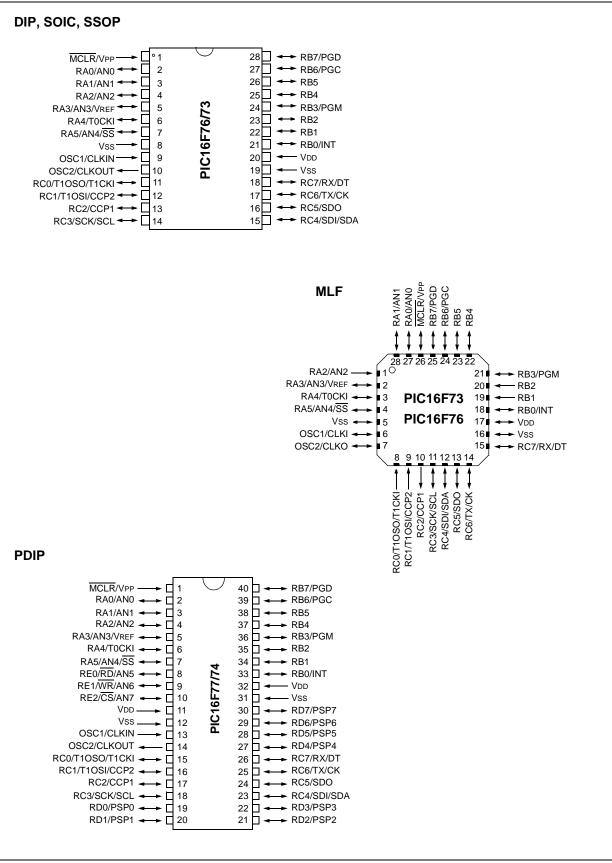


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf73-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

1.0 **DEVICE OVERVIEW**

This document contains device specific information about the following devices:

- PIC16F73
- PIC16F74
- PIC16F76
- PIC16F77

PIC16F73/76 devices are available only in 28-pin packages, while PIC16F74/77 devices are available in 40-pin and 44-pin packages. All devices in the PIC16F7X family share common architecture, with the following differences:

- The PIC16F73 and PIC16F76 have one-half of the total on-chip memory of the PIC16F74 and **PIC16F77**
- The 28-pin devices have 3 I/O ports, while the 40/44-pin devices have 5
- · The 28-pin devices have 11 interrupts, while the 40/44-pin devices have 12
- The 28-pin devices have 5 A/D input channels, while the 40/44-pin devices have 8
- The Parallel Slave Port is implemented only on the 40/44-pin devices

PIC16F7X DEVICE FEATURES **PIC16F74 PIC16F76 Key Features PIC16F73 PIC16F77 Operating Frequency** DC - 20 MHz DC - 20 MHz DC - 20 MHz DC - 20 MHz **RESETS** (and Delays) POR, BOR POR. BOR POR. BOR POR, BOR (PWRT, OST) (PWRT, OST) (PWRT, OST) (PWRT, OST) FLASH Program Memory 4K 4K 8K 8K (14-bit words) Data Memory (bytes) 368 192 192 368 Interrupts 11 12 11 12 I/O Ports Ports A,B,C Ports A,B,C Ports A,B,C,D,E Ports A,B,C,D,E Timers 3 3 3 3 Capture/Compare/PWM Modules 2 2 2 2 SSP, USART Serial Communications SSP, USART SSP. USART SSP, USART Parallel Communications PSP PSP 8-bit Analog-to-Digital Module **5 Input Channels** 8 Input Channels 5 Input Channels 8 Input Channels Instruction Set **35 Instructions 35 Instructions** 35 Instructions **35 Instructions** Packaging 28-pin DIP 40-pin PDIP 28-pin DIP 40-pin PDIP 28-pin SOIC 44-pin PLCC 28-pin SOIC 44-pin PLCC 28-pin SSOP 44-pin TQFP 28-pin SSOP 44-pin TQFP 28-pin MLF 28-pin MLF

TABLE 1-1:

The available features are summarized in Table 1-1. Block diagrams of the PIC16F73/76 and PIC16F74/77 devices are provided in Figure 1-1 and Figure 1-2, respectively. The pinouts for these device families are listed in Table 1-2 and Table 1-3.

Additional information may be found in the PICmicro™ Mid-Range Reference Manual (DS33023), which may be obtained from your local Microchip Sales Representative or downloaded from the Microchip website. The Reference Manual should be considered a complementary document to this data sheet, and is highly recommended reading for a better understanding of the device architecture and operation of the peripheral modules.

2.2.2.4 PIE1 Register

The PIE1 register contains the individual enable bits for the peripheral interrupts.

Note: Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

REGISTER 2-4: PIE1 REGISTER (ADDRESS 8Ch)

		•		•				
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE
	bit 7							bit 0
bit 7	PSPIE ⁽¹⁾ :	Parallel Slav	e Port Read	d/Write Inter	rupt Enable	bit		
	1 = Enable	es the PSP r	ead/write int	terrupt				
	0 = Disabl	es the PSP	read/write in	terrupt				
bit 6	ADIE: A/D	Converter I	nterrupt Ena	able bit				
		es the A/D co						
	0 = Disabl	es the A/D c	onverter inte	errupt				
bit 5		ART Receive	•					
		es the USAR		•				
		es the USAF						
bit 4		RT Transmi	-					
		es the USAR						
h # 0		es the USAF			hla h:+			
bit 3	•	nchronous S		iterrupt Ena	DIE DIT			
		es the SSP in es the SSP i						
bit 2		CP1 Interru		i+				
		es the CCP1	•	it i				
		es the CCP	•					
bit 1		MR2 to PR		rrupt Enable	e bit			
		es the TMR2		•				
		es the TMR2						
bit 0	TMR1IE: T	MR1 Overfl	ow Interrupt	Enable bit				
		es the TMR1						
		es the TMR'		•				

Note 1: PSPIE is reserved on 28-pin devices; always maintain this bit clear.

