

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf74-i-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

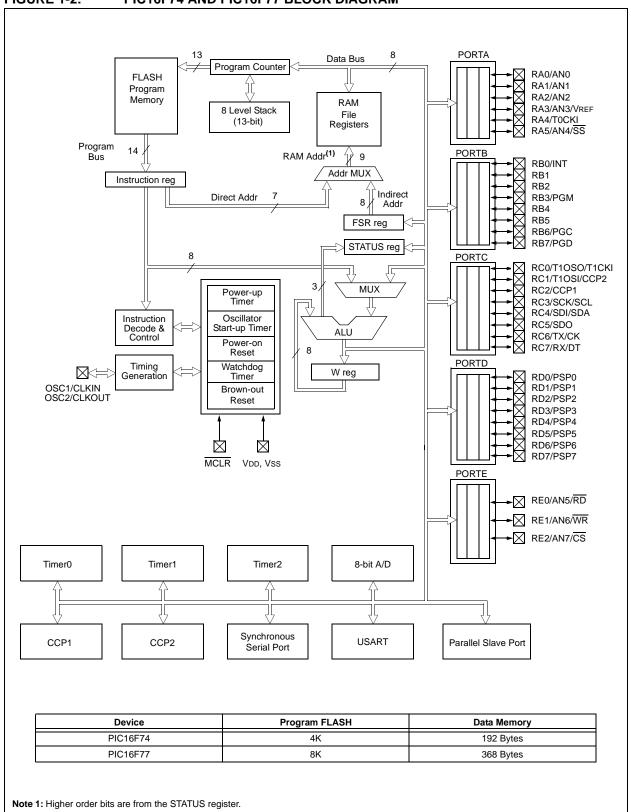


FIGURE 1-2: PIC16F74 AND PIC16F77 BLOCK DIAGRAM

PIC16F7X

FIGL	JRE	2-3:

PIC16F74/73 REGISTER FILE MAP

ŀ	File Address		File Address		File Address	ļ	File Addre
Indirect addr.(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	180
TMR0	01h	OPTION_REG	81h	TMR0	101h	OPTION_REG	181
PCL	02h	PCL	82h	PCL	102h	PCL	182
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183
FSR	04h	FSR	84h	FSR	104h	FSR	184
PORTA	05h	TRISA	85h		105h		185
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186
PORTC	07h	TRISC	87h		107h		187
PORTD ⁽¹⁾	08h	TRISD ⁽¹⁾	88h		108h		188
PORTE ⁽¹⁾	09h	TRISE ⁽¹⁾	89h		109h		189
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18A
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18E
PIR1	0Ch	PIE1	8Ch	PMDATA	10Ch	PMCON1	180
PIR2	0Dh	PIE2	8Dh	PMADR	10Dh		180
TMR1L	0Eh	PCON	8Eh	PMDATH	10Eh		18E
TMR1H	0Fh		8Fh	PMADRH	10Fh		18F
T1CON	10h		90h		110h		190
TMR2	11h		91h				
T2CON	12h	PR2	92h				
SSPBUF	13h	SSPADD	93h				
SSPCON	14h	SSPSTAT	94h				
CCPR1L	15h		95h				
CCPR1H	16h		96h				
CCP1CON	17h		97h				
RCSTA	18h	TXSTA	98h				
TXREG	19h	SPBRG	99h				
RCREG	1Ah		9Ah				
CCPR2L	1Bh		9Bh				
CCPR2H	1Ch		9Ch				
CCP2CON	1Dh		9Dh				
ADRES	1Eh		9Eh				
ADCON0	1Fh	ADCON1	9Fh		1001		4.4.0
	20h		A0h		120h		1A0
			7,011				
General		General					
		Purpose Register		accesses		accesses	
-		-		20h-7Fh		A0h - FFh	4
96 Bytes		96 Bytes			16Fh 170b		1EF 1FC
					17011		
Bank 0	7Fh	Bank 1	FFh	Bank 2	17Fh	Bank 3	1FF
Purpose Register 96 Bytes Bank 0 Unimpleme * Not a phys	ented data	Purpose Register 96 Bytes Bank 1	s, read as	20h-7Fh Bank 2 '0'.	170h	A0h - FFh	

2.2.2.4 PIE1 Register

The PIE1 register contains the individual enable bits for the peripheral interrupts.

Note: Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

REGISTER 2-4: PIE1 REGISTER (ADDRESS 8Ch)

		•		•									
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE					
	bit 7												
bit 7	PSPIE ⁽¹⁾ : Parallel Slave Port Read/Write Interrupt Enable bit												
	1 = Enable	1 = Enables the PSP read/write interrupt											
	0 = Disabl	0 = