E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf73-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

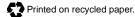
Note the following details of the code protection feature on PICmicro[®] MCUs.

- The PICmicro family meets the specifications contained in the Microchip Data Sheet.
- Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet. The person doing so may be engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable".
- Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks


The Microchip name and logo, the Microchip logo, FilterLab, KEELOQ, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microID, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Term Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEEL00® code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.

Name	Bit#	Buffer	Function
RB0/INT	bit0	TTL/ST ⁽¹⁾	Input/output pin or external interrupt input. Internal software programmable weak pull-up.
RB1	bit1	TTL	Input/output pin. Internal software programmable weak pull-up.
RB2	bit2	TTL	Input/output pin. Internal software programmable weak pull-up.
RB3	bit3	TTL	Input/output pin. Internal software programmable weak pull-up.
RB4	bit4	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB5	bit5	TTL	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up.
RB6	bit6	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming clock.
RB7	bit7	TTL/ST ⁽²⁾	Input/output pin (with interrupt-on-change). Internal software programmable weak pull-up. Serial programming data.

TABLE 4-3: PORTB FUNCTIONS

Legend: TTL = TTL input, ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

TABLE 4-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
06h, 106h	PORTB	RB7	RB6 RB5 RB4 RB3 RB2 RB1 RE		RB0	xxxx xxxx	uuuu uuuu				
86h, 186h	TRISB	PORTB I	Data Directio	1111 1111	1111 1111						
81h, 181h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.

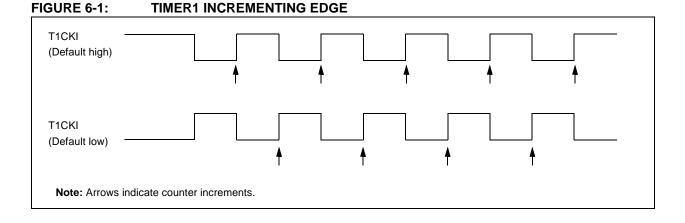
Name	Bit#	Buffer Type	Function
RE0/RD/AN5	bit0	ST/TTL ⁽¹⁾	Input/output port pin or read control input in Parallel Slave Port mode or analog input. For RD (PSP mode): 1 = IDLE 0 = Read operation. Contents of PORTD register output to PORTD I/O pins (if chip selected).
RE1/WR/AN6	bit1	ST/TTL ⁽¹⁾	Input/output port pin or write control input in Parallel Slave Port mode or analog input. For WR (PSP mode): 1 = IDLE 0 = Write operation. Value of PORTD I/O pins latched into PORTD register (if chip selected).
RE2/CS/AN7	bit2	ST/TTL ⁽¹⁾	Input/output port pin or chip select control input in Parallel Slave Port mode or analog input. For CS (PSP mode): 1 = Device is not selected 0 = Device is selected

Legend: ST = Schmitt Trigger input, TTL = TTL input **Note 1:** Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port mode.

TABLE 4-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE	TABLE 4-10 :	SUMMARY OF REGISTERS ASSOCIATED WITH PORTE
--	---------------------	--

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2 Bit 1 Bit 0		Value on: POR, BOR	Value on all other RESETS	
09h	PORTE	—	—		—		RE2	RE1	RE0	xxx	uuu
89h	TRISE	IBF	OBF	IBOV	PSPMODE	_	PORTE D	ata Directi	on bits	0000 -111	0000 -111
9Fh	ADCON1	—	_		_	_	PCFG2	PCFG1	PCFG0	000	000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PORTE.

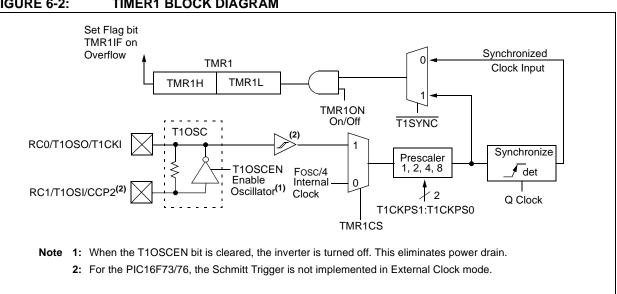

6.1 **Timer1 Operation in Timer Mode**

Timer mode is selected by clearing the TMR1CS (T1CON<1>) bit. In this mode, the input clock to the timer is Fosc/4. The synchronize control bit T1SYNC (T1CON<2>) has no effect, since the internal clock is always in sync.

6.2 **Timer1 Counter Operation**

Timer1 may operate in Asynchronous or Synchronous mode, depending on the setting of the TMR1CS bit.

