc (Fosc/32)
- Internal RC oscillator (2-6 μs)

For correct A/D conversions, the A/D conversion clock (TAD) must be selected to ensure a minimum TAD time as small as possible, but no less than $1.6 \,\mu$ s.

11.3 Configuring Analog Port Pins

The ADCON1, TRISA and TRISE registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS2:CHS0 bits and the TRIS bits.

- Note 1: When reading the port register, all pins configured as analog input channels will read as cleared (a low level). Pins configured as digital inputs will convert an analog input. Analog levels on a digitally configured input will not affect the conversion accuracy.
 - 2: Analog levels on any pin that is defined as a digital input, but not as an analog input, may cause the digital input buffer to consume current that is out of the device's specification.

11.4 A/D Conversions

Note: The GO/DONE bit should **NOT** be set in the same instruction that turns on the A/D.

Setting the GO/DONE bit begins an A/D conversion. When the conversion completes, the 8-bit result is placed in the ADRES register, the GO/DONE bit is cleared, and the ADIF flag (PIR<6>) is set.

If both the A/D interrupt bit ADIE (PIE1<6>) and the peripheral interrupt enable bit PEIE (INTCON<6>) are set, the device will wake from SLEEP whenever ADIF is set by hardware. In addition, an interrupt will also occur if the global interrupt bit GIE (INTCON<7>) is set.

Clearing the GO/DONE bit during a conversion will abort the current conversion. The ADRES register will NOT be changed, and the ADIF flag will not be set.

After the GO/DONE bit is cleared at either the end of a conversion, or by firmware, another conversion can be initiated by setting the GO/DONE bit. Users must still take into account the appropriate acquisition time for the application.

11.5 A/D Operation During SLEEP

The A/D module can operate during SLEEP mode. This requires that the A/D clock source be set to RC (ADCS1:ADCS0 = '11'). When the RC clock source is selected, the A/D module waits one instruction cycle before starting the conversion. This allows the SLEEP instruction to be executed, which eliminates all digital switching noise from the conversion. When the conversion is completed, the GO/DONE bit will be cleared, and the result loaded into the ADRES register. If the A/D interrupt is enabled, the device will wake-up from SLEEP. If the A/D interrupt is not enabled, the ADON bit will remain set.

When the A/D clock source is another clock option (not RC), a SLEEP instruction will cause the present conversion to be aborted and the A/D module to be turned off, though the ADON bit will remain set.

Turning off the A/D places the A/D module in its lowest current consumption state.

Note: For the A/D module to operate in SLEEP, the A/D clock source must be set to RC (ADCS1:ADCS0 = 11). To perform an A/D conversion in SLEEP, ensure the SLEEP instruction immediately follows the instruction that sets the GO/DONE bit.

11.6 Effects of a RESET

A device RESET forces all registers to their RESET state. The A/D module is disabled and any conversion in progress is aborted. All A/D input pins are configured as analog inputs.

The ADRES register will contain unknown data after a Power-on Reset.

12.4 MCLR

PIC16F7X devices have a noise filter in the $\overline{\text{MCLR}}$ Reset path. The filter will detect and ignore small pulses.

It should be noted that a WDT Reset does not drive MCLR pin low.

The behavior of the ESD protection on the $\overline{\text{MCLR}}$ pin has been altered from previous devices of this family. Voltages applied to the pin that exceed its specification can result in both $\overline{\text{MCLR}}$ Resets and excessive current beyond the device specification during the ESD event. For this reason, Microchip recommends that the $\overline{\text{MCLR}}$ pin no longer be tied directly to VDD. The use of an RC network, as shown in Figure 12-5, is suggested.

12.5 Power-on Reset (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.2V - 1.7V). To take advantage of the POR, tie the MCLR pin to VDD as described in Section 12.4. A maximum rise time for VDD is specified. See the Electrical Specifications for details.

When the device starts normal operation (exits the RESET condition), device operating parameters (voltage, frequency, temperature,...) must be met to ensure operation. If these conditions are not met, the device must be held in RESET until the operating conditions are met. For additional information, refer to Application Note, AN607, "Power-up Trouble Shooting" (DS00607).

12.6 Power-up Timer (PWRT)

The Power-up Timer provides a fixed 72 ms nominal time-out on power-up only from the POR. The Powerup Timer operates on an internal RC oscillator. The chip is kept in RESET as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an acceptable level. A configuration bit is provided to enable/ disable the PWRT.

