

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf73-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-3:PIC16F74 AND PIC16F77 PINOUT DESCRIPTION

OSC1/CLKI OSC1 CLKI OSC2/CLKO OSC2 CLKO MCLR/VPP MCLR VPP	13	14 15	30 31	1	ST/CMOS ⁽⁴⁾	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST buffer when configured in RC mode. Otherwise CMOS. External clock source input. Always associated with pin
CLKI OSC2/CLKO OSC2 CLKO <u>MCLR/VPP</u> MCLR	14	15	31	I		Oscillator crystal input or external clock source input. ST buffer when configured in RC mode. Otherwise CMOS. External clock source input. Always associated with pin
OSC2/CLKO OSC2 CLKO MCLR/VPP MCLR	14	15	31			CMOS. External clock source input. Always associated with pin
OSC2/CLKO OSC2 CLKO MCLR/VPP MCLR	14	15	31			External clock source input. Always associated with pin
OSC2 CLKO MCLR/VPP MCLR	14	15	31			
OSC2 CLKO MCLR/VPP MCLR	14	15	31	0		function OSC1 (see OSC1/CLKI, OSC2/CLKO pins).
CLKO MCLR/VPP MCLR				<u> </u>	I —	Oscillator crystal or clock output.
MCLR/Vpp MCLR				0		Oscillator crystal output.
MCLR/Vpp MCLR						Connects to crystal or resonator in Crystal Oscillator
MCLR/Vpp MCLR						mode.
MCLR				0		In RC mode, OSC2 pin outputs CLKO, which has 1/4
MCLR						the frequency of OSC1 and denotes the instruction
MCLR						cycle rate.
	1	2	18		ST	Master Clear (input) or programming voltage (output).
Vpp				I		Master Clear (Reset) input. This pin is an active low
VPP						RESET to the device.
				Р		Programming voltage input.
						PORTA is a bi-directional I/O port.
RA0/AN0	2	3	19		TTL	
RA0				I/O		Digital I/O.
AN0				I		Analog input 0.
RA1/AN1	3	4	20		TTL	
RA1				I/O		Digital I/O.
AN1				I		Analog input 1.
RA2/AN2	4	5	21		TTL	
RA2				I/O		Digital I/O.
AN2				I		Analog input 2.
RA3/AN3/Vref	5	6	22		TTL	
RA3				I/O		Digital I/O.
AN3				I		Analog input 3.
VREF				I		A/D reference voltage input.
RA4/T0CKI	6	7	23		ST	
RA4				I/O		Digital I/O – Open drain when configured as output.
TOCKI				I		Timer0 external clock input.
RA5/SS/AN4	7	8	24		TTL	
RA5		-		I/O		Digital I/O.
SS	1			1		SPI slave select input.
AN4					1	
Legend: I = inpu		1				Analog input 4.

— = Not used TTL = TTL input ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel Slave Port mode (for interfacing to a microprocessor bus).

4: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

PIC16F7X

FIGL	JRE	2-3:

PIC16F74/73 REGISTER FILE MAP

ŀ	File Address		File Address		File Address	ļ	File Addre
Indirect addr.(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	180
TMR0	01h	OPTION_REG	81h	TMR0	101h	OPTION_REG	181
PCL	02h	PCL	82h	PCL	102h	PCL	182
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183
FSR	04h	FSR	84h	FSR	104h	FSR	184
PORTA	05h	TRISA	85h		105h		185
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186
PORTC	07h	TRISC	87h		107h		187
PORTD ⁽¹⁾	08h	TRISD ⁽¹⁾	88h		108h		188
PORTE ⁽¹⁾	09h	TRISE ⁽¹⁾	89h		109h		189
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18A
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18E
PIR1	0Ch	PIE1	8Ch	PMDATA	10Ch	PMCON1	180
PIR2	0Dh	PIE2	8Dh	PMADR	10Dh		180
TMR1L	0Eh	PCON	8Eh	PMDATH	10Eh		18E
TMR1H	0Fh		8Fh	PMADRH	10Fh		18F
T1CON	10h		90h		110h		190
TMR2	11h		91h				
T2CON	12h	PR2	92h				
SSPBUF	13h	SSPADD	93h				
SSPCON	14h	SSPSTAT	94h				
CCPR1L	15h		95h				
CCPR1H	16h		96h				
CCP1CON	17h		97h				
RCSTA	18h	TXSTA	98h				
TXREG	19h	SPBRG	99h				
RCREG	1Ah		9Ah				
CCPR2L	1Bh		9Bh				
CCPR2H	1Ch		9Ch				
CCP2CON	1Dh		9Dh				
ADRES	1Eh		9Eh				
ADCON0	1Fh	ADCON1	9Fh		1001		4.4.0
	20h		A0h		120h		1A0
			7,011				
General		General					
		Purpose Register		accesses		accesses	
-		-		20h-7Fh		A0h - FFh	4
96 Bytes		96 Bytes			16Fh 170b		1EF 1FC
					17011		
Bank 0	7Fh	Bank 1	FFh	Bank 2	17Fh	Bank 3	1FF
Purpose Register 96 Bytes Bank 0 Unimpleme * Not a phys	ented data	Purpose Register 96 Bytes Bank 1	s, read as	20h-7Fh Bank 2 '0'.	170h	A0h - FFh	

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. A list of these registers is given in Table 2-1. The Special Function Registers can be classified into two sets: core (CPU) and peripheral. Those registers associated with the core functions are described in detail in this section. Those related to the operation of the peripheral features are described in detail in the peripheral feature section.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Details on page
Bank 0	•					•	•	•	•		
00h ⁽⁴⁾	INDF	Addressing	g this locatio	n uses conte	nts of FSR to	address data	a memory (r	not a physica	al register)	0000 0000	27, 96
01h	TMR0	Timer0 Mc	dule Registe	er						xxxx xxxx	45, 96
02h ⁽⁴⁾	PCL	Program C	Counter (PC)	Least Signif	icant Byte					0000 0000	26, 96
03h ⁽⁴⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	19, 96
04h ⁽⁴⁾	FSR	Indirect Da	Indirect Data Memory Address Pointer								27, 96
05h	PORTA	_	PORTA Data Latch when written: PORTA pins when read							0x 0000	32, 96
06h	PORTB	PORTB D	ata Latch wh	en written: P	ORTB pins w	hen read	•			xxxx xxxx	34, 96
07h	PORTC	PORTC D	ata Latch wh	en written: P	ORTC pins w	/hen read				XXXX XXXX	35, 96
08h (5)	PORTD	PORTD D	ata Latch wh	en written: P	ORTD pins w	/hen read				xxxx xxxx	36, 96
09h (5)	PORTE	_		—	—	—	RE2	RE1	RE0	xxx	39, 96
0Ah ^(1,4)	PCLATH	_	_	_	Write Buffer	for the upper	5 bits of the	Program C	ounter	0 0000	26, 96
0Bh ⁽⁴⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	21, 96
0Ch	PIR1	PSPIF ⁽³⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	23, 96
0Dh	PIR2	_	_	_	_	_	_	_	CCP2IF	0	24, 96
0Eh	TMR1L	Holding Re	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register								
0Fh	TMR1H	Holding Re	egister for the	e Most Signif	ficant Byte of	the 16-bit TM	IR1 Registe	r		xxxx xxxx	50, 96
10h	T1CON	_	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	47, 96
11h	TMR2	Timer2 Mc	dule Registe	er				-		0000 0000	52, 96
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	52, 96
13h	SSPBUF	Synchrono	ous Serial Po	ort Receive B	uffer/Transmi	t Register				xxxx xxxx	64, 68, 96
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	61, 96
15h	CCPR1L	Capture/C	ompare/PWI	M Register1	(LSB)					xxxx xxxx	56, 96
16h	CCPR1H	Capture/C	ompare/PWI	M Register1	(MSB)					xxxx xxxx	56, 96
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	54, 96
18h	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	70, 96
19h	TXREG	USART Tr	ansmit Data	Register						0000 0000	74, 96
1Ah	RCREG	USART Re	eceive Data	Register						0000 0000	76, 96
1Bh	CCPR2L	Capture/C	ompare/PWI	M Register2	(LSB)					xxxx xxxx	58, 96
1Ch	CCPR2H	Capture/C	ompare/PWI	M Register2	(MSB)					xxxx xxxx	58, 96
1Dh	CCP2CON	_	_	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	54, 96
1Eh	ADRES	A/D Result	t Register By	rte						xxxx xxxx	88, 96
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/ DONE	—	ADON	0000 00-0	83, 96

TABLE 2-1:SPECIAL FUNCTION REGISTER SUMMARY

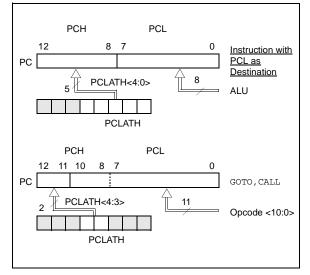
 $\label{eq:legend: Legend: Legend: u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. \\ Shaded locations are unimplemented, read as '0'.$

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter during branches (CALL or GOTO).

2: Other (non power-up) RESETS include external RESET through MCLR and Watchdog Timer Reset.

3: Bits PSPIE and PSPIF are reserved on the 28-pin devices; always maintain these bits clear.

4: These registers can be addressed from any bank.


5: PORTD, PORTE, TRISD, and TRISE are not physically implemented on the 28-pin devices, read as '0'.

6: This bit always reads as a '1'.

2.3 PCL and PCLATH

The program counter (PC) is 13 bits wide. The low byte comes from the PCL register, which is a readable and writable register. The upper bits (PC<12:8>) are not readable, but are indirectly writable through the PCLATH register. On any RESET, the upper bits of the PC will be cleared. Figure 2-4 shows the two situations for the loading of the PC. The upper example in the figure shows how the PC is loaded on a write to PCL (PCLATH<4:0> \rightarrow PCH). The lower example in the figure shows how the PC is loaded during a CALL or GOTO instruction (PCLATH<4:3> \rightarrow PCH).

FIGURE 2-4: LOADING OF PC IN DIFFERENT SITUATIONS

2.3.1 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When doing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256 byte block). Refer to the Application Note, *"Implementing a Table Read"* (AN556).

2.3.2 STACK

The PIC16F7X family has an 8-level deep x 13-bit wide hardware stack. The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed, or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer. This means that after the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

- Note 1: There are no status bits to indicate stack overflow or stack underflow conditions.
 - 2: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW and RETFIE instructions, or the vectoring to an interrupt address.

2.4 Program Memory Paging

PIC16F7X devices are capable of addressing a continuous 8K word block of program memory. The CALL and GOTO instructions provide only 11 bits of address to allow branching within any 2K program memory page. When doing a CALL or GOTO instruction, the upper 2 bits of the address are provided by PCLATH<4:3>. When doing a CALL or GOTO instruction, the user must ensure that the page select bits are programmed so that the desired program memory page is addressed. If a return from a CALL instruction (or interrupt) is executed, the entire 13-bit PC is popped off the stack. Therefore, manipulation of the PCLATH<4:3> bits are not required for the RETURN instructions (which POPs the address from the stack).

Note:	The contents of the PCLATH are									
	unchanged after a RETURN or RETFIE									
	instruction is executed. The user must									
	setup the PCLATH for any subsequent									
	CALLS or GOTOS.									

Example 2-1 shows the calling of a subroutine in page 1 of the program memory. This example assumes that PCLATH is saved and restored by the Interrupt Service Routine (if interrupts are used).

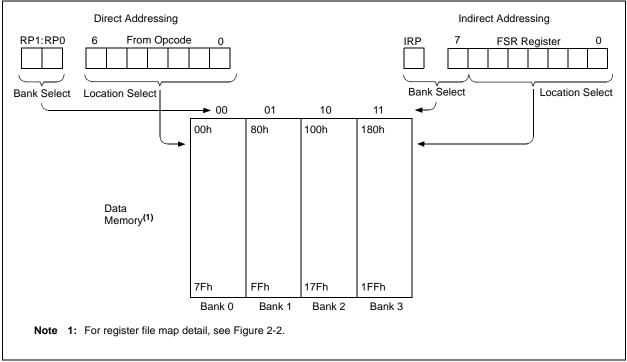
EXAMPLE 2-1: CALL OF A SUBROUTINE IN PAGE 1 FROM PAGE 0

	ORG	0x500	
	BCF	PCLATH,4	
	BSF	PCLATH,3	;Select page 1 ;(800h-FFFh)
	CALL	SUB1_P1	;Call subroutine in
	:		;page 1 (800h-FFFh)
	:		
	ORG	0x900	;page 1 (800h-FFFh)
SUB1_P1			
	:		;called subroutine
	:		;page 1 (800h-FFFh)
	:		
RETURN			;return to Call ;subroutine in page 0 ;(000h-7FFh)

INDIDECT ADDESSING

2.5 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.


Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses the register pointed to by the File Select Register, FSR. Reading the INDF register itself indirectly (FSR = '0') will read 00h. Writing to the INDF register indirectly results in a no operation (although status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 2-5.

A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 2-2.

	PLE 2-2:	INL	JIRECT ADDRESSING
	MOVLW	0x20	;initialize pointer
	MOVWF	FSR	;to RAM
NEXT	CLRF	INDF	clear INDF register;
	INCF	FSR,F	;inc pointer
	BTFSS	FSR,4	;all done?
	GOTO	NEXT	;no clear next
CONTIN	IUE		
:			;yes continue

EVAMPLE 2.2.

FIGURE 2-5: DIRECT/INDIRECT ADDRESSING

6.0 TIMER1 MODULE

The Timer1 module is a 16-bit timer/counter consisting of two 8-bit registers (TMR1H and TMR1L), which are readable and writable. The TMR1 Register pair (TMR1H:TMR1L) increments from 0000h to FFFFh and rolls over to 0000h. The TMR1 Interrupt, if enabled, is generated on overflow, which is latched in interrupt flag bit TMR1IF (PIR1<0>). This interrupt can be enabled/disabled by setting/clearing TMR1 interrupt enable bit TMR1IE (PIE1<0>).

Timer1 can operate in one of two modes:

- As a timer
- · As a counter

The operating mode is determined by the clock select bit, TMR1CS (T1CON<1>).

In Timer mode, Timer1 increments every instruction cycle. In Counter mode, it increments on every rising edge of the external clock input.

Timer1 can be enabled/disabled by setting/clearing control bit TMR1ON (T1CON<0>).

Timer1 also has an internal "RESET input". This RESET can be generated by either of the two CCP modules as the special event trigger (see Sections 8.1 and 8.2). Register 6-1 shows the Timer1 Control register.

When the Timer1 oscillator is enabled (T1OSCEN is set), the RC1/T1OSI/CCP2 and RC0/T1OSO/T1CKI pins become inputs. That is, the TRISC<1:0> value is ignored and these pins read as '0'.

Additional information on timer modules is available in the PICmicro[™] Mid-Range MCU Family Reference Manual (DS33023).

REGISTER 6-1: T1CON: TIMER1 CONTROL REGISTER (ADDRESS 10h)

					•	,							
	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
	_	—	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N					
	bit 7							bit 0					
bit 7-6	Unimplem	Unimplemented: Read as '0'											
bit 5-4		T1CKPS1:T1CKPS0: Timer1 Input Clock Prescale Select bits											
		11 = 1:8 Prescale value											
		10 = 1:4 Prescale value 11 = 1:2 Prescale value											
		00 = 1:1 Prescale value											
bit 3	T1OSCEN	l: Timer1 Os	cillator Ena	ble Control b	oit								
	1 = Oscilla	1 = Oscillator is enabled											
	0 = Oscilla	0 = Oscillator is shut-off (the oscillator inverter is turned off to eliminate power drain)											
bit 2	T1SYNC:	Timer1 Exte	rnal Clock I	nput Synchr	onization Co	ntrol bit							
	TMR1CS :			I.a. a. l									
		synchronize											
	TMR1CS :			Jul									
			ner1 uses th	e internal clo	ock when TM	IR1CS = 0.							
bit 1	TMR1CS:	Timer1 Cloc	k Source S	elect bit									
		al clock fron al clock (Fos	•	10SO/T1Cł	<i (on="" risi<="" td="" the=""><td>ng edge)</td><td></td><td></td></i>	ng edge)							
bit 0	TMR10N:	Timer1 On I	bit										
	1 = Enable	es Timer1											
	0 = Stops	Timer1											
	r												
	Legend:												
	R = Reada	able bit	W = V	Nritable bit	U = Unin	nplemented	bit, read as	'0'					
	- n = Value	e at POR res	set '1' =	Bit is set	'0' = Bit i	s cleared	x = Bit is ι	unknown					

8.5.3 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.
- 3. Make the CCP1 pin an output by clearing the TRISC<2> bit.
- 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.
- 5. Configure the CCP1 module for PWM operation.