When Timer1 is being incremented via an external source, increments occur on a rising edge. After Timer1 is enabled in Counter mode, the module must first have a falling edge before the counter begins to increment.



6.3 **Timer1 Operation in Synchronized Counter Mode**

Counter mode is selected by setting bit TMR1CS. In this mode, the timer increments on every rising edge of clock input on pin RC1/T1OSI/CCP2, when bit T1OSCEN is set, or on pin RC0/T1OSO/T1CKI, when bit T1OSCEN is cleared.

If TISYNC is cleared, then the external clock input is synchronized with internal phase clocks. The synchronization is done after the prescaler stage. The prescaler stage is an asynchronous ripple counter.

In this configuration, during SLEEP mode, Timer1 will not increment even if the external clock is present, since the synchronization circuit is shut-off. The prescaler, however, will continue to increment.

FIGURE 6-2: TIMER1 BLOCK DIAGRAM

6.5 Timer1 Oscillator

A crystal oscillator circuit is built-in between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). The oscillator is a low power oscillator rated up to 200 kHz. It will continue to run during SLEEP. It is primarily intended for use with a 32 kHz crystal. Table 6-1 shows the capacitor selection for the Timer1 oscillator.

The Timer1 oscillator is identical to the LP oscillator. The user must provide a software time delay to ensure proper oscillator start-up.

6.6 Resetting Timer1 using a CCP Trigger Output

If the CCP1 or CCP2 module is configured in Compare mode to generate a "special event trigger" (CCP1M3:CCP1M0 = '1011'), this signal will reset Timer1.

Note:	The special event triggers from the CCP1
	and CCP2 modules will not set interrupt
	flag bit TMR1IF (PIR1<0>).

Timer1 must be configured for either Timer or Synchronized Counter mode, to take advantage of this feature. If Timer1 is running in Asynchronous Counter mode, this RESET operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from CCP1 or CCP2, the write will take precedence.

In this mode of operation, the CCPRxH:CCPRxL register pair effectively becomes the period register for Timer1.

6.7 Resetting of Timer1 Register Pair (TMR1H, TMR1L)

TMR1H and TMR1L registers are not reset to 00h on a POR, or any other RESET, except by the CCP1 and CCP2 special event triggers.

TABLE 6-1:CAPACITOR SELECTION FOR
THE TIMER1 OSCILLATOR

	Frequency	Capacitors Used:					
Osc Type	Frequency	OSC1	OSC2				
LP	32 kHz	47 pF	47 pF				
	100 kHz	33 pF	33 pF				
	200 kHz	15 pF	15 pF				
• •							

Capacitor values are for design guidance only.

These capacitors were tested with the crystals listed below for basic start-up and operation. These values were not optimized.

Different capacitor values may be required to produce acceptable oscillator operation. The user should test the performance of the oscillator over the expected VDD and temperature range for the application.

See the notes (below) table for additional information.

Commonly Used Crystals:								
32.768 kHz	Epson C-001R32.768K-A							
100 kHz	Epson C-2 100.00 KC-P							
200 kHz	STD XTL 200.000 kHz							
of t sta 2: Sin cha res	the capacitance increases the stability the oscillator, but also increases the rt-up time. Ince each resonator/crystal has its own aracteristics, the user should consult the onator/crystal manufacturer for appro- tate values of external components.							

T1CON register is reset to 00h on a Power-on Reset or a Brown-out Reset, which shuts off the timer and leaves a 1:1 prescale. In all other RESETS, the register is unaffected.

6.8 Timer1 Prescaler

The prescaler counter is cleared on writes to the TMR1H or TMR1L registers.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR		Value on all other RESETS	
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
0Eh	TMR1L	Holding re	Holding register for the Least Significant Byte of the 16-bit TMR1 Register								xxxx	uuuu	uuuu
0Fh	TMR1H	Holding re	Holding register for the Most Significant Byte of the 16-bit TMR1 Register								xxxx	uuuu	uuuu
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00	0000	uu	uuuu

TABLE 6-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76; always maintain these bits clear.

8.0 CAPTURE/COMPARE/PWM MODULES

Each Capture/Compare/PWM (CCP) module contains a 16-bit register which can operate as a:

- 16-bit Capture register
- 16-bit Compare register
- PWM Master/Slave Duty Cycle register

Both the CCP1 and CCP2 modules are identical in operation, with the exception being the operation of the special event trigger. Table 8-1 and Table 8-2 show the resources and interactions of the CCP module(s). In the following sections, the operation of a CCP module is described with respect to CCP1. CCP2 operates the same as CCP1, except where noted.

8.1 CCP1 Module

Capture/Compare/PWM Register1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON register controls the operation of CCP1. The special event trigger is generated by a compare match and will clear both TMR1H and TMR1L registers.

8.2 CCP2 Module

Capture/Compare/PWM Register1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP2CON register controls the operation of CCP2. The special event trigger is generated by a compare match; it will clear both TMR1H and TMR1L registers, and start an A/D conversion (if the A/D module is enabled).

Additional information on CCP modules is available in the PICmicro[™] Mid-Range MCU Family Reference Manual (DS33023) and in Application Note AN594, "Using the CCP Modules" (DS00594).

TABLE 8-1: CCP MODE - TIMER RESOURCES REQUIRED

CCP Mode	Timer Resource
Capture	Timer1
Compare	Timer1
PWM	Timer2

TABLE 8-2:INTERACTION OF TWO CCP MODULES

CCPx Mode	CCPy Mode	Interaction
Capture	Capture	Same TMR1 time-base.
Capture	Compare	Same TMR1 time-base.
Compare	Compare	Same TMR1 time-base.
PWM	PWM	The PWMs will have the same frequency and update rate (TMR2 interrupt). The rising edges are aligned.
PWM	Capture	None.
PWM	Compare	None.

REGISTER 9-1: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS 94	,
R/W-0 R/W-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R	-0 R-0
SMP CKE D/A P S R/W U	A BF
bit 7	bit C
bit 7 SMP: SPI Data Input Sample Phase bit	
SPI Master mode:	
1 = Input data sampled at end of data output time	
0 = Input data sampled at middle of data output time (Microwire®)	
<u>SPI Slave mode:</u> SMP must be cleared when SPI is used in Slave mode	
I ² C mode:	
This bit must be maintained clear	
bit 6 CKE : SPI Clock Edge Select bit (Figure 9-2, Figure 9-3, and Figure 9-4)	
<u>SPI mode, CKP = 0:</u>	
 1 = Data transmitted on rising edge of SCK (Microwire[®] alternate) 0 = Data transmitted on falling edge of SCK 	
SPI mode, $CKP = 1$:	
1 = Data transmitted on falling edge of SCK (Microwire [®] default)	
0 = Data transmitted on rising edge of SCK	
I ² C mode: This bit must be maintained clear	
bit 5 D/A : Data/Address bit (I ² C mode only)	
1 = Indicates that the last byte received or transmitted was data	
0 = Indicates that the last byte received or transmitted was address	
bit 4 P : STOP bit (I ² C mode only)	
This bit is cleared when the SSP module is disabled, or when the START bit is SSPEN is cleared.	s detected last.
1 = Indicates that a STOP bit has been detected last (this bit is '0' on RESET)	
0 = STOP bit was not detected last	
bit 3 S : START bit (I ² C mode only)	
This bit is cleared when the SSP module is disabled, or when the STOP bit is SSPEN is cleared.	detected last.
1 = Indicates that a START bit has been detected last (this bit is '0' on RESET)
0 = START bit was not detected last	
bit 2 R/W : Read/Write bit Information (I ² C mode only)	
This bit holds the R/W bit information following the last address match. This bit i the address match to the next START bit, STOP bit, or ACK bit.	s only valid from
1 = Read	
0 = Write	
bit 1 UA : Update Address bit (10-bit I ² C mode only)	
1 = Indicates that the user needs to update the address in the SSPADD regist	er
 0 = Address does not need to be updated bit 0 BF: Buffer Full Status bit 	
Receive (SPI and I ² C modes):	
1 = Receive complete, SSPBUF is full	
0 = Receive not complete, SSPBUF is empty	
Transmit (I ² C mode only):	
1 = Transmit in progress, SSPBUF is full	
0 = Transmit complete, SSPBUF is empty	
Legend:	
R = Readable bit W = Writable bit U = Unimplemented bit, rea	id as '0'
- n = Value at POR reset $'1'$ = Bit is set $'0'$ = Bit is cleared x = B	Bit is unknown

_

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	WCOL	SSPOV	SSPEN	CKP	SSPM3			SSPM0		
	bit 7	331 0 1		UN	30F 1013		SPM2 SSPM1 e previous word Iing the previous word ling the previous word Iing the previous date word oid setting overflow eption (and transmostic the previous byte. in software in either is as serial port pins is s as serial port pins is Image: State of the previous byte in the pr	bit 0		
1 : 1 - 7										
bit 7	1 = The S	be cleared i	ster is writter	ו while it is stil	l transmittin	g the previo	ous word			
bit 6	SSPOV: F	Receive Ove	rflow Indicate	or bit						
	In SPI mo									
	of ove must Maste initiate 0 = No ov	erflow, the da read the SS er mode, the ed by writing verflow	ata in SSPSF PBUF, even overflow bit	R is lost. Overf if only transmi	flow can onl tting data, t	y occur in S o avoid sett	Slave mode.	The user /. In		
		e is received don't care" ir								
bit 5	SSPEN : S	Svnchronous	Serial Port I	Enable bit						
	<u>In SPI mo</u> 1 = Enable 0 = Disabl <u>In I²C mod</u>	i <u>de:</u> es serial por les serial po <u>de:</u>	t and configu rt and configu	ures SCK, SD0 ures these pin	s as I/O poi	rt pins				
				nfigures the SI ures these pin			rial port pine	6		
	In both mo	odes, when a	enabled, the	se pins must b	e properly o	configured a	as input or o	utput.		
bit 4	CKP: Clock Polarity Select bit									
	<u>In SPI mo</u> 1 = IDLE s	de: state for cloc	ck is a high le	evel (Microwire vel (Microwire [∉]	e [®] default) [®] alternate)					
	In I ² C mod	<u>de:</u> ase control								
			lock stretch)	. (Used to ens	ure data se	tup time.)				
bit 3-0			-	rial Port Mode		, , , , , , , , , , , , , , , , , , ,				
	0001 = SF 0010 = SF 0011 = SF	0000 = SPI Master mode, clock = Fosc/4 0001 = SPI Master mode, clock = Fosc/16 0010 = SPI Master mode, clock = Fosc/64 0011 = SPI Master mode, clock = TMR2 output/2								
	0101 = SF $0110 = I^{2}(0111 = I^{2})$	0100 = SPI Slave mode, clock = SCK pin. \overline{SS} pin control enabled. 0101 = SPI Slave mode, clock = SCK pin. \overline{SS} pin control disabled. \overline{SS} can be used as I/O pin 0110 = I ² C Slave mode, 7-bit address 0111 = I ² C Slave mode, 10-bit address								
	$1110 = I^{2}$	C Slave mod	de, 7-bit addr		RT and STC					
	Legend:									
	R = Reada	able bit	VV = V	Nritable bit	U = Unim	plemented	bit, read as	'0'		

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

10.2 USART Asynchronous Mode

In this mode, the USART uses standard non-return-tozero (NRZ) format (one START bit, eight or nine data bits, and one STOP bit). The most common data format is 8-bits. An on-chip, dedicated, 8-bit baud rate generator can be used to derive standard baud rate frequencies from the oscillator. The USART transmits and receives the LSb first. The USART's transmitter and receiver are functionally independent, but use the same data format and baud rate. The baud rate generator produces a clock, either x16 or x64 of the bit shift rate, depending on bit BRGH (TXSTA<2>). Parity is not supported by the hardware, but can be implemented in software (and stored as the ninth data bit). Asynchronous mode is stopped during SLEEP.

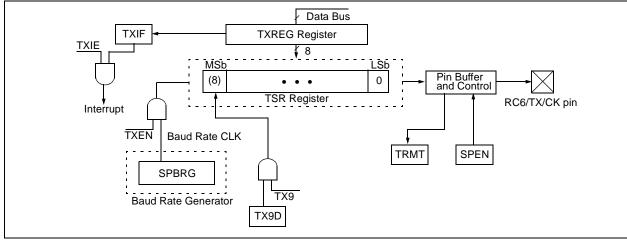
Asynchronous mode is selected by clearing bit SYNC (TXSTA<4>).

The USART Asynchronous module consists of the following important elements:

- · Baud Rate Generator
- Sampling Circuit
- Asynchronous Transmitter
- Asynchronous Receiver

10.2.1 USART ASYNCHRONOUS TRANSMITTER

The USART transmitter block diagram is shown in Figure 10-1. The heart of the transmitter is the transmit (serial) shift register (TSR). The shift register obtains its data from the read/write transmit buffer, TXREG. The TXREG register is loaded with data by firmware. The TSR register is not loaded until the STOP bit has been transmitted from the previous load. As soon as the STOP bit is transmitted, the TSR is loaded with new data from the TXREG register (if available). Once the TXREG register transfers the data to the TSR register, the TXREG register is empty. One instruction cycle later, flag bit TXIF (PIR1<4>) and flag bit TRMT (TXSTA<1>)


are set. The TXIF interrupt can be enabled/disabled by setting/clearing enable bit TXIE (PIE1<4>). Flag bit TXIF will be set, regardless of the state of enable bit TXIE and cannot be cleared in software. It will reset only when new data is loaded into the TXREG register. While flag bit TXIF indicates the status of the TXREG register, another bit TRMT (TXSTA<1>) shows the status of the TSR register. Status bit TRMT is a read only bit, which is set one instruction cycle after the TSR register becomes empty, and is cleared one instruction cycle after the TSR register is loaded. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR register is empty.

Note 1:	The TSR register is not mapped in data
	memory, so it is not available to the user.
2:	Flag bit TXIF is set when enable bit TXEN

is set. TXIF is cleared by loading TXREG.

Transmission is enabled by setting enable bit TXEN (TXSTA<5>). The actual transmission will not occur until the TXREG register has been loaded with data and the baud rate generator (BRG) has produced a shift clock (Figure 10-2). The transmission can also be started by first loading the TXREG register and then setting enable bit TXEN. Normally, when transmission is first started, the TSR register is empty. At that point, transfer to the TXREG register will result in an immediate transfer to TSR, resulting in an empty TXREG. A back-to-back transfer is thus possible (Figure 10-3). Clearing enable bit TXEN during a transmission will cause the transmission to be aborted and will reset the transmitter. As a result, the RC6/TX/CK pin will revert to hi-impedance.

In order to select 9-bit transmission, transmit bit TX9 (TXSTA<6>) should be set and the ninth bit should be written to TX9D (TXSTA<0>). The ninth bit must be written before writing the 8-bit data to the TXREG register. This is because a data write to the TXREG register can result in an immediate transfer of the data to the TSR register (if the TSR is empty). In such a case, an incorrect ninth data bit may be loaded in the TSR register.

FIGURE 10-1: USART TRANSMIT BLOCK DIAGRAM

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
19h	TXREG	USART Tr	ansmit R	egister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Generat	or Registe	r					0000 0000	0000 0000

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous slave transmission.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76 devices; always maintain these bits clear.

10.4.2 USART SYNCHRONOUS SLAVE RECEPTION

The operation of the Synchronous Master and Slave modes is identical, except in the case of the SLEEP mode. Bit SREN is a "don't care" in Slave mode.

If receive is enabled by setting bit CREN prior to the SLEEP instruction, then a word may be received during SLEEP. On completely receiving the word, the RSR register will transfer the data to the RCREG register and if enable bit RCIE bit is set, the interrupt generated will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

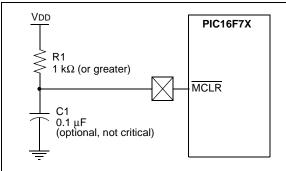
Follow these steps when setting up a Synchronous Slave Reception:

- Enable the synchronous master serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. If interrupts are desired, set enable bit RCIE.
- 3. If 9-bit reception is desired, set bit RX9.
- 4. To enable reception, set enable bit CREN.
- 5. Flag bit RCIF will be set when reception is complete and an interrupt will be generated, if enable bit RCIE was set.
- Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 7. Read the 8-bit received data by reading the RCREG register.
- 8. If any error occurred, clear the error by clearing bit CREN.
- 9. If using interrupts, ensure that GIE and PEIE in the INTCON register are set.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
1Ah	RCREG	USART R	eceive R	egister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	e Genera	ator Registe	er					0000 0000	0000 0000

TABLE 10-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous slave reception. Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76 devices, always maintain these bits clear. NOTES:


12.4 MCLR

PIC16F7X devices have a noise filter in the $\overline{\text{MCLR}}$ Reset path. The filter will detect and ignore small pulses.

It should be noted that a WDT Reset does not drive MCLR pin low.

The behavior of the ESD protection on the $\overline{\text{MCLR}}$ pin has been altered from previous devices of this family. Voltages applied to the pin that exceed its specification can result in both $\overline{\text{MCLR}}$ Resets and excessive current beyond the device specification during the ESD event. For this reason, Microchip recommends that the $\overline{\text{MCLR}}$ pin no longer be tied directly to VDD. The use of an RC network, as shown in Figure 12-5, is suggested.

12.5 Power-on Reset (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.2V - 1.7V). To take advantage of the POR, tie the MCLR pin to VDD as described in Section 12.4. A maximum rise time for VDD is specified. See the Electrical Specifications for details.

When the device starts normal operation (exits the RESET condition), device operating parameters (voltage, frequency, temperature,...) must be met to ensure operation. If these conditions are not met, the device must be held in RESET until the operating conditions are met. For additional information, refer to Application Note, AN607, "Power-up Trouble Shooting" (DS00607).