The power-up time delay will vary from chip to chip, due to VDD, temperature and process variation. See DC parameters for details (TPWRT, parameter #33).

12.7 Oscillator Start-up Timer (OST)

The Oscillator Start-up Timer (OST) provides 1024 oscillator cycles (from OSC1 input) delay after the PWRT delay is over (if enabled). This helps to ensure that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset, or wake-up from SLEEP.

12.8 Brown-out Reset (BOR)

The configuration bit, BODEN, can enable or disable the Brown-out Reset circuit. If VDD falls below VBOR (parameter D005, about 4V) for longer than TBOR (parameter #35, about 100 μ S), the brown-out situation will reset the device. If VDD falls below VBOR for less than TBOR, a RESET may not occur.

Once the brown-out occurs, the device will remain in Brown-out Reset until VDD rises above VBOR. The Power-up Timer then keeps the device in RESET for TPWRT (parameter #33, about 72 mS). If VDD should fall below VBOR during TPWRT, the Brown-out Reset process will restart when VDD rises above VBOR, with the Power-up Timer Reset. The Power-up Timer is always enabled when the Brown-out Reset circuit is enabled, regardless of the state of the PWRT configuration bit.

12.9 Time-out Sequence

On power-up, the time-out sequence is as follows: the PWRT delay starts (if enabled) when a POR Reset occurs. Then, OST starts counting 1024 oscillator cycles when PWRT ends (LP, XT, HS). When the OST ends, the device comes out of RESET.

If MCLR is kept low long enough, all delays will expire. Bringing MCLR high will begin execution immediately. This is useful for testing purposes or to synchronize more than one PIC16F7X device operating in parallel.

Table 12-5 shows the RESET conditions for the STATUS, PCON and PC registers, while Table 12-6 shows the RESET conditions for all the registers.

; Q1 Q2 Q3 Q4; Q1 Q2 Q3 C	Q4 Q1	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
0SC1 //////					
CLKOUT ⁽⁴⁾	Tost ⁽²⁾		\	\/\	
INT pin		I I	I I I I	1	1
	×	1 			
(INTCON<1>)		1 I	(Note 2)	1 1	
	Processor in	<u> </u> 		1	I
	SLEEP	1	i i	1	1
INSTRUCTION FLOW		i I	i i i i	I I	1
PC X PC X PC+1	X PC+2	χ PC+2	X PC + 2	(<u>0004h</u>)	0005h
Instruction Fetched Inst(PC) = SLEEP Inst(PC + 1)	Inst(PC + 2)	1 1 1 1 1 1	Inst(0004h)	Inst(0005h)
Instruction Executed { Inst(PC - 1) SLEEP		Inst(PC + 1)	Dummy cycle	Dummy cycle	Inst(0004h)
Note 1: XT, HS or LP oscillator mode assum	ned.				
2: Tost = 1024 Tosc (drawing not to sc	ale) This delay will not be	there for RC osc m	iode.		
3: GIE = '1' assumed. In this case after '	wake- up, the processor ju	imps to the interrup	ot routine.		
4. CI KOUT is not available in these os	c modes, but shown here f	or timina reference) .		

FIGURE 12-12: WAKE-UP FROM SLEEP THROUGH INTERRUPT

12.15 Program Verification/Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

12.16 ID Locations

Four memory locations (2000h - 2003h) are designated as ID locations, where the user can store checksum or other code identification numbers. These locations are not accessible during normal execution, but are readable and writable during program/verify. It is recommended that only the 4 Least Significant bits of the ID location are used.

12.17 In-Circuit Serial Programming

PIC16F7X microcontrollers can be serially programmed while in the end application circuit. This is simply done, with two lines for clock and data and three other lines for power, ground, and the programming voltage (see Figure 12-13 for an example). This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed. For general information of serial programming, please refer to the In-Circuit Serial Programming (ICSP[™]) Guide (DS30277). For specific details on programming commands and operations for the PIC16F7X devices, please refer to the latest version of the PIC16F7X FLASH Program Memory Programming Specification (DS30324).

DECFSZ	Decrement f, Skip if 0
Syntax:	[label] DECFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are decremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruc-
	tion is executed. If the result is 0, then a NOP is executed instead, making it a 2TCY instruction.