TABLE 8-4: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz	
Timer Prescale (1, 4, 16)	16	4	1	1	1	1	
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17	
Maximum Resolution (bits)	10	10	10	8	7	5.5	

TABLE 8-5: REGISTERS ASSOCIATED WITH PWM AND TIMER2

Address	Name	Bit 7	Bit 6	6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0					Value on: POR, BOR		Value on all other RESETS		
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
0Dh	PIR2	_	—	—		_	—		CCP2IF		0		0
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
8Dh	PIE2	—	_	_	_	—	—	_	CCP2IE		0		0
87h	TRISC	PORTC D	PORTC Data Direction Register									1111	1111
11h	TMR2	Timer2 M	odule Regi	ster						0000	0000	0000	0000
92h	PR2	Timer2 M	odule Peric	d Register						1111	1111	1111	1111
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000	0000	-000	0000
15h	CCPR1L	Capture/C	Compare/P	VM Registe	er1 (LSB)					xxxx	xxxx	uuuu	uuuu
16h	CCPR1H	Capture/C	Compare/P	VM Registe	er1 (MSB)					xxxx	xxxx	uuuu	uuuu
17h	CCP1CON	_	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00	0000	00	0000
1Bh	CCPR2L	Capture/Compare/PWM Register2 (LSB)							xxxx	xxxx	uuuu	uuuu	
1Ch	CCPR2H	Capture/C	Compare/P	WM Registe	er2 (MSB)					xxxx	xxxx	uuuu	uuuu
1Dh	CCP2CON	—	—	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00	0000	00	0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PWM and Timer2.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76; always maintain these bits clear.

		Fosc = 20 M	Hz		Fosc = 16 M	Hz		Fosc = 10 MHz		
BAUD RATE	BAUD	% ERROR	SPBRG VALUE (DECIMAL)	BAUD	% ERROR	SPBRG VALUE (DECIMAL)	BAUD	% ERROR	SPBRG VALUE (DECIMAL)	
1200	1,221	1.73%	255	1,202	0.16%	207	1,202	0.16%	129	
2400	2,404	0.16%	129	2,404	0.16%	103	2,404	0.16%	64	
9600	9,470	-1.36%	32	9,615	0.16%	25	9,766	1.73%	15	
19,200	19,531	1.73%	15	19,231	0.16%	12	19,531	1.73%	7	
38,400	39,063	1.73%	7	35,714	-6.99%	6	39,063	1.73%	3	
57,600	62,500	8.51%	4	62,500	8.51%	3	52,083	-9.58%	2	
76,800	78,125	1.73%	3	83,333	8.51%	2	78,125	1.73%	1	
96,000	104,167	8.51%	2	83,333	-13.19%	2	78,125	-18.62%	1	
115,200	104,167	-9.58%	2	125,000	8.51%	1	78,125	-32.18%	1	
250,000	312,500	25.00%	0	250,000	0.00%	0	156,250	-37.50%	0	

TABLE 10-3:BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)

	Fosc = 4 MHz				Fosc = 3.6864	MHz	Fosc = 3.579545 MHz			
BAUD RATE	BAUD	% ERROR	SPBRG VALUE (DECIMAL)	BAUD	% ERROR	SPBRG VALUE (DECIMAL)	BAUD	% ERROR	SPBRG VALUE (DECIMAL)	
300	300	0.16%	207	300	0.00%	191	301	0.23%	185	
1200	1,202	0.16%	51	1,200	0.00%	47	1,190	-0.83%	46	
2400	2,404	0.16%	25	2,400	0.00%	23	2,432	1.32%	22	
9600	8,929	-6.99%	6	9,600	0.00%	5	9,322	-2.90%	5	
19,200	20,833	8.51%	2	19,200	0.00%	2	18,643	-2.90%	2	
38,400	31,250	-18.62%	1	28,800	-25.00%	1	27,965	-27.17%	1	
57,600	62,500	8.51%	0	57,600	0.00%	0	55,930	-2.90%	0	
76,800	62,500	-18.62%	0	—	_	_	_	_	—	

TABLE 10-4: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)

	Fosc = 20 MHz				Fosc = 16 M	Hz	Fosc = 10 MHz			
BAUD RATE	BAUD	% ERROR	SPBRG VALUE (DECIMAL)	BAUD	% ERROR	SPBRG VALUE (DECIMAL)	BAUD	% ERROR	SPBRG VALUE (DECIMAL)	
2400	_	_	_	—	_	_	2,441	1.73%	255	
9600	9,615	0.16%	129	9,615	0.16%	103	9,615	0.16%	64	
19,200	19,231	0.16%	64	19,231	0.16%	51	18,939	-1.36%	32	
38,400	37,879	-1.36%	32	38,462	0.16%	25	39,063	1.73%	15	
57,600	56,818	-1.36%	21	58,824	2.12%	16	56,818	-1.36%	10	
76,800	78,125	1.73%	15	76,923	0.16%	12	78,125	1.73%	7	
96,000	96,154	0.16%	12	100,000	4.17%	9	89,286	-6.99%	6	
115,200	113,636	-1.36%	10	111,111	-3.55%	8	125,000	8.51%	4	
250,000	250,000	0.00%	4	250,000	0.00%	3	208,333	-16.67%	2	
300,000	312,500	4.17%	3	333,333	11.11%	2	312,500	4.17%	1	

BAUD	Fosc = 4 MHz			F	osc = 3.6864	MHz	Fosc = 3.579545 MHz			
RATE (K)	BAUD	% ERROR	SPBRG VALUE (DECIMAL)	BAUD	% ERROR	SPBRG VALUE (DECIMAL)	BAUD	% ERROR	SPBRG VALUE (DECIMAL)	
1200	1,202	0.16%	207	1,200	0.00%	191	1,203	0.23%	185	
2400	2,404	0.16%	103	2,400	0.00%	95	2,406	0.23%	92	
9600	9,615	0.16%	25	9,600	0.00%	23	9,727	1.32%	22	
19,200	19,231	0.16%	12	19,200	0.00%	11	18,643	-2.90%	11	
38,400	35,714	-6.99%	6	38,400	0.00%	5	37,287	-2.90%	5	
57,600	62,500	8.51%	3	57,600	0.00%	3	55,930	-2.90%	3	
76,800	83,333	8.51%	2	76,800	0.00%	2	74,574	-2.90%	2	
96,000	83,333	-13.19%	2	115,200	20.00%	1	111,861	16.52%	1	
115,200	125,000	8.51%	1	115,200	0.00%	1	111,861	-2.90%	1	
250,000	250,000	0.00%	0	230,400	-7.84%	0	223,722	-10.51%	0	

10.2 USART Asynchronous Mode

In this mode, the USART uses standard non-return-tozero (NRZ) format (one START bit, eight or nine data bits, and one STOP bit). The most common data format is 8-bits. An on-chip, dedicated, 8-bit baud rate generator can be used to derive standard baud rate frequencies from the oscillator. The USART transmits and receives the LSb first. The USART's transmitter and receiver are functionally independent, but use the same data format and baud rate. The baud rate generator produces a clock, either x16 or x64 of the bit shift rate, depending on bit BRGH (TXSTA<2>). Parity is not supported by the hardware, but can be implemented in software (and stored as the ninth data bit). Asynchronous mode is stopped during SLEEP.