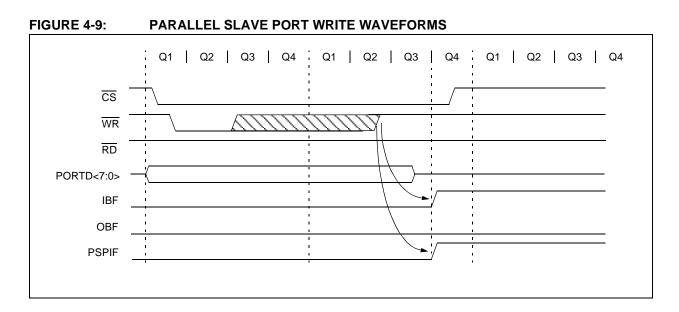
Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

x = Bit is unknown

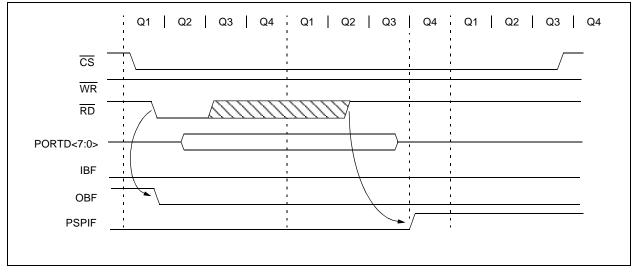
PCON Register 2.2.2.8

The Power Control (PCON) register contains flag bits to allow differentiation between a Power-on Reset (POR), a Brown-out Reset (BOR), a Watchdog Reset (WDT) and an external MCLR Reset.

BOR is unknown on POR. It must be set by Note: the user and checked on subsequent RESETS to see if BOR is clear, indicating a brown-out has occurred. The BOR status bit is not predictable if the brown-out circuit is disabled (by clearing the BODEN bit in the configuration word).


REGISTER 2-8: PCON REGISTER (ADDRESS 8Eh)

- n = Value at POR reset


	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-1					
	_	_	_		—		POR	BOR					
	bit 7							bit 0					
bit 7-2	Unimplem	ented: Rea	d as '0'										
bit 1	POR: Pow	POR: Power-on Reset Status bit											
	1 = No Power-on Reset occurred												
	0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)												
bit 0	BOR: Brov	vn-out Rese	t Status bit										
	1 = No Bro	wn-out Res	et occurred										
	0 = A Brow	n-out Rese	t occurred (m	lust be set in	software af	ter a Brown	-out Reset of	occurs)					
	Legend:												
	R = Reada	ble bit	W = W	ritable bit	U = Unim	plemented l	bit, read as	'0'					

'0' = Bit is cleared

'1' = Bit is set

FIGURE 4-10: PARALLEL SLAVE PORT READ WAVEFORMS

TABLE 4-11: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
08h	PORTD	Port data I	Port data latch when written: Port pins when read							xxxx xxxx	uuuu uuuu
09h	PORTE	—		—		—	RE2	RE1	RE0	xxx	uuu
89h	TRISE	IBF	OBF	IBOV	PSPMODE	_	PORTE D	PORTE Data Direction Bits		0000 -111	0000 -111
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
9Fh	ADCON1	_	_	_	_	_	PCFG2	PCFG1	PCFG0	000	000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Parallel Slave Port.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76; always maintain these bits clear.

10.0 UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (USART)

The Universal Synchronous Asynchronous Receiver Transmitter (USART) module is one of the two serial I/O modules. (USART is also known as a Serial Communications Interface or SCI.) The USART can be configured as a full duplex asynchronous system that can communicate with peripheral devices, such as CRT terminals and personal computers, or it can be configured as a half duplex synchronous system that can communicate with peripheral devices, such as A/D or D/A integrated circuits, serial EEPROMs, etc. The USART can be configured in the following modes:

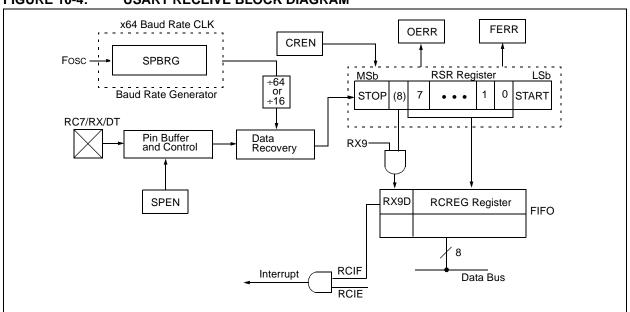
- Asynchronous (full duplex)
- Synchronous Master (half duplex)
- Synchronous Slave (half duplex)

Bit SPEN (RCSTA<7>) and bits TRISC<7:6> have to be set in order to configure pins RC6/TX/CK and RC7/RX/DT as the Universal Synchronous Asynchronous Receiver Transmitter.

REGISTER 10-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER (ADDRESS 98h)

	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R-1	R/W-0
	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D
	bit 7							bit 0
bit 7	CSRC: Clo	ock Source S	Select bit					
	Asynchron	ous mode:						
	Don't care							
	Synchrono							
		· mode (clock mode (clock			om BRG)			
bit 6	TX9 : 9-bit	Transmit Ena	able bit					
		s 9-bit transn						
1.11.5		s 8-bit transn						
bit 5		nsmit Enable nit enabled	e dit					
		nit disabled						
	Note:	SREN/CRE	N overrides	TXEN in Sy	nc mode.			
bit 4	SYNC: US	ART Mode S	Select bit					
		ronous mode						
	-	nronous mod						
bit 3	-	ented: Read						
bit 2	-	gh Baud Rate	e Select bit					
	Asynchron							
	1 = High sp 0 = Low sp							
	Synchrono							
	Unused in							
bit 1	TRMT: Tra	nsmit Shift R	Register Stat	us bit				
	1 = TSR ei							
1 1 0	0 = TSR fu							
bit 0	Can be par	bit of Transr	nit Data					
	oun be pu							
	Legend:							
	R = Reada	ble bit	W = W	/ritable bit	U = Unir	nplemented	bit, read as	ʻ0'

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
- n = Value at POR reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

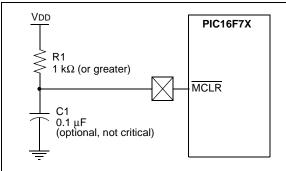

10.2.2 USART ASYNCHRONOUS RECEIVER

The receiver block diagram is shown in Figure 10-4. The data is received on the RC7/RX/DT pin and drives the data recovery block. The data recovery block is actually a high speed shifter operating at x16 times the baud rate, whereas the main receive serial shifter operates at the bit rate, or at FOSC.

Once Asynchronous mode is selected, reception is enabled by setting bit CREN (RCSTA<4>).

The heart of the receiver is the receive (serial) shift register (RSR). After sampling the STOP bit, the received data in the RSR is transferred to the RCREG register (if it is empty). If the transfer is complete, flag bit RCIF (PIR1<5>) is set. The actual interrupt can be enabled/ disabled by setting/clearing enable bit RCIE (PIE1<5>). Flag bit RCIF is a read only bit which is cleared by the hardware. It is cleared when the RCREG register has been read and is empty. The RCREG is a double buffered register (i.e., it is a two deep FIFO). It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting to the RSR register. On the detection of the STOP bit of the third byte, if the RCREG register is still full, the overrun error bit OERR (RCSTA<1>) will be set. The word in the RSR will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Overrun bit OERR has to be cleared in software. This is done by resetting the receive logic (CREN is cleared and then set). If bit OERR is set, transfers from the RSR register to the RCREG register are inhibited and no further data will be received, therefore, it is essential to clear error bit OERR if it is set. Framing error bit FERR (RCSTA<2>) is set if a STOP bit is detected as clear. Bit FERR and the 9th receive bit are buffered the same way as the receive data. Reading the RCREG will load bits RX9D and FERR with new values, therefore, it is essential for the user to read the RCSTA register before reading RCREG register, in order not to lose the old FERR and RX9D information.

NOTES:


12.4 MCLR

PIC16F7X devices have a noise filter in the $\overline{\text{MCLR}}$ Reset path. The filter will detect and ignore small pulses.

It should be noted that a WDT Reset does not drive MCLR pin low.

The behavior of the ESD protection on the $\overline{\text{MCLR}}$ pin has been altered from previous devices of this family. Voltages applied to the pin that exceed its specification can result in both $\overline{\text{MCLR}}$ Resets and excessive current beyond the device specification during the ESD event. For this reason, Microchip recommends that the $\overline{\text{MCLR}}$ pin no longer be tied directly to VDD. The use of an RC network, as shown in Figure 12-5, is suggested.

12.5 Power-on Reset (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.2V - 1.7V). To take advantage of the POR, tie the MCLR pin to VDD as described in Section 12.4. A maximum rise time for VDD is specified. See the Electrical Specifications for details.

When the device starts normal operation (exits the RESET condition), device operating parameters (voltage, frequency, temperature,...) must be met to ensure operation. If these conditions are not met, the device must be held in RESET until the operating conditions are met. For additional information, refer to Application Note, AN607, "Power-up Trouble Shooting" (DS00607).

12.6 Power-up Timer (PWRT)

The Power-up Timer provides a fixed 72 ms nominal time-out on power-up only from the POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in RESET as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an accept-able level. A configuration bit is provided to enable/ disable the PWRT.

The power-up time delay will vary from chip to chip, due to VDD, temperature and process variation. See DC parameters for details (TPWRT, parameter #33).

12.7 Oscillator Start-up Timer (OST)

The Oscillator Start-up Timer (OST) provides 1024 oscillator cycles (from OSC1 input) delay after the PWRT delay is over (if enabled). This helps to ensure that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset, or wake-up from SLEEP.

12.8 Brown-out Reset (BOR)

The configuration bit, BODEN, can enable or disable the Brown-out Reset circuit. If VDD falls below VBOR (parameter D005, about 4V) for longer than TBOR (parameter #35, about 100 μ S), the brown-out situation will reset the device. If VDD falls below VBOR for less than TBOR, a RESET may not occur.

