

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf73t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

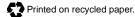
Note the following details of the code protection feature on PICmicro[®] MCUs.

- The PICmicro family meets the specifications contained in the Microchip Data Sheet.
- Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet. The person doing so may be engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable".
- Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks


The Microchip name and logo, the Microchip logo, FilterLab, KEELOQ, MPLAB, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, microID, microPort, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Term Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2002, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company's quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEEL00® code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001 certified.

2.2.2.1 STATUS Register

The STATUS register contains the arithmetic status of the ALU, the RESET status and the bank select bits for data memory.

The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC, or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable, therefore, the result of an instruction with the STATUS register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as $000u \ u1uu$ (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect the Z, C, or DC bits from the STATUS register. For other instructions not affecting any status bits, see the "Instruction Set Summary."

Note 1: The <u>C</u> and <u>DC</u> bits operate as a borrow and digit borrow bit, respectively, in subtraction. See the <u>SUBLW</u> and <u>SUBWF</u> instructions for examples.

REGISTER 2-1: STATUS REGISTER (ADDRESS 03h, 83h, 103h, 183h)

	R/W-0	R/W-0	R/W-0	R-1	R-1	R/W-x	R/W-x	R/W-x					
	IRP	RP1	RP0	TO	PD	Z	DC	С					
	bit 7							bit 0					
bit 7	1 = Bank 2	ter Bank Sele 2, 3 (100h - 1F	Fh)	or indirect ac	ldressing)								
		0 = Bank 0, 1 (00h - FFh)											
bit 6-5		RP1:RP0 : Register Bank Select bits (used for direct addressing)											
	01 = Bank 00 = Bank	10 = Bank 2 (100h - 17Fh) 01 = Bank 1 (80h - FFh) 00 = Bank 0 (00h - 7Fh) Each bank is 128 bytes TO: Time-out bit											
bit 4	TO: Time-c	out bit											
	 1 = After power-up, CLRWDT instruction, or SLEEP instruction 0 = A WDT time-out occurred 												
bit 3	PD: Power	-down bit											
		ower-up or by cution of the											
bit 2	z: Zero bit												
		sult of an arith sult of an arith											
bit 1	DC: Digit c	arry/borrow b	it (addwf, ae	DLW, SUBL	W, SUBWF	instructions	5)						
	•	r-out from the ry-out from th				d							
bit 0	C: Carry/b	orrow bit (ADI	WF, ADDLW	, SUBLW, S	SUBWF instr	uctions)							
		-out from the ry-out from th											
	Note:	Note: For borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand. For rotate (RRF, RLF) instructions, this bit is loaded with either the high or low order bit of the source register.											
	Legend:												

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
 n = Value at POR reset 	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

x = Bit is unknown

PCON Register 2.2.2.8

The Power Control (PCON) register contains flag bits to allow differentiation between a Power-on Reset (POR), a Brown-out Reset (BOR), a Watchdog Reset (WDT) and an external MCLR Reset.

BOR is unknown on POR. It must be set by Note: the user and checked on subsequent RESETS to see if BOR is clear, indicating a brown-out has occurred. The BOR status bit is not predictable if the brown-out circuit is disabled (by clearing the BODEN bit in the configuration word).

REGISTER 2-8: PCON REGISTER (ADDRESS 8Eh)

- n = Value at POR reset

	U-0 U-0		U-0	U-0	U-0	U-0	R/W-0	R/W-1				
	_	_	_		—		POR	BOR				
	bit 7							bit 0				
bit 7-2	Unimplemented: Read as '0'											
bit 1	POR: Power-on Reset Status bit											
	1 = No Power-on Reset occurred											
	0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)											
bit 0	BOR: Brov	vn-out Rese	t Status bit									
	1 = No Bro	wn-out Res	et occurred									
	0 = A Brow	n-out Rese	t occurred (m	lust be set in	software af	ter a Brown	-out Reset of	occurs)				
	Legend:											
	R = Reada	ble bit	W = W	ritable bit	U = Unim	plemented l	bit, read as	'0'				