INCFSZ	Increment f, Skip if 0
Syntax:	[label] INCFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruc- tion is executed. If the result is 0,
	a NOP is executed instead, making it a 2Tcy instruction.

GOTO	Unconditional Branch						
Syntax:	[<i>label</i>] GOTO k						
Operands:	$0 \le k \le 2047$						
Operation:	$\begin{array}{l} k \rightarrow PC <\!\! 10:\! 0 \!\!> \\ PCLATH <\!\! 4:\! 3 \!\!> \rightarrow PC <\!\! 12:\! 11 \!\!> \end{array}$						
Status Affected:	None						
Description:	GOTO is an unconditional branch. The eleven-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two- cycle instruction.						

IORLW	Inclusive OR Literal with W						
Syntax:	[<i>label</i>] IORLW k						
Operands:	$0 \le k \le 255$						
Operation:	(W) .OR. $k \rightarrow$ (W)						
Status Affected:	Z						
Description:	The contents of the W register are OR'ed with the eight-bit literal 'k'. The result is placed in the W register.						

INCF	Increment f	IORWF	Inclusive OR W with f
Syntax:	[<i>label</i>] INCF f,d	Syntax:	[label] IORWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (destination)	Operation:	(W) .OR. (f) \rightarrow (destination)
Status Affected:	Z	Status Affected:	Z
Description:	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.	Description:	Inclusive OR the W register with register 'f'. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.