12.6 Power-up Timer (PWRT)

The Power-up Timer provides a fixed 72 ms nominal time-out on power-up only from the POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in RESET as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an accept-able level. A configuration bit is provided to enable/ disable the PWRT.

The power-up time delay will vary from chip to chip, due to VDD, temperature and process variation. See DC parameters for details (TPWRT, parameter #33).

12.7 Oscillator Start-up Timer (OST)

The Oscillator Start-up Timer (OST) provides 1024 oscillator cycles (from OSC1 input) delay after the PWRT delay is over (if enabled). This helps to ensure that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset, or wake-up from SLEEP.

12.8 Brown-out Reset (BOR)

The configuration bit, BODEN, can enable or disable the Brown-out Reset circuit. If VDD falls below VBOR (parameter D005, about 4V) for longer than TBOR (parameter #35, about 100 μ S), the brown-out situation will reset the device. If VDD falls below VBOR for less than TBOR, a RESET may not occur.

Once the brown-out occurs, the device will remain in Brown-out Reset until VDD rises above VBOR. The Power-up Timer then keeps the device in RESET for TPWRT (parameter #33, about 72 mS). If VDD should fall below VBOR during TPWRT, the Brown-out Reset process will restart when VDD rises above VBOR, with the Power-up Timer Reset. The Power-up Timer is always enabled when the Brown-out Reset circuit is enabled, regardless of the state of the PWRT configuration bit.

12.9 Time-out Sequence

On power-up, the time-out sequence is as follows: the PWRT delay starts (if enabled) when a POR Reset occurs. Then, OST starts counting 1024 oscillator cycles when PWRT ends (LP, XT, HS). When the OST ends, the device comes out of RESET.

If MCLR is kept low long enough, all delays will expire. Bringing MCLR high will begin execution immediately. This is useful for testing purposes or to synchronize more than one PIC16F7X device operating in parallel.

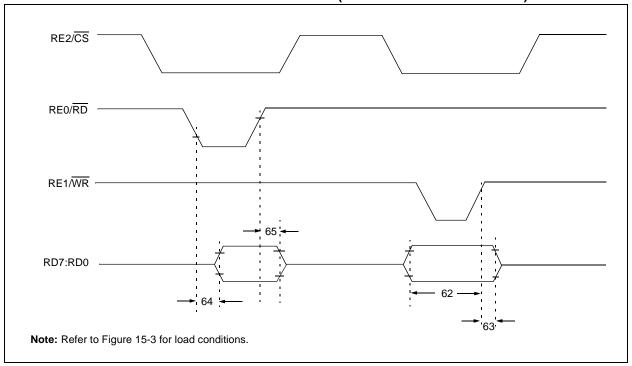
Table 12-5 shows the RESET conditions for the STATUS, PCON and PC registers, while Table 12-6 shows the RESET conditions for all the registers.

TABLE 14-1: DEVELOPMENT TOOLS FROM MICROCHIP

	PIC12	PIC1	PIC16	PIC16	PIC160	PIC16	PIC16	PIC16	PIC16	PIC16	PIC160	71)Iq	DTIDIA	PIC180	PIC18F	83C) 52C) 54C)	(SOH	мскғ	МСР2
MPLAB [®] Integrated Development Environment	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>				
MPLAB [®] C17 C Compiler												>	>						
MPLAB [®] C18 C Compiler														~	~				
MPASM TM Assembler/ MPLINK TM Object Linker	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	~	>		
MPLAB® ICE In-Circuit Emulator	>	>	>	>	~	**`	>	>	>	>	>	>	>	>	>				
ICEPIC TM In-Circuit Emulator	>		>	>	>		>	>	>		>								
eb MPLAB® ICD In-Circuit Debugger				*>			*		<u> </u>	>					>				
PICSTART [®] Plus Entry Level Development Programmer	>	>	>	>	>	**`	>	>	>	>	>	>	>	>	>				
ner	>	>	>	>	>	** ^	>	>	>	>	>	>	>	>	~	~	^		
PICDEM TM 1 Demonstration Board			>		>		÷,		>			>							
PICDEM TM 2 Demonstration Board				+			÷,							>	^				
PICDEM TM 3 Demonstration Board											>								
ट्र PICDEM TM 14A Demonstration छ Board		>																	
PICDEM TM 17 Demonstration Board							1						>						
																	>		
KEELoa® Transponder Kit																	>		
e microlD™ Programmer's Kit																		~	
0 125 kHz microID™ Developer's Kit																		>	
125 kHz Anticollision microlD™ Developer's Kit																		>	
13.56 MHz Anticollision microlD TM Developer's Kit																		>	
MCP2510 CAN Developer's Kit																			>

© 2002 Microchip Technology Inc.