'0' = Bit is cleared

'1' = Bit is set

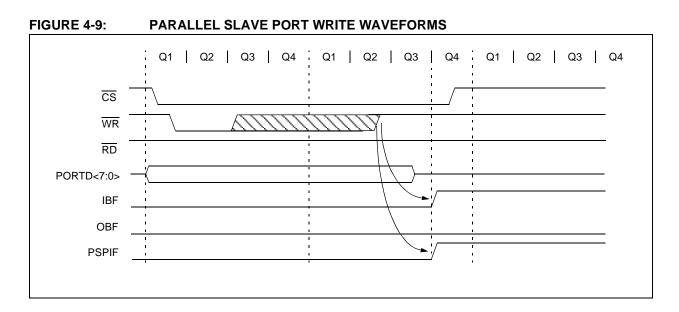
NOTES:

PIC16F7X

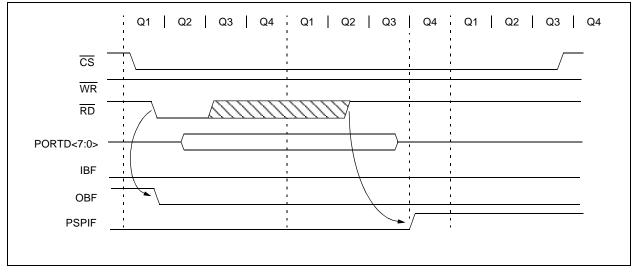
REGISTER 4-1: TRISE REGISTER (ADDRESS 89h)

		•		,								
	R-0	R-0	R/W-0	R/W-0	U-0	R/W-1	R/W-1	R/W-1				
	IBF	OBF	IBOV	PSPMODE	—	Bit2	Bit1	Bit0				
	bit 7							bit 0				
bit 7	Parallel S	ave Port St	atus/Contro	l bits:								
	Parallel Slave Port Status/Control bits: IBF: Input Buffer Full Status bit											
		 1 = A word has been received and is waiting to be read by the CPU 0 = No word has been received 										
bit 6	OBF: Outp	out Buffer Fu	ll Status bit									
	 1 = The output buffer still holds a previously written word 0 = The output buffer has been read 											
bit 5	IBOV: Inpu	IBOV: Input Buffer Overflow Detect bit (in Microprocessor mode)										
	 1 = A write occurred when a previously input word has not been read (must be cleared in software) 0 = No overflow occurred 											
bit 4	PSPMODE: Parallel Slave Port Mode Select bit											
	1 = Parallel Slave Port mode											
	0 = General Purpose I/O mode											
bit 3	Unimplem	nented: Read	d as '0'									
bit 2	PORTE Da	PORTE Data Direction bits:										
	Bit2: Direction Control bit for pin RE2/CS/AN7											
	1 = Input 0 = Output	1 = Input 0 = Output										
bit 1	Bit1: Direc	tion Control	bit for pin RE	E1/WR/AN6								
	1 = Input 0 = Output	t										
bit 0	Bit0: Direc	tion Control	bit for pin RE	E0/RD/AN5								
	1 = Input 0 = Output											

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown


Name	Bit#	Buffer Type	Function
RE0/RD/AN5	bit0	ST/TTL ⁽¹⁾	Input/output port pin or read control input in Parallel Slave Port mode or analog input. For RD (PSP mode): 1 = IDLE 0 = Read operation. Contents of PORTD register output to PORTD I/O pins (if chip selected).
RE1/WR/AN6	bit1	ST/TTL ⁽¹⁾	Input/output port pin or write control input in Parallel Slave Port mode or analog input. For WR (PSP mode): 1 = IDLE 0 = Write operation. Value of PORTD I/O pins latched into PORTD register (if chip selected).
RE2/CS/AN7	bit2	ST/TTL ⁽¹⁾	Input/output port pin or chip select control input in Parallel Slave Port mode or analog input. For CS (PSP mode): 1 = Device is not selected 0 = Device is selected

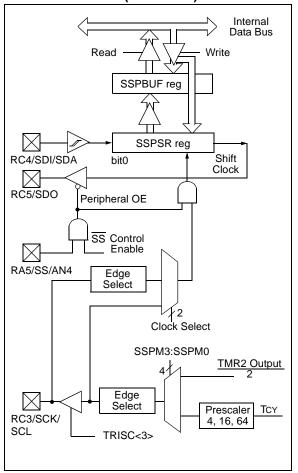
Legend: ST = Schmitt Trigger input, TTL = TTL input **Note 1:** Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port mode.


TABLE 4-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE	TABLE 4-10 :	SUMMARY OF REGISTERS ASSOCIATED WITH PORTE
--	---------------------	--

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
09h	PORTE	—	—		—		RE2	RE1	RE0	xxx	uuu
89h	TRISE	IBF	OBF	IBOV	PSPMODE	_	PORTE D	ata Directi	on bits	0000 -111	0000 -111
9Fh	ADCON1	—	_		_	_	PCFG2 PCFG1		PCFG0	000	000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PORTE.

FIGURE 4-10: PARALLEL SLAVE PORT READ WAVEFORMS


TABLE 4-11: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2 Bit 1		Bit 0	Value on: POR, BOR	Value on all other RESETS
08h	PORTD	Port data I	atch wh	nen writte		xxxx xxxx	uuuu uuuu				
09h	PORTE	—		—		—	RE2 RE1 RE0		xxx	uuu	
89h	TRISE	IBF	OBF	IBOV	PSPMODE	_	PORTE D	PORTE Data Direction Bits			0000 -111
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
9Fh	ADCON1	_	_	_	_	_	PCFG2	PCFG1	PCFG0	000	000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Parallel Slave Port.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76; always maintain these bits clear.

FIGURE 9-1: SSP BLOCK DIAGRAM (SPI MODE)

To enable the serial port, SSP enable bit, SSPEN (SSPCON<5>) must be set. To reset or reconfigure SPI mode, clear bit SSPEN, re-initialize the SSPCON register, and then set bit SSPEN. This configures the SDI, SDO, SCK, and SS pins as serial port pins. For the pins to behave as the serial port function, they must have their data direction bits (in the TRISC register) appropriately programmed. That is:

- SDI must have TRISC<4> set
- SDO must have TRISC<5> cleared
- SCK (Master mode) must have TRISC<3> cleared
- SCK (Slave mode) must have TRISC<3> set
- SS must have TRISA<5> set and ADCON must be configured such that RA5 is a digital I/O

Note 1: When the SPI is in Slave mode with SS pin control enabled (SSPCON<3:0> = 0100), the SPI module will reset if the SS pin is set to VDD.

- 2: If the SPI is used in Slave mode with CKE = '1', then the SS pin control must be enabled.
- 3: When the SPI is in Slave mode with \overline{SS} pin control enabled (SSPCON<3:0> = '0100'), the state of the \overline{SS} pin can affect the state read back from the TRISC<5> bit. The Peripheral OE signal from the SSP module into PORTC controls the state that is read back from the TRISC<5> bit (see Section 4.3 for information on PORTC). If Read-Modify-Write instructions, such as BSF are performed on the TRISC register while the \overline{SS} pin is high, this will cause the TRISC<5> bit to be set, thus disabling the SDO output.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh,8Bh. 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
87h	TRISC	PORTC Da	ta Directio	on Registe	r					1111 1111	1111 1111
13h	SSPBUF	Synchronou	us Serial F	Port Recei	ve Buff	er/Transm	it Register			xxxx xxxx	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
85h	TRISA	—	_	PORTA D	Data Dii	rection Re	11 1111	11 1111			
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000

TABLE 9-1:REGISTERS ASSOCIATED WITH SPI OPERATION

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the SSP in SPI mode.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76; always maintain these bits clear.