TABLE 14-1: DEVELOPMENT TOOLS FROM MICROCHIP

Model Model <th< th=""><th></th><th>PIC12CXXX</th><th>PIC14000</th><th>PIC16C5X</th><th>ХәЭәгың</th><th>тст6сххх</th><th>PIC16F62X</th><th>X7O31OI9</th><th>XXTO31019</th><th>PIC16C8X</th><th>PIC16F8XX</th><th>PIC16C9XX</th><th>X#37121919</th><th>XX7371319</th><th>PIC18CXX2</th><th>PIC18FXXX</th><th>83CXX 52CXX/ 54CXX/</th><th>нсеххх</th><th>мскеххх</th><th>WCP2510</th></th<>		PIC12CXXX	PIC14000	PIC16C5X	ХәЭәгың	тст6сххх	PIC16F62X	X7O31OI9	XXTO31019	PIC16C8X	PIC16F8XX	PIC16C9XX	X#37121919	XX7371319	PIC18CXX2	PIC18FXXX	83CXX 52CXX/ 54CXX/	нсеххх	мскеххх	WCP2510
Montal Monta Monta Monta <th>MPLAB[®] Integrated Development Environment</th> <th>></th> <th></th> <th></th> <th></th> <th></th>	MPLAB [®] Integrated Development Environment	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>				
Defende Defende <t< td=""><th>MPLAB® C17 C Compiler</th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>></td><td>></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	MPLAB® C17 C Compiler												>	>						
MCM MCM <th>MPLAB® C18 C Compiler</th> <td></td> <td>></td> <td>></td> <td></td> <td></td> <td></td> <td></td>	MPLAB® C18 C Compiler														>	>				
MetAP ³ (CE In-Circuit Enulator < < <	MPASM TM Assembler/ MPLINK TM Object Linker	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>		
CEPIC"In Clicrat Emulator Proprimte Proprima Proprimte Pro	MPLAB® ICE In-Circuit Emulator	>	>	>	>	>	**`	>	>	>	>	>	>	>	>	>				
MetaBa Controlled Contecter Controlled Controled <th>ICEPICTM In-Circuit Emulator</th> <td>></td> <td></td> <td>></td> <td>></td> <td>></td> <td></td> <td>></td> <td>></td> <td>></td> <td></td> <td>></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	ICEPICTM In-Circuit Emulator	>		>	>	>		>	>	>		>								
Plose Plose <th< td=""><th>MPLAB® ICD In-Circuit Debugger De</th><td></td><td></td><td></td><td>*</td><td></td><td></td><td>*></td><td></td><td></td><td>></td><td></td><td></td><td></td><td></td><td>></td><td></td><td></td><td></td><td></td></th<>	MPLAB® ICD In-Circuit Debugger De				*			*>			>					>				
PROMATE ^M II Universal Device Programmer V <th><pre>PICSTART® Plus Entry Level Development Programmer</pre></th> <td>></td> <td>></td> <td>></td> <td>></td> <td>></td> <td>**`</td> <td>></td> <td>></td> <td>></td> <td>></td> <td>></td> <td>></td> <td>></td> <td>></td> <td>></td> <td></td> <td></td> <td></td> <td></td>	<pre>PICSTART® Plus Entry Level Development Programmer</pre>	>	>	>	>	>	**`	>	>	>	>	>	>	>	>	>				
PICDEMINIA Demonstration T <tht< th=""> T</tht<>	ଅଟେ MATE® II ପୁମ୍ବା Universal Device Programmer	>	>	>	>	>	** >	>	>	>	>	>	>	>	>	>	>	>		
PICDEM™ Demonstration 1 Board 0 1 1 Board 0 1 1 PICDEM™ 2 Demonstration 1 1 PicDEM™ 2 Demonstration 1 1 PicDEM™ 2 Demonstration 1 1 PicDEM™ 1 Demonstration 1 1 1 PicDEM™ 1 Demonstration 1 1 1 1 PicDEM™ 1 Demonstration 1 1 1 1 1 PicDEM™ 1 Demonstration 1 1 1 1 1 1 PicDEM™ 1 Demonstration 1	PICDEM TM 1 Demonstration Board			>		>		+		>			>							
PICDEM™ 3 Demonstration Image: mark a manual constration Image: mark a m	PICDEM TM 2 Demonstration Board				+			+		<u> </u>					>	>				
PICDEMI* 14A Demonstration Board 0<	PICDEM TM 3 Demonstration Board											>								
PICDEM™ 17 Demonstration Demonstration PICDEM™ 17 Demonstration PICDEM™ 17 Demonstration REELOa® Evaluation Kit N<	번 PICDEM TM 14A Demonstration 편 Board		>		<u> </u>		<u> </u>			<u> </u>										
KEELOa® Evaluation Kit Image: marked background	PICDEM TM 17 Demonstration B Board				<u> </u>		<u> </u>			<u> </u>				>						
KEELOa® Transponder Kit I	KEELoq® Evaluation Kit																	>		
Image Image <th< td=""><th>ଞ୍ଚୁ KEELoq® Transponder Kit</th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>~</td><td></td><td></td></th<>	ଞ୍ଚୁ KEELoq® Transponder Kit																	~		
125 KHz microlD TM Developer's Kit Developer's Kit 125 KHz Anticollision microlD TM 125 KHz Anticollision microlD TM 125 KHz Anticollision microlD TM Developer's Kit 13.56 MHz Anticollision 13.56 MHz Anticollision microlD TM Developer's Kit MCP2510 CAN Developer's Kit	m microlD™ Programmer's Kit																		>	
125 kHz Anticollision microlD TM 125 kHz Anticollision microlD TM Developer's Kit 13.56 MHz Anticollision InterolD TM Developer's Kit 1 MCP2510 CAN Developer's Kit 1	et 125 kHz microlD™ Developer's Kit																		>	
13.56 MHz Anticollision microlD TM Developer's Kit MCP2510 CAN Developer's Kit	125 kHz Anticollision microlD TM Developer's Kit																		>	
MCP2510 CAN Developer's Kit	13.56 MHz Anticollision microlD™ Developer's Kit																		>	
	MCP2510 CAN Developer's Kit																			>

© 2002 Microchip Technology Inc.

15.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Ambient temperature under bias	55 to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR. and RA4)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	0.3 to +6.5V
Voltage on MCLR with respect to Vss (Note 2)	0 to +13.5V
Voltage on RA4 with respect to Vss	0 to +12V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	
Maximum current into VDD pin	250 mA
Input clamp current, Iικ (VI < 0 or VI > VDD)	±20 mA
Output clamp current, Ioк (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA, PORTB, and PORTE (combined) (Note 3)	200 mA
Maximum current sourced by PORTA, PORTB, and PORTE (combined) (Note 3)	200 mA
Maximum current sunk by PORTC and PORTD (combined) (Note 3)	200 mA
Maximum current sourced by PORTC and PORTD (combined) (Note 3)	200 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD - Vd)	OH) x IOH} + Σ (VOI x IOL)
 Voltage spikes at the MCLR pin may cause latchup. A series resistor of greater the to pull MCLR to VDD, rather than tying the pin directly to VDD. 	an 1 k Ω should be used

3: PORTD and PORTE are not implemented on the PIC16F73/76 devices.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