Once the brown-out occurs, the device will remain in Brown-out Reset until VDD rises above VBOR. The Power-up Timer then keeps the device in RESET for TPWRT (parameter #33, about 72 mS). If VDD should fall below VBOR during TPWRT, the Brown-out Reset process will restart when VDD rises above VBOR, with the Power-up Timer Reset. The Power-up Timer is always enabled when the Brown-out Reset circuit is enabled, regardless of the state of the PWRT configuration bit.

12.9 Time-out Sequence

On power-up, the time-out sequence is as follows: the PWRT delay starts (if enabled) when a POR Reset occurs. Then, OST starts counting 1024 oscillator cycles when PWRT ends (LP, XT, HS). When the OST ends, the device comes out of RESET.

If MCLR is kept low long enough, all delays will expire. Bringing MCLR high will begin execution immediately. This is useful for testing purposes or to synchronize more than one PIC16F7X device operating in parallel.

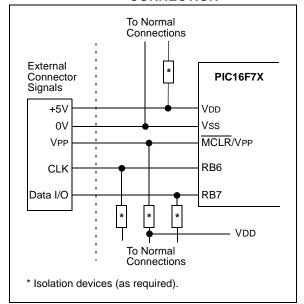
Table 12-5 shows the RESET conditions for the STATUS, PCON and PC registers, while Table 12-6 shows the RESET conditions for all the registers.

OSC1 // CLKOUT ⁽⁴⁾	Q1 Q2 Q3 Q4'; Q1 \/		Q1 Q2 Q3 Q4 ___\	; Q1 Q2 Q3 Q4; /~~~~~/ \/	Q1 Q2 Q3 Q4; (21 Q2 Q3 Q4' \/_\/_'
INT pin	1			<u> </u>	<u> </u>	I
INTF Flag (INTCON<1>)		<u>`</u>		Interrupt Latency (Note 2)		
GIE bit (INTCON<7>)	Processo SLEEF				i	 1
INSTRUCTION FLOW	1	· · · ·	1		1	1
PC X PC X	PC+1 X	PC+2 X	PC+2	<u> PC+2</u>	<u> 0004h X</u>	0005h
Instruction Fetched Inst(PC) = SLEEP	Inst(PC + 1)	1 1 1	Inst(PC + 2)		Inst(0004h)	Inst(0005h)
Instruction Executed { Inst(PC - 1)	SLEEP	1 1 1	Inst(PC + 1)	Dummy cycle	Dummy cycle	Inst(0004h)
3: GIE = '1' assumed. In If GIE = '0', execution	awing not to scale) This dela this case after wake- up, the	e processor jum	ps to the interrup	ot routine.		

FIGURE 12-12: WAKE-UP FROM SLEEP THROUGH INTERRUPT

12.15 Program Verification/Code Protection

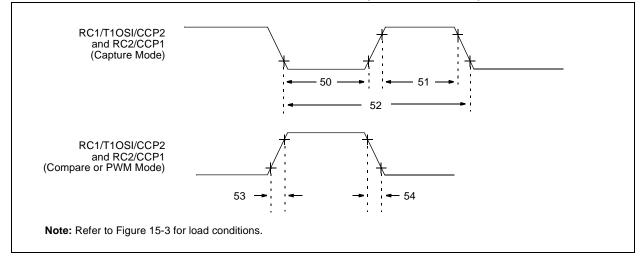
If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.


12.16 ID Locations

Four memory locations (2000h - 2003h) are designated as ID locations, where the user can store checksum or other code identification numbers. These locations are not accessible during normal execution, but are readable and writable during program/verify. It is recommended that only the 4 Least Significant bits of the ID location are used.

12.17 In-Circuit Serial Programming

PIC16F7X microcontrollers can be serially programmed while in the end application circuit. This is simply done, with two lines for clock and data and three other lines for power, ground, and the programming voltage (see Figure 12-13 for an example). This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed. For general information of serial programming, please refer to the In-Circuit Serial Programming (ICSP[™]) Guide (DS30277). For specific details on programming commands and operations for the PIC16F7X devices, please refer to the latest version of the PIC16F7X FLASH Program Memory Programming Specification (DS30324).


PIC16F7X

SWAPF	Swap Nibbles in f					
Syntax:	[label] SWAPF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$					
Operation:	$(f<3:0>) \rightarrow (destination<7:4>), (f<7:4>) \rightarrow (destination<3:0>)$					
Status Affected:	None					
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed in register 'f'.					

XORWF	Exclusive OR W with f			
Syntax:	[label] XORWF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$			
Operation:	(W) .XOR. (f) \rightarrow (destination)			
Status Affected:	Z			
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.			

XORLW	Exclusive OR Literal with W					
Syntax:	[<i>label</i>] XORLW k					
Operands:	$0 \le k \le 255$					
Operation:	(W) .XOR. $k \rightarrow (W)$					
Status Affected:	Z					
Description:	The contents of the W register are XOR'ed with the eight-bit literal 'k'. The result is placed in the W register.					