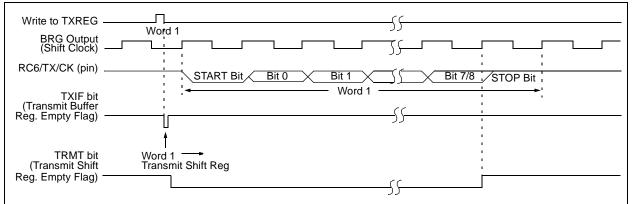
		Fosc = 20 M	Hz		Fosc = 16 M	Hz		Fosc = 10 M	Hz
BAUD RATE	BAUD	% ERROR	SPBRG VALUE (DECIMAL)	BAUD	% ERROR	SPBRG VALUE (DECIMAL)	BAUD	% ERROR	SPBRG VALUE (DECIMAL)
1200	1,221	1.73%	255	1,202	0.16%	207	1,202	0.16%	129
2400	2,404	0.16%	129	2,404	0.16%	103	2,404	0.16%	64
9600	9,470	-1.36%	32	9,615	0.16%	25	9,766	1.73%	15
19,200	19,531	1.73%	15	19,231	0.16%	12	19,531	1.73%	7
38,400	39,063	1.73%	7	35,714	-6.99%	6	39,063	1.73%	3
57,600	62,500	8.51%	4	62,500	8.51%	3	52,083	-9.58%	2
76,800	78,125	1.73%	3	83,333	8.51%	2	78,125	1.73%	1
96,000	104,167	8.51%	2	83,333	-13.19%	2	78,125	-18.62%	1
115,200	104,167	-9.58%	2	125,000	8.51%	1	78,125	-32.18%	1
250,000	312,500	25.00%	0	250,000	0.00%	0	156,250	-37.50%	0

TABLE 10-3:BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)

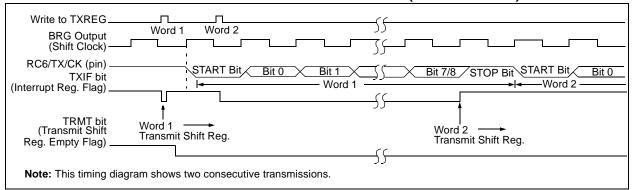
		Fosc = 4 Mł	łz		Fosc = 3.6864	MHz	Fosc = 3.579545 MHz			
BAUD RATE	BAUD	% ERROR	SPBRG VALUE (DECIMAL)	BAUD	% ERROR	SPBRG VALUE (DECIMAL)	BAUD	% ERROR	SPBRG VALUE (DECIMAL)	
300	300	0.16%	207	300	0.00%	191	301	0.23%	185	
1200	1,202	0.16%	51	1,200	0.00%	47	1,190	-0.83%	46	
2400	2,404	0.16%	25	2,400	0.00%	23	2,432	1.32%	22	
9600	8,929	-6.99%	6	9,600	0.00%	5	9,322	-2.90%	5	
19,200	20,833	8.51%	2	19,200	0.00%	2	18,643	-2.90%	2	
38,400	31,250	-18.62%	1	28,800	-25.00%	1	27,965	-27.17%	1	
57,600	62,500	8.51%	0	57,600	0.00%	0	55,930	-2.90%	0	
76,800	62,500	-18.62%	0	—	_	_	_	_	—	

TABLE 10-4: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)

		Fosc = 20 M	Hz		Fosc = 16 M	Hz		Fosc = 10 MI	Hz
BAUD RATE	BAUD	% ERROR	SPBRG VALUE (DECIMAL)	BAUD	% ERROR	SPBRG VALUE (DECIMAL)	BAUD	% ERROR	SPBRG VALUE (DECIMAL)
2400	_	_	_	—	_	_	2,441	1.73%	255
9600	9,615	0.16%	129	9,615	0.16%	103	9,615	0.16%	64
19,200	19,231	0.16%	64	19,231	0.16%	51	18,939	-1.36%	32
38,400	37,879	-1.36%	32	38,462	0.16%	25	39,063	1.73%	15
57,600	56,818	-1.36%	21	58,824	2.12%	16	56,818	-1.36%	10
76,800	78,125	1.73%	15	76,923	0.16%	12	78,125	1.73%	7
96,000	96,154	0.16%	12	100,000	4.17%	9	89,286	-6.99%	6
115,200	113,636	-1.36%	10	111,111	-3.55%	8	125,000	8.51%	4
250,000	250,000	0.00%	4	250,000	0.00%	3	208,333	-16.67%	2
300,000	312,500	4.17%	3	333,333	11.11%	2	312,500	4.17%	1


BAUD		Fosc = 4 MH	Iz	F	osc = 3.6864	MHz	Fo	osc = 3.579545	MHz
BAUD RATE (K)	BAUD	% ERROR	SPBRG VALUE (DECIMAL)	BAUD	% ERROR	SPBRG VALUE (DECIMAL)	BAUD	% ERROR	SPBRG VALUE (DECIMAL)
1200	1,202	0.16%	207	1,200	0.00%	191	1,203	0.23%	185
2400	2,404	0.16%	103	2,400	0.00%	95	2,406	0.23%	92
9600	9,615	0.16%	25	9,600	0.00%	23	9,727	1.32%	22
19,200	19,231	0.16%	12	19,200	0.00%	11	18,643	-2.90%	11
38,400	35,714	-6.99%	6	38,400	0.00%	5	37,287	-2.90%	5
57,600	62,500	8.51%	3	57,600	0.00%	3	55,930	-2.90%	3
76,800	83,333	8.51%	2	76,800	0.00%	2	74,574	-2.90%	2
96,000	83,333	-13.19%	2	115,200	20.00%	1	111,861	16.52%	1
115,200	125,000	8.51%	1	115,200	0.00%	1	111,861	-2.90%	1
250,000	250,000	0.00%	0	230,400	-7.84%	0	223,722	-10.51%	0

Steps to follow when setting up an Asynchronous Transmission:


- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH (Section 10.1).
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set transmit bit TX9.

- 5. Enable the transmission by setting bit TXEN, which will also set bit TXIF.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Load data to the TXREG register (starts transmission).
- 8. If using interrupts, ensure that GIE and PEIE in the INTCON register are set.

FIGURE 10-2: ASYNCHRONOUS MASTER TRANSMISSION

FIGURE 10-3: ASYNCHRONOUS MASTER TRANSMISSION (BACK TO BACK)

TABLE 10-5: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN		FERR	OERR	RX9D	x00-000x	x00- 0000
19h	TXREG	USART Tra	ansmit Re	egister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG Baud Rate Generator Register									0000 0000	0000 0000

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for asynchronous transmission. Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76; always maintain these bits clear.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
19h	TXREG	USART Tr	ansmit R	egister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate Generator Register								0000 0000	0000 0000

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous slave transmission.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76 devices; always maintain these bits clear.

10.4.2 USART SYNCHRONOUS SLAVE RECEPTION

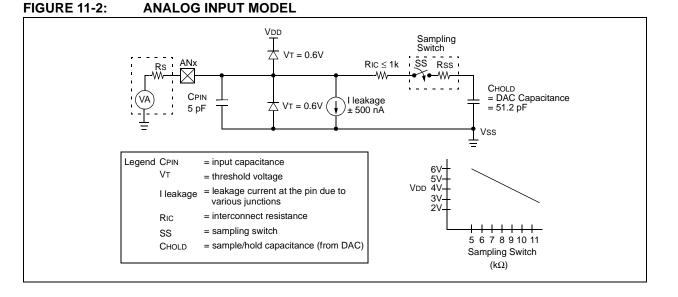
The operation of the Synchronous Master and Slave modes is identical, except in the case of the SLEEP mode. Bit SREN is a "don't care" in Slave mode.