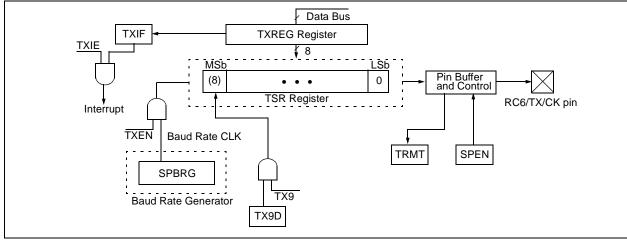
Asynchronous mode is selected by clearing bit SYNC (TXSTA<4>).

The USART Asynchronous module consists of the following important elements:

- · Baud Rate Generator
- Sampling Circuit
- Asynchronous Transmitter
- Asynchronous Receiver

10.2.1 USART ASYNCHRONOUS TRANSMITTER

The USART transmitter block diagram is shown in Figure 10-1. The heart of the transmitter is the transmit (serial) shift register (TSR). The shift register obtains its data from the read/write transmit buffer, TXREG. The TXREG register is loaded with data by firmware. The TSR register is not loaded until the STOP bit has been transmitted from the previous load. As soon as the STOP bit is transmitted, the TSR is loaded with new data from the TXREG register (if available). Once the TXREG register transfers the data to the TSR register, the TXREG register is empty. One instruction cycle later, flag bit TXIF (PIR1<4>) and flag bit TRMT (TXSTA<1>)


are set. The TXIF interrupt can be enabled/disabled by setting/clearing enable bit TXIE (PIE1<4>). Flag bit TXIF will be set, regardless of the state of enable bit TXIE and cannot be cleared in software. It will reset only when new data is loaded into the TXREG register. While flag bit TXIF indicates the status of the TXREG register, another bit TRMT (TXSTA<1>) shows the status of the TSR register. Status bit TRMT is a read only bit, which is set one instruction cycle after the TSR register becomes empty, and is cleared one instruction cycle after the TSR register is loaded. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR register is empty.

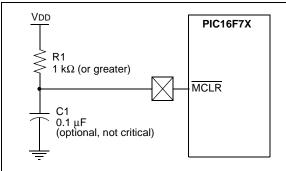
Note 1:	The TSR register is not mapped in data
	memory, so it is not available to the user.
2:	Flag bit TXIF is set when enable bit TXEN

is set. TXIF is cleared by loading TXREG.

Transmission is enabled by setting enable bit TXEN (TXSTA<5>). The actual transmission will not occur until the TXREG register has been loaded with data and the baud rate generator (BRG) has produced a shift clock (Figure 10-2). The transmission can also be started by first loading the TXREG register and then setting enable bit TXEN. Normally, when transmission is first started, the TSR register is empty. At that point, transfer to the TXREG register will result in an immediate transfer to TSR, resulting in an empty TXREG. A back-to-back transfer is thus possible (Figure 10-3). Clearing enable bit TXEN during a transmission will cause the transmission to be aborted and will reset the transmitter. As a result, the RC6/TX/CK pin will revert to hi-impedance.

In order to select 9-bit transmission, transmit bit TX9 (TXSTA<6>) should be set and the ninth bit should be written to TX9D (TXSTA<0>). The ninth bit must be written before writing the 8-bit data to the TXREG register. This is because a data write to the TXREG register can result in an immediate transfer of the data to the TSR register (if the TSR is empty). In such a case, an incorrect ninth data bit may be loaded in the TSR register.

FIGURE 10-1: USART TRANSMIT BLOCK DIAGRAM


12.4 MCLR

PIC16F7X devices have a noise filter in the $\overline{\text{MCLR}}$ Reset path. The filter will detect and ignore small pulses.

It should be noted that a WDT Reset does not drive MCLR pin low.

The behavior of the ESD protection on the $\overline{\text{MCLR}}$ pin has been altered from previous devices of this family. Voltages applied to the pin that exceed its specification can result in both $\overline{\text{MCLR}}$ Resets and excessive current beyond the device specification during the ESD event. For this reason, Microchip recommends that the $\overline{\text{MCLR}}$ pin no longer be tied directly to VDD. The use of an RC network, as shown in Figure 12-5, is suggested.

12.5 Power-on Reset (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.2V - 1.7V). To take advantage of the POR, tie the MCLR pin to VDD as described in Section 12.4. A maximum rise time for VDD is specified. See the Electrical Specifications for details.

When the device starts normal operation (exits the RESET condition), device operating parameters (voltage, frequency, temperature,...) must be met to ensure operation. If these conditions are not met, the device must be held in RESET until the operating conditions are met. For additional information, refer to Application Note, AN607, "Power-up Trouble Shooting" (DS00607).

12.6 Power-up Timer (PWRT)

The Power-up Timer provides a fixed 72 ms nominal time-out on power-up only from the POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in RESET as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an accept-able level. A configuration bit is provided to enable/ disable the PWRT.

The power-up time delay will vary from chip to chip, due to VDD, temperature and process variation. See DC parameters for details (TPWRT, parameter #33).

12.7 Oscillator Start-up Timer (OST)

The Oscillator Start-up Timer (OST) provides 1024 oscillator cycles (from OSC1 input) delay after the PWRT delay is over (if enabled). This helps to ensure that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset, or wake-up from SLEEP.

12.8 Brown-out Reset (BOR)

The configuration bit, BODEN, can enable or disable the Brown-out Reset circuit. If VDD falls below VBOR (parameter D005, about 4V) for longer than TBOR (parameter #35, about 100 μ S), the brown-out situation will reset the device. If VDD falls below VBOR for less than TBOR, a RESET may not occur.

Once the brown-out occurs, the device will remain in Brown-out Reset until VDD rises above VBOR. The Power-up Timer then keeps the device in RESET for TPWRT (parameter #33, about 72 mS). If VDD should fall below VBOR during TPWRT, the Brown-out Reset process will restart when VDD rises above VBOR, with the Power-up Timer Reset. The Power-up Timer is always enabled when the Brown-out Reset circuit is enabled, regardless of the state of the PWRT configuration bit.

12.9 Time-out Sequence

On power-up, the time-out sequence is as follows: the PWRT delay starts (if enabled) when a POR Reset occurs. Then, OST starts counting 1024 oscillator cycles when PWRT ends (LP, XT, HS). When the OST ends, the device comes out of RESET.

If MCLR is kept low long enough, all delays will expire. Bringing MCLR high will begin execution immediately. This is useful for testing purposes or to synchronize more than one PIC16F7X device operating in parallel.

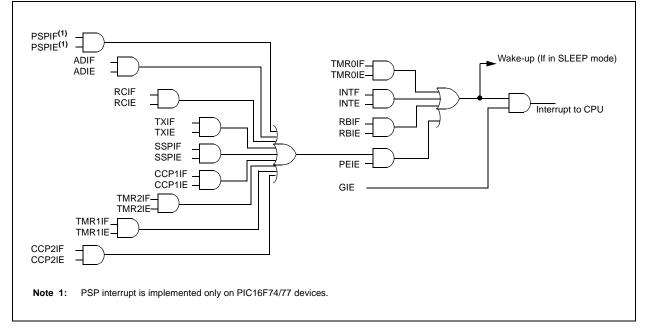
Table 12-5 shows the RESET conditions for the STATUS, PCON and PC registers, while Table 12-6 shows the RESET conditions for all the registers.

12.11 Interrupts

The PIC16F7X family has up to 12 sources of interrupt. The interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

Note:	Individual interrupt flag bits are set, regard-
	less of the status of their corresponding
	mask bit or the GIE bit.

A global interrupt enable bit, GIE (INTCON<7>) enables (if set) all unmasked interrupts, or disables (if cleared) all interrupts. When bit GIE is enabled and an interrupt's flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in various registers. Individual interrupt bits are set, regardless of the status of the GIE bit. The GIE bit is cleared on RESET.


The "return from interrupt" instruction, RETFIE, exits the interrupt routine, as well as sets the GIE bit, which re-enables interrupts.

The RB0/INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.

The peripheral interrupt flags are contained in the Special Function Registers, PIR1 and PIR2. The corresponding interrupt enable bits are contained in Special Function Registers, PIE1 and PIE2, and the peripheral interrupt enable bit is contained in Special Function Register, INTCON.

When an interrupt is responded to, the GIE bit is cleared to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid recursive interrupts.

For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs, relative to the current Q cycle. The latency is the same for one or two-cycle instructions. Individual interrupt flag bits are set, regardless of the status of their corresponding mask bit, PEIE bit, or the GIE bit.

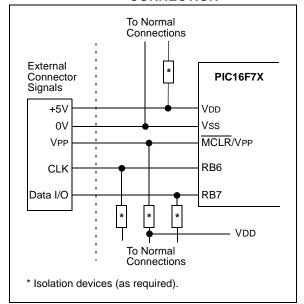
FIGURE 12-10: INTERRUPT LOGIC

; Q1 Q2 Q3 Q4 OSC1 / CLKOUT ⁽⁴⁾ \	; Q1 Q2 Q3 Q4; Q1 //_//_/_/_/		Q1 Q2 Q3 Q4 	; Q1 Q2 Q3 Q4; ////_//_//	Q1 Q2 Q3 Q4; (///// /	21 Q2 Q3 Q4; _/_/_/
·	λ/ λ ι ι	1031.1	/	۱۸/ ۱۸ ۱ ۱	/ i\	/
INT pin	<u>ı ı</u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>
INTF Flag (INTCON<1>)	ı ı +			Interrupt Latency (Note 2)		
GIE bit (INTCON<7>)		b			i	
INSTRUCTION FLOW				1 I 1 I	1 1	1
PC X PC	Х РС+1 Х	PC+2	PC+2	<u>X PC + 2 X</u>	0004h X	0005h
Instruction Fetched Inst(PC) = SLEE	P Inst(PC + 1)	1 1 1	Inst(PC + 2)	1 1 1 1 1 1	Inst(0004h)	Inst(0005h)
Instruction Executed { Inst(PC - 1)	SLEEP	1 	Inst(PC + 1)	Dummy cycle	Dummy cycle	Inst(0004h)
3: GIE = '1' assumed. In If GIE = '0', execution	tor mode assumed. Irawing not to scale) This de n this case after wake- up, t n will continue in-line. able in these osc modes, bu	the processor jur	mps to the interrup	ot routine.		

FIGURE 12-12: WAKE-UP FROM SLEEP THROUGH INTERRUPT

12.15 Program Verification/Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.


12.16 ID Locations

Four memory locations (2000h - 2003h) are designated as ID locations, where the user can store checksum or other code identification numbers. These locations are not accessible during normal execution, but are readable and writable during program/verify. It is recommended that only the 4 Least Significant bits of the ID location are used.

12.17 In-Circuit Serial Programming

PIC16F7X microcontrollers can be serially programmed while in the end application circuit. This is simply done, with two lines for clock and data and three other lines for power, ground, and the programming voltage (see Figure 12-13 for an example). This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed. For general information of serial programming, please refer to the In-Circuit Serial Programming (ICSP[™]) Guide (DS30277). For specific details on programming commands and operations for the PIC16F7X devices, please refer to the latest version of the PIC16F7X FLASH Program Memory Programming Specification (DS30324).

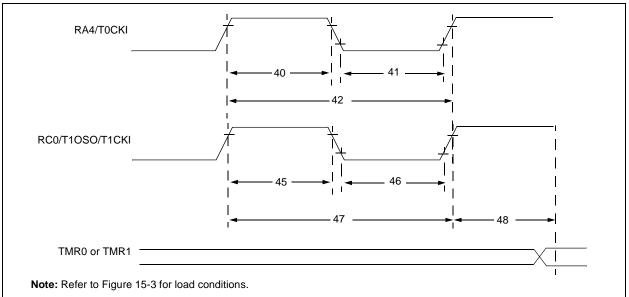
15.1 DC Characteristics: PIC16F73/74/76/77 (Industrial, Extended) PIC16LF73/74/76/77 (Industrial) (Continued)

			Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
PIC16F73/74/76/77 (Industrial, Extended)				Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended						
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions			
	Idd	Supply Current (Notes 2, 5	i)							
D010		PIC16LF7X	—	0.4	2.0	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)			
D010A			—	20	48	μA	LP osc configuration FOSC = 32 kHz, VDD = 3.0V, WDT disabled			
D010		PIC16F7X	-	0.9	4	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 5.5V (Note 4)			
D013			—	5.2	15	mA	HS osc configuration Fosc = 20 MHz, VDD = 5.5V			
D015*	∆Ibor	Brown-out Reset Current (Note 6)	_	25	200	μA	BOR enabled, VDD = 5.0V			
D020	IPD	Power-down Current (Note	es 3, 5)							
D021		PIC16LF7X		2.0 0.1	30 5	μΑ μΑ	VDD = $3.0V$, WDT enabled, $-40^{\circ}C$ to $+85^{\circ}C$ VDD = $3.0V$, WDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$			
D020 D021		PIC16F7X	_	5.0 0.1	42 19	μΑ μΑ	$VDD = 4.0V$, WDT enabled, $-40^{\circ}C$ to $+85^{\circ}C$ $VDD = 4.0V$, WDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$			
D021A			_	10.5 1.5	57 42	μΑ μΑ	$VDD = 4.0V$, WDT enabled, $-40^{\circ}C$ to $+125^{\circ}C$ $VDD = 4.0V$, WDT disabled, $-40^{\circ}C$ to $+125^{\circ}C$			
D023*	Δ Ibor	Brown-out Reset Current (Note 6)	—	25	200	μA	BOR enabled, VDD = 5.0V			

Legend: Shading of rows is to assist in readability of of the table.

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature also have an impact on the current consumption.

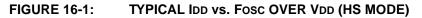
The test conditions for all IDD measurements in active operation mode are:

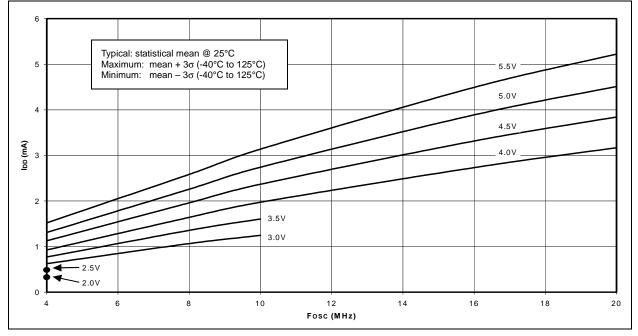
- OSC1 = external square wave, from-rail to-rail; all I/O pins tri-stated, pulled to VDD MCLR = VDD; WDT enabled/disabled as specified.
- **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.
- **5:** Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
- 7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.

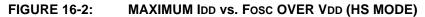
FIGURE 15-8: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE 15-4 :	TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Param No.	Symbol		Characteristic		Min	Тур†	Max	Units	Conditions	
40*	40* Tt0H T0CKI High Pulse Width		No Prescaler	0.5Tcy + 20	—		ns	Must also meet		
				With Prescaler	10	—	_	ns	parameter 42	
41*	Tt0L	T0CKI Low Pulse	Width	No Prescaler	0.5Tcy + 20	—	_	ns	Must also meet	
				With Prescaler	10	—	_	ns	parameter 42	
42*	Tt0P	T0CKI Period		No Prescaler	Tcy + 40	—	_	ns		
				With Prescaler	Greater of:	—	_	ns	N = prescale value	
					20 or <u>Tcy + 40</u>				(2, 4,, 256)	
					N					
45*	Tt1H	T1CKI High Time	Synchronous, Prescaler = 1		0.5Tcy + 20	—	—	ns	Must also meet	
			Synchronous,	Standard(F)	15	—	—	ns	parameter 47	
			Prescaler = 2,4,8	Extended(LF)	25	—	—	ns		
			Asynchronous	Standard(F)	30	—	_	ns		
				Extended(LF)	50	-	—	ns		
46*	Tt1L	T1CKI Low Time	Synchronous, Pr	escaler = 1	0.5Tcy + 20	—		ns	Must also meet	
			Synchronous, Prescaler = 2,4,8 Asynchronous	Standard(F)	15	—	_	ns	parameter 47	
				Extended(LF)	25	—		ns		
				Standard(F)	30	-	—	ns		
				Extended(LF)	50	—		ns		
47*	Tt1P	T1CKI Input Period	Synchronous	Standard(F)	Greater of: 30 or <u>Tcy + 40</u> N			ns	N = prescale value (1, 2, 4, 8)	
				Extended(LF)	Greater of: 50 or <u>Tcy + 40</u> N				N = prescale value (1, 2, 4, 8)	
			Asynchronous	Standard(F)	60	—	—	ns		
				Extended(LF)	100	—	_	ns		
	Ft1	Timer1 Oscillator I (oscillator enabled			DC	—	200	kHz		
48	TCKEZtmr1	Delay from Extern	al Clock Edge to T	Timer Increment	2 Tosc	—	7 Tosc	—		

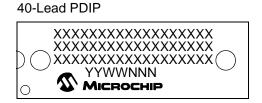

These parameters are characterized but not tested.

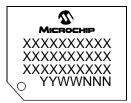

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested. NOTES:

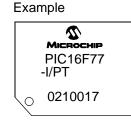

16.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "Maximum" or "minimum" represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over the whole temperature range.

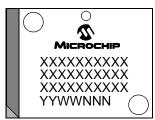






Package Marking Information (Cont'd)

44-Lead TQFP


Example

Ο

PIC16F77-I/P

0210017

44-Lead PLCC

Example

APPENDIX A: REVISION HISTORY

Version	Date	Revision Description
A	2000	This is a new data sheet. How- ever, these devices are similar to the PIC16C7X devices found in the PIC16C7X Data Sheet (DS30390) or the PIC16F87X devices (DS30292).
В	2001	Final data sheet. Includes device characterization data. Addition of extended temperature devices. Addition of 28-pin MLF package. Minor typographic revisions throughout.

APPENDIX B: DEVICE DIFFERENCES

The differences between the devices in this data sheet are listed in Table B-1.

TABLE B-1:DEVICE DIFFERENCES

Difference	PIC16F73	PIC16F74	PIC16F76	PIC16F77
FLASH Program Memory (14-bit words)	4K	4K	8K	8K
Data Memory (bytes)	192	192	368	368
I/O Ports	3	5	3	5
A/D	5 channels, 8 bits	8 channels, 8 bits	5 channels, 8 bits	8 channels, 8 bits
Parallel Slave Port	no	yes	no	yes
Interrupt Sources	11	12	11	12
Packages	28-pin PDIP 28-pin SOIC 28-pin SSOP 28-pin MLF	40-pin PDIP 44-pin TQFP 44-pin PLCC	28-pin PDIP 28-pin SOIC 28-pin SSOP 28-pin MLF	40-pin PDIP 44-pin TQFP 44-pin PLCC

USART Synchronous Transmission	
(Through TXEN)	
Wake-up from SLEEP via Interrupt1	
Watchdog Timer1	
Timing Parameter Symbology1	25
Timing Requirements	
Capture/Compare/PWM (CCP1 and CCP2)1	
CLKOUT and I/O1	
External Clock1	-
I ² C Bus Data1	36
I2C Bus START/STOP Bits1	35
Parallel Slave Port1	31
RESET, Watchdog Timer, Oscillator	
Start-up Timer, Power-up Timer	
and Brown-out Reset1	28
SPI Mode1	34
Timer0 and Timer1 External Clock1	29
USART Synchronous Receive1	
USART Synchronous Transmission1	
TMR1CS bit	
TMR10N bit	47
TMR2ON bit	
TOUTPS<3:0> bits	-
TRISA Register	-
TRISB Register	
TRISC Register	
TRISD Register	
TRISE Register	
IBF Bit	
IBOV Bit	
PSPMODE bit	
TXSTA Register	01
SYNC bit	69
TRMT bit	
TX9 bit	
TX9 bit	
TXEN bit	
	09
U	

UA6	60
Universal Synchronous Asynchronous	
Receiver Transmitter. See USART	
Update Address bit, UA6	60
USART6	39
Asynchronous Mode7	'3
Asynchronous Receiver7	'5
Asynchronous Reception7	'6
Associated Registers7	<i>'</i> 6
Asynchronous Transmission	
Associated Registers7	' 4
Asynchronous Transmitter7	'3

Baud Rate Generator (BRG)71
Baud Rate Formula
Baud Rates, Asynchronous Mode
(BRGH = 0)
Baud Rates, Asynchronous Mode
(BRGH = 1)
Sampling71
Mode Select (SYNC Bit) 69
Overrun Error (OERR Bit)
RC6/TX/CK Pin9, 11
RC7/RX/DT Pin9, 11
Serial Port Enable (SPEN Bit)
Single Receive Enable (SREN Bit)70
Synchronous Master Mode77
Synchronous Master Reception
Associated Registers 80
Synchronous Master Transmission
Associated Registers
Synchronous Slave Mode 80
Synchronous Slave Reception
Associated Registers 81
Synchronous Slave Transmission
Associated Registers81
Transmit Data, 9th Bit (TX9D)69
Transmit Enable (TXEN bit)69
Transmit Enable, Nine-bit (TX9 bit)
Transmit Shift Register Status (TRMT bit)

W

Wake-up from SLEEP	
Interrupts	
MCLR Reset	
WDT Reset	
Wake-up Using Interrupts	102
Watchdog Timer (WDT)	
Associated Registers	101
Enable (WDTE Bit)	101
Postscaler. See Postscaler, WDT	
Programming Considerations	101
RC Oscillator	101
Time-out Period	101
WDT Reset, Normal Operation	93, 95, 96
WDT Reset, SLEEP	93, 95, 96
WCOL bit	
Write Collision Detect bit (WCOL)	61
WWW, On-Line Support	

ON-LINE SUPPORT

Microchip provides on-line support on the Microchip World Wide Web (WWW) site.

The web site is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape or Microsoft Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available by using your favorite Internet browser to attach to:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp://ftp.microchip.com

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked
 Questions
- Design Tips
- Device Errata
- Job Postings
- Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products
- Conferences for products, Development Systems, technical information and more
- · Listing of seminars and events

Systems Information and Upgrade Hot Line

The Systems Information and Upgrade Line provides system users a listing of the latest versions of all of Microchip's development systems software products. Plus, this line provides information on how customers can receive any currently available upgrade kits.The Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada, and

1-480-792-7302 for the rest of the world.

013001