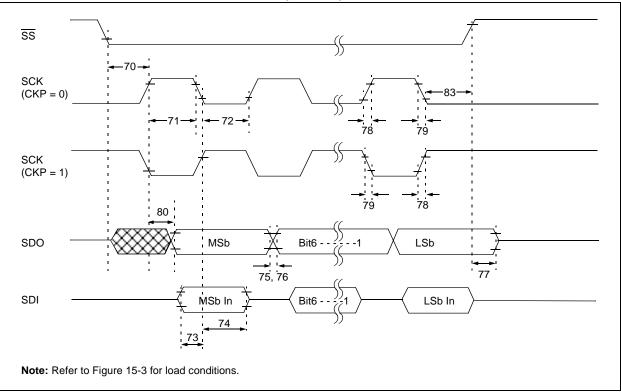
15.0 ELECTRICAL CHARACTERISTICS

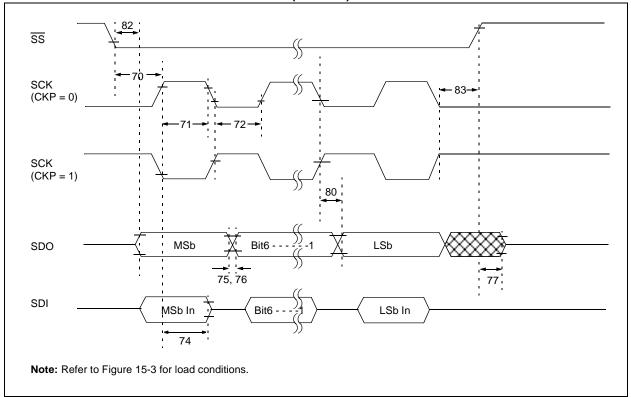

Absolute Maximum Ratings †

Ambient temperature under bias	55 to +125°C
Storage temperature	
Voltage on any pin with respect to Vss (except VDD, MCLR. and RA4)	
Voltage on VDD with respect to Vss	
Voltage on MCLR with respect to Vss (Note 2)	
Voltage on RA4 with respect to Vss	
Total power dissipation (Note 1)	
Maximum current out of Vss pin	
Maximum current into VDD pin	
Input clamp current, Iк (Vi < 0 or Vi > VDD)	
Output clamp current, loк (Vo < 0 or Vo > Voo)	
Maximum output current sunk by any I/O pin	
Maximum output current sourced by any I/O pin	
Maximum current sunk by PORTA, PORTB, and PORTE (combined) (Note 3)	200 mA
Maximum current sourced by PORTA, PORTB, and PORTE (combined) (Note 3)	
Maximum current sunk by PORTC and PORTD (combined) (Note 3)	200 mA
Maximum current sourced by PORTC and PORTD (combined) (Note 3)	
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD - V	$√$ ОН) x IOH} + Σ (VOI x IOL)
 Voltage spikes at the MCLR pin may cause latchup. A series resistor of greater the to pull MCLR to VDD, rather than tying the pin directly to VDD. 	nan 1 k Ω should be used

3: PORTD and PORTE are not implemented on the PIC16F73/76 devices.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.


TABLE 15-6: PARALLEL SLAVE PORT REQUIREMENTS (PIC16F74/77 DEVICES ONLY)


Parameter No.	Symbol	Characteristic		Min	Тур†	Max	Units	Conditions
62	TdtV2wrH	Data in valid before WR↑ or CS1	`(setup time)	20 25	_	_	ns ns	Extended range only
63*	TwrH2dtl	₩R↑ or CS↑ to data in invalid (hold time)	Standard(F) Extended(LF)	20 35			ns ns	
64	TrdL2dtV	$\overline{RD}\downarrow$ and $\overline{CS}\downarrow$ to data out valid				80 90	ns ns	Extended range only
65	TrdH2dtl	\overline{RD} or \overline{CS} to data out invalid		10	—	30	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

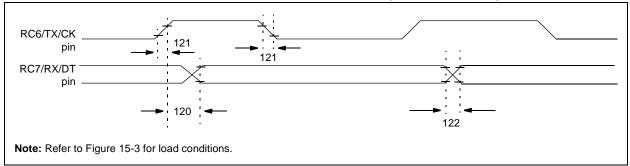


FIGURE 15-14: SPI SLAVE MODE TIMING (CKE = 1)