If receive is enabled by setting bit CREN prior to the SLEEP instruction, then a word may be received during SLEEP. On completely receiving the word, the RSR register will transfer the data to the RCREG register and if enable bit RCIE bit is set, the interrupt generated will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Follow these steps when setting up a Synchronous Slave Reception:

- Enable the synchronous master serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. If interrupts are desired, set enable bit RCIE.
- 3. If 9-bit reception is desired, set bit RX9.
- 4. To enable reception, set enable bit CREN.
- 5. Flag bit RCIF will be set when reception is complete and an interrupt will be generated, if enable bit RCIE was set.
- Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 7. Read the 8-bit received data by reading the RCREG register.
- 8. If any error occurred, clear the error by clearing bit CREN.
- 9. If using interrupts, ensure that GIE and PEIE in the INTCON register are set.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	x000 0000x	0000 000x
1Ah	RCREG	USART R	eceive R	egister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Baud Rate Generator Register							0000 0000	0000 0000


TABLE 10-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous slave reception. **Note 1:** Bits PSPIE and PSPIF are reserved on the PIC16F73/76 devices, always maintain these bits clear.

11.1 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 11-2. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), see Figure 11-2. The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 10 k Ω . After the analog input channel is selected (changed), the acquisition period must pass before the conversion can be started.

To calculate the minimum acquisition time, TACQ, see the PICmicroTM Mid-Range MCU Family Reference Manual (DS33023). In general, however, given a maximum source impedance of 10 k Ω and at a temperature of 100°C, TACQ will be no more than 16 µsec.

TABLE 11-1: TAD vs. MAXIMUM DEVICE OPERATING FREQUENCIES (STANDARD DEVICES (C))

AD Cloc	k Source (Tad)	Maximum Device Frequency
Operation	ADCS1:ADCS0	Max.
2Tosc	0.0	1.25 MHz
8Tosc	01	5 MHz
32Tosc	10	20 MHz
RC ^(1, 2, 3)	11	(Note 1)

Note 1: The RC source has a typical TAD time of 4 µs but can vary between 2-6 µs.

2: When the device frequencies are greater than 1 MHz, the RC A/D conversion clock source is only recommended for SLEEP operation.

3: For extended voltage devices (LC), please refer to the Electrical Specifications section.

14.13 PICDEM 3 Low Cost PIC16CXXX Demonstration Board

The PICDEM 3 demonstration board is a simple demonstration board that supports the PIC16C923 and PIC16C924 in the PLCC package. It will also support future 44-pin PLCC microcontrollers with an LCD Module. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM 3 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer with an adapter socket, and easily test firmware. The MPLAB ICE in-circuit emulator may also be used with the PICDEM 3 demonstration board to test firmware. A prototype area has been provided to the user for adding hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push button switches, a potentiometer for simulated analog input, a thermistor and separate headers for connection to an external LCD module and a keypad. Also provided on the PICDEM 3 demonstration board is a LCD panel, with 4 commons and 12 segments, that is capable of displaying time, temperature and day of the week. The PICDEM 3 demonstration board provides an additional RS-232 interface and Windows software for showing the demultiplexed LCD signals on a PC. A simple serial interface allows the user to construct a hardware demultiplexer for the LCD signals.

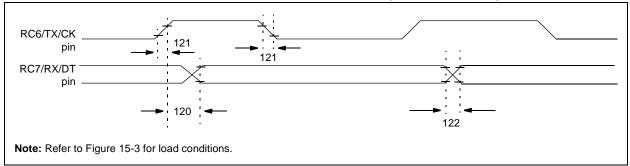
14.14 PICDEM 17 Demonstration Board

The PICDEM 17 demonstration board is an evaluation board that demonstrates the capabilities of several Microchip microcontrollers, including PIC17C752, PIC17C756A, PIC17C762 and PIC17C766. All necessary hardware is included to run basic demo programs, which are supplied on a 3.5-inch disk. A programmed sample is included and the user may erase it and program it with the other sample programs using the PRO MATE II device programmer, or the PICSTART Plus development programmer, and easily debug and test the sample code. In addition, the PICDEM 17 demonstration board supports downloading of programs to and executing out of external FLASH memory on board. The PICDEM 17 demonstration board is also usable with the MPLAB ICE in-circuit emulator, or the PICMASTER emulator and all of the sample programs can be run and modified using either emulator. Additionally, a generous prototype area is available for user hardware.