15.2 DC Characteristics: PIC16F73/74/76/77 (Industrial, Extended) PIC16LF73/74/76/77 (Industrial) (Continued)

DC CHA	ARACT	ERISTICS	Standard Operating Operating Section 1	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extendedOperating voltage VDD range as described in DC Specification,Section 15.1.					
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions		
	Vol	Output Low Voltage							
D080		I/O ports	—	_	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +125°C		
D083		OSC2/CLKOUT (RC osc config)	—	—	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +125°C		
			—	—	0.6	V	IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C		
	Vон	Output High Voltage				•			
D090		I/O ports (Note 3)	Vdd - 0.7	—	_	V	IOH = -3.0 mA, VDD = 4.5V, -40°С to +125°С		
D092		OSC2/CLKOUT (RC osc config)	Vdd - 0.7	—	—	V	ІОН = -1.3 mA, VDD = 4.5V, -40°С to +125°С		
			Vdd - 0.7	—	—	V	IOH = -1.0 mA, VDD = 4.5V, -40°С to +125°С		
D150*	Vod	Open Drain High Voltage			12	V	RA4 pin		
		Capacitive Loading Specs on C	Output Pir	IS					
D100	Cosc2	OSC2 pin	—		15	pF	In XT, HS and LP modes when external clock is used to drive OSC1		
D101	Сю	All I/O pins and OSC2 (in RC mode)	—	—	50	pF			
D102	Св	SCL, SDA in I ² C mode	—	—	400	pF			
		Program FLASH Memory				•	•		
D130	Ер	Endurance	100	1000	—	E/W	25°C at 5V		
D131	Vpr	VDD for Read	2.0	_	5.5	V			

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16F7X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

40-Lead Plastic Dual In-line (P) - 600 mil (PDIP)

Units	INCHES*		MILLIMETERS			
Limits	MIN	NOM	MAX	MIN	NOM	MAX
n		40			40	
р		.100			2.54	
А	.160	.175	.190	4.06	4.45	4.83
A2	.140	.150	.160	3.56	3.81	4.06
A1	.015			0.38		
Е	.595	.600	.625	15.11	15.24	15.88
E1	.530	.545	.560	13.46	13.84	14.22
D	2.045	2.058	2.065	51.94	52.26	52.45
L	.120	.130	.135	3.05	3.30	3.43
С	.008	.012	.015	0.20	0.29	0.38
B1	.030	.050	.070	0.76	1.27	1.78
В	.014	.018	.022	0.36	0.46	0.56
eВ	.620	.650	.680	15.75	16.51	17.27
α	5	10	15	5	10	15
β	5	10	15	5	10	15
	Units n β A A2 A1 E D L C B1 B eB α β	Units MIN n P A .160 A2 .140 A1 .015 E .595 E1 .530 D 2.045 L .120 c .008 B1 .030 B .014 eB .620 α .5 β .5	Units INCHES* nLimits MIN NOM n 40 P .100 A .160 .175 A2 .140 .150 A1 .015	$\begin{tabular}{ c c c c } \hline Units & INCHES* \\ \hline Limits & MIN & NOM & MAX \\ \hline n & 40 \\ \hline P & 100 \\ \hline A & 160 & 175 \\ \hline A & 160 & 160 \\ \hline B & 100 & 160 \\ \hline B & 100 & 160 \\ \hline B & 100 & 150 \\ \hline B & 5 & 100 & 150 \\ \hline B & 5 & 10 & 15 \\ \hline B & 5 & 10 & 15 \\ \hline B & 160 & 160 \\ \hline A & 160 &$	$\begin{tabular}{ c c c c } \hline Vnits & VNCHES* & NN \\ \hline \mbox{n Limits} & MIN & NOM & MAX & MIN \\ \hline \mbox{n } & 40 & & & & & & & & & & & & & & & & & $	$\begin{tabular}{ c c c c c } \hline \mathbf{V} \mathbf{NCHES}^* \mathbf{MIN} \mathbf{NOM} \mathbf{MAX} \mathbf{MIN} \mathbf{NOM} \mathbf{NOnd} \mathbf{NOM} $$

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-011

Drawing No. C04-016

44-Lead Plastic Leaded Chip Carrier (L) – Square (PLCC)