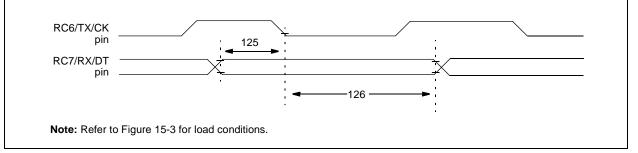


TABLE 15-10: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param No.	Symbol	Characteristic			Тур†	Max	Units	Conditions
120	TckH2dtV	<u>SYNC XMIT (MASTER &</u> <u>SLAVE)</u>	Standard(F)		_	80	ns	
		Clock high to data out valid	Extended(LF)	_	—	100	ns	
121	Tckrf	Clock out rise time and fall	Standard(F)	_	—	45	ns	
time	ime (Master mode)	Extended(LF)	—	—	50	ns		
122	Tdtrf	Data out rise time and fall	Standard(F)	_	—	45	ns	
		time	Extended(LF)		—	50	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

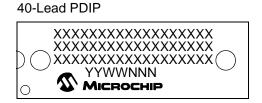
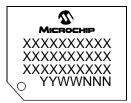
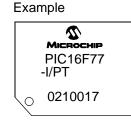


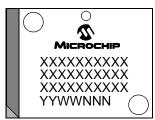
TABLE 15-11: USART SYNCHRONOUS RECEIVE REQUIREMENTS


Parameter No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions
125		<u>SYNC RCV (MASTER & SLAVE)</u> Data setup before CK↓ (DT setup time)	15			ns	
126	TckL2dtl	Data hold after CK↓ (DT hold time)	15			ns	


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Package Marking Information (Cont'd)

44-Lead TQFP

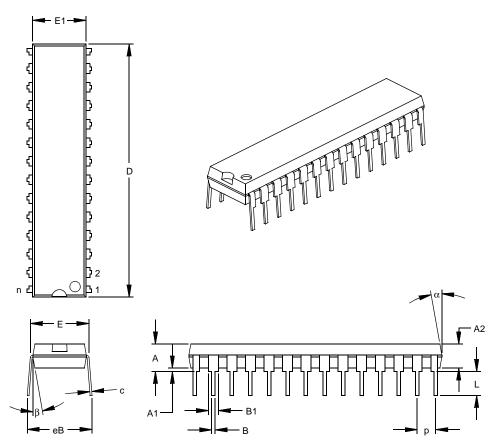

Example

Ο

PIC16F77-I/P

0210017

44-Lead PLCC


Example

17.2 **Package Details**

The following sections give the technical details of the packages.

28-Lead Skinny Plastic Dual In-line (SP) – 300 mil (PDIP)

	Units	INCHES*			MILLIMETERS			
Dimension	n Limits	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		28			28		
Pitch	р		.100			2.54		
Top to Seating Plane	Α	.140	.150	.160	3.56	3.81	4.06	
Molded Package Thickness	A2	.125	.130	.135	3.18	3.30	3.43	
Base to Seating Plane	A1	.015			0.38			
Shoulder to Shoulder Width	Е	.300	.310	.325	7.62	7.87	8.26	
Molded Package Width	E1	.275	.285	.295	6.99	7.24	7.49	
Overall Length	D	1.345	1.365	1.385	34.16	34.67	35.18	
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43	
Lead Thickness	с	.008	.012	.015	0.20	0.29	0.38	
Upper Lead Width	B1	.040	.053	.065	1.02	1.33	1.65	
Lower Lead Width	В	.016	.019	.022	0.41	0.48	0.56	
Overall Row Spacing §	eB	.320	.350	.430	8.13	8.89	10.92	
Mold Draft Angle Top	α	5	10	15	5	10	15	
Mold Draft Angle Bottom	β	5	10	15	5	10	15	

* Controlling Parameter

§ Significant Characteristic

Dimension D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed

.010" (0.254mm) per side. JEDEC Equivalent: MO-095

Drawing No. C04-070

Notes:

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To:	Technical Publications Manager To	tal Pages Sent						
RE:	Reader Response							
From:	n: Name							
	Company							
	Address							
	City / State / ZIP / Country							
	Telephone:	()						
	lication (optional):							
Would	ıld you like a reply?YN							
Devic	Device: PIC16F7X Literature Number: DS30325B							
Quest	stions:							
1. W	What are the best features of this document?							
2. H	How does this document meet your hardware and software develop	ment needs?						
3. D	Do you find the organization of this data sheet easy to follow? If not	why?						
4. W	. What additions to the data sheet do you think would enhance the structure and subject?							
5. W	What deletions from the data sheet could be made without affecting	the overall usefulness?						
_								
6. Is	Is there any incorrect or misleading information (what and where)?							
7. H	How would you improve this document?							
8. H	How would you improve our software, systems, and silicon products	?						