14.15 KEELOQ Evaluation and Programming Tools

KEELOQ evaluation and programming tools support Microchip's HCS Secure Data Products. The HCS evaluation kit includes a LCD display to show changing codes, a decoder to decode transmissions and a programming interface to program test transmitters. NOTES:

Param. No.	Symbol	Characte	eristic	Min	Max	Units	Conditions
100*	Тнідн	Clock high time	100 kHz mode	4.0		μs	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	0.6		μs	Device must operate at a minimum of 10 MHz
			SSP Module	1.5Tcy			
101*	TLOW	Clock low time	100 kHz mode	4.7		μs	Device must operate at a minimum of 1.5 MHz
			400 kHz mode	1.3		μs	Device must operate at a minimum of 10 MHz
			SSP Module	1.5Tcy	_		
102*	Tr	SDA and SCL rise	100 kHz mode	—	1000	ns	
		time	400 kHz mode	20 + 0.1Св	300	ns	CB is specified to be from 10 - 400 pF
103*	TF	SDA and SCL fall	100 kHz mode	—	300	ns	
		time	400 kHz mode	20 + 0.1Св	300	ns	CB is specified to be from 10 - 400 pF
90*	TSU:STA	START condition	100 kHz mode	4.7		μs	Only relevant for
		setup time	400 kHz mode	0.6		μs	Repeated START condition
91*	THD:STA	START condition	100 kHz mode	4.0	_	μs	After this period the first
		hold time	400 kHz mode	0.6	_	μs	clock pulse is generated
106*	THD:DAT	Data input hold time	100 kHz mode	0	—	ns	
			400 kHz mode	0	0.9	μs	
107*	TSU:DAT	Data input setup	100 kHz mode	250	—	ns	(Note 2)
		time	400 kHz mode	100	—	ns	
92*	Tsu:sto	STOP condition	100 kHz mode	4.7	—	μs	
		setup time	400 kHz mode	0.6	_	μs	
109*	ΤΑΑ	Output valid from	100 kHz mode	—	3500	ns	(Note 1)
		clock	400 kHz mode	—	—	ns	
110*	TBUF	Bus free time	100 kHz mode	4.7	_	μs	Time the bus must be free
			400 kHz mode	1.3	—	μs	before a new transmission can start
	Св	Bus capacitive loading	ng	-	400	pF	


TABLE 15-9: I²C BUS DATA REQUIREMENTS

* These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of START or STOP conditions.

2: A Fast mode (400 kHz) I²C bus device can be used in a Standard mode (100 kHz) I²C bus system, but the requirement TsU:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line TR max. + TSU:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.

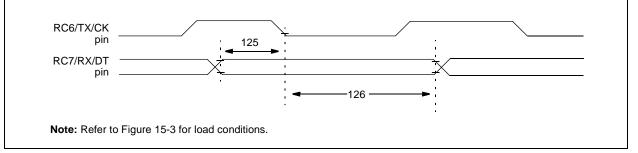


TABLE 15-10: USART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param No.	Symbol	Characte	ristic	Min	Тур†	Max	Units	Conditions
120	TckH2dtV	<u>SYNC XMIT (MASTER &</u> <u>SLAVE)</u>	Standard(F)		_	80	ns	
		Clock high to data out valid	Extended(LF)	_	—	100	ns	
121	Tckrf	Clock out rise time and fall	Standard(F)	_	—	45	ns	
		time (Master mode)	Extended(LF)	—	—	50	ns	
122	Tdtrf	Data out rise time and fall	Standard(F)	_	—	45	ns	
		time	Extended(LF)		—	50	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

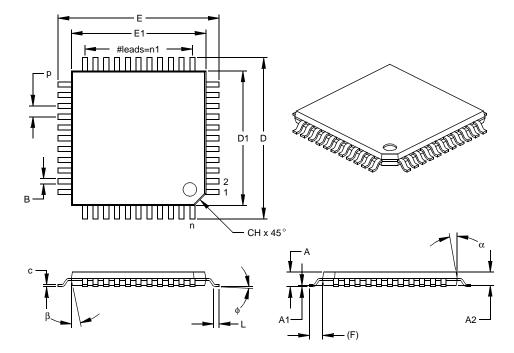


TABLE 15-11: USART SYNCHRONOUS RECEIVE REQUIREMENTS

Parameter No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions
125		<u>SYNC RCV (MASTER & SLAVE)</u> Data setup before CK↓ (DT setup time)	15			ns	
126	TckL2dtl	Data hold after CK↓ (DT hold time)	15			ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

44-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)

	Units	INCHES			MILLIMETERS*		
Dimensior	n Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		44			44	
Pitch	р		.031			0.80	
Pins per Side	n1		11			11	
Overall Height	А	.039	.043	.047	1.00	1.10	1.20
Molded Package Thickness	A2	.037	.039	.041	0.95	1.00	1.05
Standoff §	A1	.002	.004	.006	0.05	0.10	0.15
Foot Length	L	.018	.024	.030	0.45	0.60	0.75
Footprint (Reference)	(F)		.039		1.00		
Foot Angle	φ	0	3.5	7	0	3.5	7
Overall Width	Е	.463	.472	.482	11.75	12.00	12.25
Overall Length	D	.463	.472	.482	11.75	12.00	12.25
Molded Package Width	E1	.390	.394	.398	9.90	10.00	10.10
Molded Package Length	D1	.390	.394	.398	9.90	10.00	10.10
Lead Thickness	С	.004	.006	.008	0.09	0.15	0.20
Lead Width	В	.012	.015	.017	0.30	0.38	0.44
Pin 1 Corner Chamfer	СН	.025	.035	.045	0.64	0.89	1.14
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-026 Drawing No. C04-076

ON-LINE SUPPORT

Microchip provides on-line support on the Microchip World Wide Web (WWW) site.

The web site is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape or Microsoft Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available by using your favorite Internet browser to attach to:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp://ftp.microchip.com

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked
 Questions
- Design Tips
- Device Errata
- Job Postings
- Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products
- Conferences for products, Development Systems, technical information and more
- · Listing of seminars and events

Systems Information and Upgrade Hot Line

The Systems Information and Upgrade Line provides system users a listing of the latest versions of all of Microchip's development systems software products. Plus, this line provides information on how customers can receive any currently available upgrade kits.The Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada, and

1-480-792-7302 for the rest of the world.

013001

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To:	Technical Publications Manager Tota	I Pages Sent						
RE:	Reader Response							
From	m: Name							
	Company							
	Address							
	City / State / ZIP / Country							
.	Telephone:)						
Application (optional):								
Would	uld you like a reply?YN							
Device: PIC16F7X Literature Number: DS30325B								
Ques	estions:							
1. What are the best features of this document?								
_								
2. H	How does this document meet your hardware and software developm	ent needs?						
_								
3. D	3. Do you find the organization of this data sheet easy to follow? If not, why?							
_								
4. W	. What additions to the data sheet do you think would enhance the structure and subject?							
_								
5. W	What deletions from the data sheet could be made without affecting the	ne overall usefulness?						
_								
6. Is	. Is there any incorrect or misleading information (what and where)?							
_								
– 7. H	How would you improve this document?							
<i>i</i> . ⊓								
_								
8. H	How would you improve our software, systems, and silicon products?							
_								