FIGURE 15-9: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)

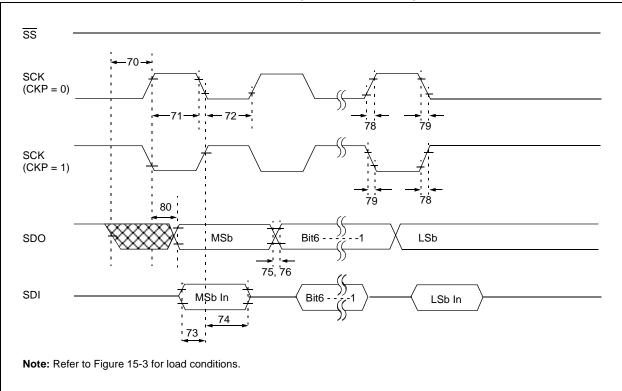
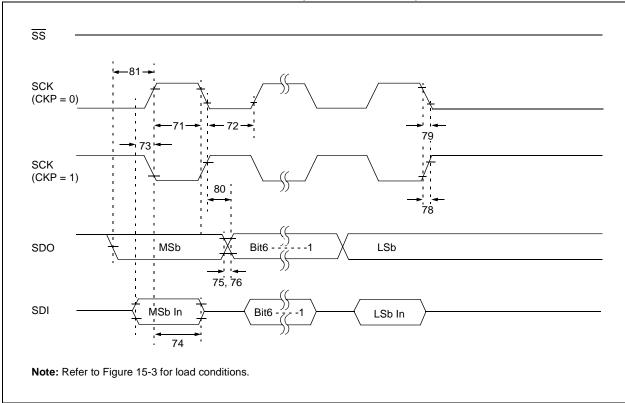


TABLE 15-5: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)


Param No.	Symbol		Characteristic	Min	Тур†	Max	Units	Conditions	
50*	TccL	CCP1 and CCP2	No Prescaler		0.5Tcy + 20			ns	
		nput low time		Standard(F)	10	—		ns	
		With Prescaler	Extended(LF)	20	—		ns		
51*	ТссН	CCP1 and CCP2	No Prescaler		0.5Tcy + 20	—		ns	
		input high time		Standard(F)	10	—		ns	
			With Prescaler	Extended(LF)	20	—		ns	
52*	TccP	CCP1 and CCP2 in	nput period		<u>3Tcy + 40</u> N	-	_	ns	N = prescale value (1,4 or 16)
53*	TccR	CCP1 and CCP2 of	output rise time	Standard(F)	—	10	25	ns	
				Extended(LF)	—	25	50	ns	
54*	TccF	CCP1 and CCP2 of	CP1 and CCP2 output fall time		—	10	25	ns	
				Extended(LF)	—	25	45	ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 15-11: SPI MASTER MODE TIMING (CKE = 0, SMP = 0)

FIGURE 15-12: SPI MASTER MODE TIMING (CKE = 1, SMP = 1)

TABLE 15-12: A/D CONVERTER CHARACTERISTICS: PIC16F7X (INDUSTRIAL, EXTENDED) PIC16LF7X (INDUSTRIAL)

Param No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
A01	Nr	Resolution PIC16F7X			_	8 bits	bit	$\begin{array}{l} \text{VREF} = \text{VDD} = 5.12\text{V},\\ \text{VSS} \leq \text{VAIN} \leq \text{VREF} \end{array}$
			PIC16LF7X	—	_	8 bits	bit	VREF = VDD = 2.2V
A02	Eabs	Total absolute error		—	—	< ±1	LSb	VREF = VDD = 5.12V, VSS ≤ VAIN ≤ VREF
A03	EIL	Integral linearity error		—	_	< ±1	LSb	VREF = VDD = 5.12V, VSS ≤ VAIN ≤ VREF
A04	Edl	Differential linearity error		—	—	< ±1	LSb	VREF = VDD = 5.12V, $VSS \le VAIN \le VREF$
A05	Efs	Full scale error		—	—	< ±1	LSb	VREF = VDD = 5.12V, $VSS \le VAIN \le VREF$
A06	EOFF	Offset error		—	—	< ±1	LSb	VREF = VDD = 5.12V, $VSS \le VAIN \le VREF$
A10	—	Monotonicity (No	ote 3)	_	guaranteed	_	—	$VSS \le VAIN \le VREF$
A20	Vref	Reference voltage		2.5 2.2		5.5 5.5	V V	-40°C to +125°C 0°C to +125°C
A25	VAIN	Analog input vol	age	Vss - 0.3		Vref + 0.3	V	
A30	ZAIN	Recommended impedance of analog voltage source		—	—	10.0	kΩ	
A40	IAD	A/D conversion	PIC16F7X	_	180	_	μΑ	Average current
	current (VDD) PIC16LF7X		PIC16LF7X		90	—	μA	consumption when A/D is on (Note 1) .
A50	IREF	VREF input current (Note 2)		N/A —		±5 500	μΑ μΑ	During VAIN acquisition. During A/D Conversion cycle.

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from the RA3 pin or the VDD pin, whichever is selected as a reference input.

3: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

NOTES:

FIGURE 16-7: AVERAGE FOSC vs. VDD FOR VARIOUS VALUES OF R (RC MODE, C = 20 pF, 25°C)

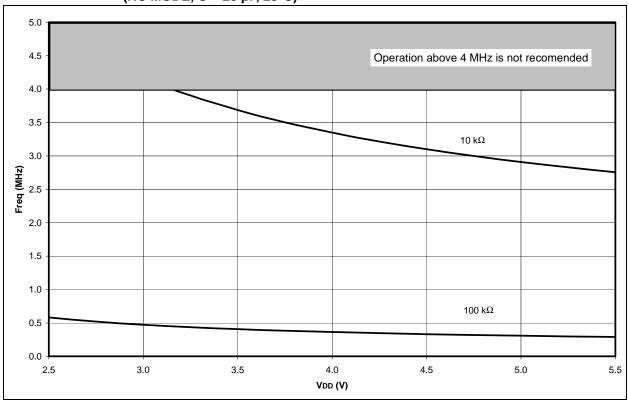
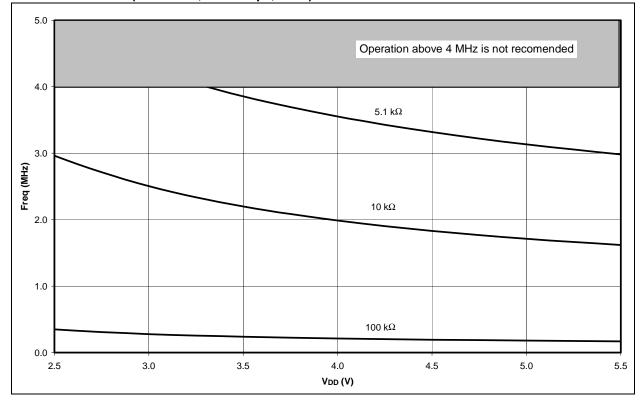
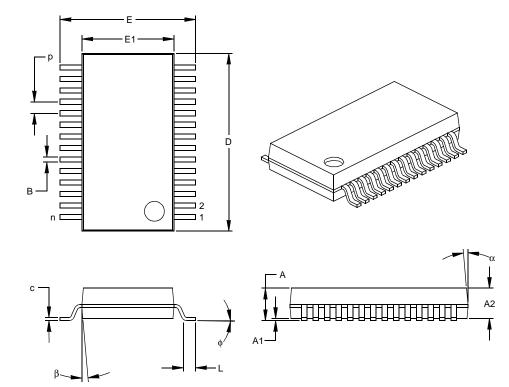
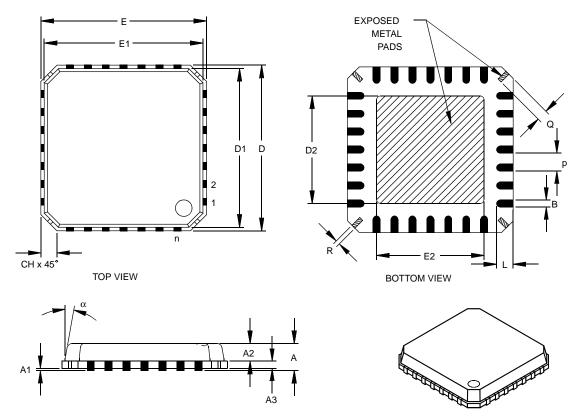




FIGURE 16-8: AVERAGE Fosc vs. VDD FOR VARIOUS VALUES OF R (RC MODE, C = 100 pF, 25°C)

28-Lead Plastic Shrink Small Outline (SS) – 209 mil, 5.30 mm (SSOP)


	INCHES			MILLIMETERS*			
Dimensior	n Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.026			0.65	
Overall Height	Α	.068	.073	.078	1.73	1.85	1.98
Molded Package Thickness	A2	.064	.068	.072	1.63	1.73	1.83
Standoff §	A1	.002	.006	.010	0.05	0.15	0.25
Overall Width	Е	.299	.309	.319	7.59	7.85	8.10
Molded Package Width	E1	.201	.207	.212	5.11	5.25	5.38
Overall Length	D	.396	.402	.407	10.06	10.20	10.34
Foot Length	L	.022	.030	.037	0.56	0.75	0.94
Lead Thickness	С	.004	.007	.010	0.10	0.18	0.25
Foot Angle	¢	0	4	8	0.00	101.60	203.20
Lead Width	В	.010	.013	.015	0.25	0.32	0.38
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom β		0	5	10	0	5	10

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-150 Drawing No. C04-073

28-Lead Plastic Micro Leadframe Package (MF) 6x6 mm Body (MLF)

	INCHES			MILLIMETERS*			
Dimensi	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins			28			28	
Pitch	р	.026 BSC		0.65 BSC			
Overall Height	А		.033	.039		0.85	1.00
Molded Package Thickness	A2		.026	.031		0.65	0.80
Standoff	A1	.000	.0004	.002	0.00	0.01	0.05
Base Thickness A3			.008 REF.		0.20 REF.		
Overall Width E		.236 BSC			6.00 BSC		
Molded Package Width E1		.226 BSC			5.75 BSC		
Exposed Pad Width	E2	.140	.146	.152	3.55	3.70	3.85
Overall Length	D	.236 BSC			6.00 BSC		
Molded Package Length	D1		.226 BSC		5.75 BSC		
Exposed Pad Length	D2	.140	.146	.152	3.55	3.70	3.85
Lead Width	В	.009	.011	.014	0.23	0.28	0.35
Lead Length	L	.020	.024	.030	0.50	0.60	0.75
Tie Bar Width	R	.005	.007	.010	0.13	0.17	0.23
Tie Bar Length	Q	.012	.016	.026	0.30	0.40	0.65
Chamfer	СН	.009	.017	.024	0.24	0.42	0.60
Mold Draft Angle Top	α			12 [°]			12 °

A3

*Controlling Parameter

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC equivalent: pending

Drawing No. C04-114

APPENDIX A: REVISION HISTORY

Version	Date	Revision Description
A	2000	This is a new data sheet. How- ever, these devices are similar to the PIC16C7X devices found in the PIC16C7X Data Sheet (DS30390) or the PIC16F87X devices (DS30292).
В	2001	Final data sheet. Includes device characterization data. Addition of extended temperature devices. Addition of 28-pin MLF package. Minor typographic revisions throughout.

APPENDIX B: DEVICE DIFFERENCES

The differences between the devices in this data sheet are listed in Table B-1.

TABLE B-1:DEVICE DIFFERENCES

Difference	PIC16F73	PIC16F74	PIC16F76	PIC16F77
FLASH Program Memory (14-bit words)	4K	4K	8K	8K
Data Memory (bytes)	192	192	368	368
I/O Ports	3	5	3	5
A/D	5 channels, 8 bits	8 channels, 8 bits	5 channels, 8 bits	8 channels, 8 bits
Parallel Slave Port	no	yes	no	yes
Interrupt Sources	11	12	11	12
Packages	28-pin PDIP 28-pin SOIC 28-pin SSOP 28-pin MLF	40-pin PDIP 44-pin TQFP 44-pin PLCC	28-pin PDIP 28-pin SOIC 28-pin SSOP 28-pin MLF	40-pin PDIP 44-pin TQFP 44-pin PLCC

PORTE Register			. 37
Postscaler, WDT			
Assignment (PSA bit)			
Rate Select (PS2:PS0 bits)			. 20
Power-down Mode. See SLEEP			
Power-on Reset (POR)89,			
Oscillator Start-up Timer (OST)		89,	94
POR Status (POR bit)			.25
Power Control (PCON) Register			.95
Power-down (PD bit)			.93
Power-up Timer (PWRT)		89,	94
Time-out (TO bit)			
PR2 Register			.51
Prescaler, Timer0			
Assignment (PSA bit)			.20
Rate Select (PS2:PS0 bits)			
PRO MATE II Universal Device Programmer			
Program Counter			
RESET Conditions			. 95
Program Memory			
Associated Registers			
Interrupt Vector			.13
Memory and Stack Maps			
Operation During Code Protect			
Organization			
Paging			
PMADR Register			
PMADRH Register			
Reading FLASH			
Reading, PMADR Register			
Reading, PMADRH Register			
Reading, PMCON1 Register			
Reading, PMDATA Register			
Reading, PMDATH Register			
RESET Vector			
Program Verification			
Programming Pin (VPP)			
Programming, Device Instructions			
PUSH			
R			
R/W bit	.60.	66.	67
		ο Ω	

RA0/AN0 Pin	8,	10
RA1/AN1 Pin	8,	10
RA2/AN2 Pin	8,	10
RA3/AN3/VREF Pin	8,	10
RA4/T0CKI Pin		
RA5/SS/AN4 Pin		
RAM. See Data Memory	ĺ	
RB0/INT Pin	9,	11
RB1 Pin	9,	11
RB2 Pin	9,	11
RB3/PGM Pin	9,	11
RB4 Pin	9,	11
RB5 Pin	9,	11
RB6/PGC Pin	9,	11
RB7/PGD Pin	9,	11
RC0/T1OSO/T1CKI Pin	9,	11
RC1/T1OSI/CCP2 Pin		
RC2/CCP1 Pin		
RC3/SCK/SCL Pin	9,	11
RC4/SDI/SDA Pin	9,	11
RC5/SDO Pin	9,	11
RC6/TX/CK Pin		
RC7/RX/DT Pin	9,	11