	Units	INCHES*		MILLIMETERS			
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		44			44	
Pitch	р		.050			1.27	
Pins per Side	n1		11			11	
Overall Height	А	.165	.173	.180	4.19	4.39	4.57
Molded Package Thickness	A2	.145	.153	.160	3.68	3.87	4.06
Standoff §	A1	.020	.028	.035	0.51	0.71	0.89
Side 1 Chamfer Height	A3	.024	.029	.034	0.61	0.74	0.86
Corner Chamfer 1	CH1	.040	.045	.050	1.02	1.14	1.27
Corner Chamfer (others)	CH2	.000	.005	.010	0.00	0.13	0.25
Overall Width	E	.685	.690	.695	17.40	17.53	17.65
Overall Length	D	.685	.690	.695	17.40	17.53	17.65
Molded Package Width	E1	.650	.653	.656	16.51	16.59	16.66
Molded Package Length	D1	.650	.653	.656	16.51	16.59	16.66
Footprint Width	E2	.590	.620	.630	14.99	15.75	16.00
Footprint Length	D2	.590	.620	.630	14.99	15.75	16.00
Lead Thickness	С	.008	.011	.013	0.20	0.27	0.33
Upper Lead Width	B1	.026	.029	.032	0.66	0.74	0.81
Lower Lead Width	В	.013	.020	.021	0.33	0.51	0.53
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed

.010" (0.254mm) per side. JEDEC Equivalent: MO-047 Drawing No. C04-048

USART Synchronous Transmission	
(Through TXEN)	78
Wake-up from SLEEP via Interrupt	103
Watchdog Timer	128
Timing Parameter Symbology	125
Timing Requirements	
Capture/Compare/PWM (CCP1 and CCP2)	130
CLKOUT and I/O	127
External Clock	126
I ² C Bus Data	136
I2C Bus START/STOP Bits	135
Parallel Slave Port	131
RESET, Watchdog Timer, Oscillator	
Start-up Timer, Power-up Timer	
and Brown-out Reset	128
SPI Mode	134
Timer0 and Timer1 External Clock	129
USART Synchronous Receive	137
USART Synchronous Transmission	137
TMR1CS bit	47
TMR1ON bit	47
TMR2ON bit	52
TOUTPS<3:0> bits	52
TRISA Register	31
TRISB Register	33
TRISC Register	35
TRISD Register	36
TRISE Register	37
IBF Bit	38
IBOV Bit	
PSPMODE bit 36	. 37
TXSTA Register	, c.
SYNC bit	69
TRMT bit	69
TX9 bit	69
TX9D bit	69
TXEN bit	69
U	

UA	60
Universal Synchronous Asynchronous	
Receiver Transmitter. See USART	
Update Address bit, UA	60
USART	69
Asynchronous Mode	73
Asynchronous Receiver	75
Asynchronous Reception	76
Associated Registers	76
Asynchronous Transmission	
Associated Registers	74
Asynchronous Transmitter	73

Baud Rate Generator (BRG)71
Baud Rate Formula
Baud Rates, Asynchronous Mode
(BRGH = 0)
Baud Rates, Asynchronous Mode
(BRGH = 1)
Sampling71
Mode Select (SYNC Bit) 69
Overrun Error (OERR Bit)
RC6/TX/CK Pin9, 11
RC7/RX/DT Pin9, 11
Serial Port Enable (SPEN Bit)
Single Receive Enable (SREN Bit)70
Synchronous Master Mode77
Synchronous Master Reception
Associated Registers 80
Synchronous Master Transmission
Associated Registers
Synchronous Slave Mode 80
Synchronous Slave Reception
Associated Registers 81
Synchronous Slave Transmission
Associated Registers81
Transmit Data, 9th Bit (TX9D)69
Transmit Enable (TXEN bit)69
Transmit Enable, Nine-bit (TX9 bit)69
Transmit Shift Register Status (TRMT bit)

W

Wake-up from SLEEP	
Interrupts	
MCLR Reset	
WDT Reset	
Wake-up Using Interrupts	102
Watchdog Timer (WDT)	
Associated Registers	101
Enable (WDTE Bit)	101
Postscaler. See Postscaler, WDT	
Programming Considerations	101
RC Oscillator	101
Time-out Period	101
WDT Reset, Normal Operation	93, 95, 96
WDT Reset, SLEEP	93, 95, 96
WCOL bit	
Write Collision Detect bit (WCOL)	61
WWW, On-Line Support	