RCSTA Register	
CREN bit	
OERR bit	
SPEN bit	
SREN bit	
RD0/PSP0 Pin	
RD1/PSP1 Pin	
RD2/PSP2 Pin	
RD3/PSP3 Pin	
RD4/PSP4 Pin	
RD5/PSP5 Pin RD6/PSP6 Pin	
RD7/PSP7 Pin	
RE0/RD/AN5 Pin	
RE1/WR/AN6 Pin	
RE2/CS/AN7 Pin	
Read-Modify-Write Operations	
Receive Overflow Indicator bit (SSPOV)	
Register File	
Registers	
ADCON0 (A/D Control 0)	83
ADCON0 (A/D Control 0) Register	
ADCON1 (A/D Control 1)	
ADCON1 (A/D Control 1) Register	
ADRES (A/D Result)	
CCP1CON/CCP2CON (CCP Control) Registers	s 54
Configuration Word Register	
Initialization Conditions (table)	96—97
INTCON (Interrupt Control)	21
INTCON (Interrupt Control) Register	21
OPTION_REG	
OPTION_REG Register	
PCON (Power Control)	
PCON (Power Control) Register	
PIE1 (Peripheral Interrupt Enable 1)	
PIE1 (Peripheral Interrupt Enable 1) Register	
PIE2 (Peripheral Interrupt Enable 2)	
PIE2 (Peripheral Interrupt Enable 2) Register	
PIR1 (Peripheral Interrupt Request 1) PIR1 (Peripheral Interrupt Request 1) Register	
PIR2 (Peripheral Interrupt Request 2)	
PIR2 (Peripheral Interrupt Request 2) PIR2 (Peripheral Interrupt Request 2) Register	
PMCON1 (Program Memory Control 1)	
Register	20
RCSTA (Receive Status and Control) Register	
	16-18
Special Function Summary	
Special Function, Summary SSPCON (Sync Serial Port Control) Register	
SSPCON (Sync Serial Port Control) Register	
SSPCON (Sync Serial Port Control) Register SSPSTAT (Sync Serial Port Status) Register	60
SSPCON (Sync Serial Port Control) Register SSPSTAT (Sync Serial Port Status) Register STATUS Register	60 19
SSPCON (Sync Serial Port Control) Register SSPSTAT (Sync Serial Port Status) Register STATUS Register T1CON (Timer 1 Control) Register	60 19 47
SSPCON (Sync Serial Port Control) Register SSPSTAT (Sync Serial Port Status) Register STATUS Register	60 19 47 52
SSPCON (Sync Serial Port Control) Register SSPSTAT (Sync Serial Port Status) Register STATUS Register T1CON (Timer 1 Control) Register T2CON (Timer2 Control) Register	60 19 47 52 38
SSPCON (Sync Serial Port Control) Register SSPSTAT (Sync Serial Port Status) Register STATUS Register T1CON (Timer 1 Control) Register T2CON (Timer2 Control) Register TRISE Register TXSTA (Transmit Status and Control) Register RESET	
SSPCON (Sync Serial Port Control) Register SSPSTAT (Sync Serial Port Status) Register STATUS Register T1CON (Timer 1 Control) Register T2CON (Timer2 Control) Register TRISE Register TXSTA (Transmit Status and Control) Register RESET Brown-out Reset (BOR). See Brown-out Reset	
SSPCON (Sync Serial Port Control) Register SSPSTAT (Sync Serial Port Status) Register STATUS Register T1CON (Timer 1 Control) Register T2CON (Timer2 Control) Register TRISE Register TXSTA (Transmit Status and Control) Register RESET Brown-out Reset (BOR). See Brown-out Reset MCLR Reset. See MCLR	
SSPCON (Sync Serial Port Control) Register SSPSTAT (Sync Serial Port Status) Register STATUS Register T1CON (Timer 1 Control) Register T2CON (Timer2 Control) Register TRISE Register TXSTA (Transmit Status and Control) Register RESET Brown-out Reset (BOR). See Brown-out Reset MCLR Reset. See MCLR Power-on Reset (POR). See Power-on Reset (I	
SSPCON (Sync Serial Port Control) Register SSPSTAT (Sync Serial Port Status) Register STATUS Register T1CON (Timer 1 Control) Register T2CON (Timer2 Control) Register TRISE Register TXSTA (Transmit Status and Control) Register RESET Brown-out Reset (BOR). See Brown-out Reset MCLR Reset. See MCLR Power-on Reset (POR). See Power-on Reset (I RESET Conditions for All Registers	
SSPCON (Sync Serial Port Control) Register SSPSTAT (Sync Serial Port Status) Register STATUS Register T1CON (Timer 1 Control) Register T2CON (Timer2 Control) Register TRISE Register TXSTA (Transmit Status and Control) Register RESET Brown-out Reset (BOR). See Brown-out Reset MCLR Reset. See MCLR Power-on Reset (POR). See Power-on Reset (I RESET Conditions for All Registers RESET Conditions for PCON Register	
SSPCON (Sync Serial Port Control) Register SSPSTAT (Sync Serial Port Status) Register STATUS Register T1CON (Timer 1 Control) Register T2CON (Timer2 Control) Register TRISE Register TXSTA (Transmit Status and Control) Register RESET Brown-out Reset (BOR). See Brown-out Reset MCLR Reset. See MCLR Power-on Reset (POR). See Power-on Reset (I RESET Conditions for All Registers RESET Conditions for PCON Register RESET Conditions for PCON Register	
SSPCON (Sync Serial Port Control) Register SSPSTAT (Sync Serial Port Status) Register STATUS Register T1CON (Timer 1 Control) Register T2CON (Timer2 Control) Register TRISE Register TXSTA (Transmit Status and Control) Register RESET Brown-out Reset (BOR). See Brown-out Reset MCLR Reset. See MCLR Power-on Reset (POR). See Power-on Reset (I RESET Conditions for All Registers RESET Conditions for PCON Register RESET Conditions for Program Counter RESET Conditions for STATUS Register	
SSPCON (Sync Serial Port Control) Register SSPSTAT (Sync Serial Port Status) Register STATUS Register T1CON (Timer 1 Control) Register T2CON (Timer2 Control) Register TRISE Register TXSTA (Transmit Status and Control) Register RESET Brown-out Reset (BOR). See Brown-out Reset MCLR Reset. See MCLR Power-on Reset (POR). See Power-on Reset (I RESET Conditions for All Registers RESET Conditions for PCON Register RESET Conditions for Program Counter RESET Conditions for STATUS Register RESET	
SSPCON (Sync Serial Port Control) Register SSPSTAT (Sync Serial Port Status) Register STATUS Register T1CON (Timer 1 Control) Register T2CON (Timer2 Control) Register TRISE Register TXSTA (Transmit Status and Control) Register RESET Brown-out Reset (BOR). See Brown-out Reset MCLR Reset. See MCLR Power-on Reset (POR). See Power-on Reset (I RESET Conditions for All Registers RESET Conditions for PCON Register RESET Conditions for Program Counter RESET Conditions for STATUS Register	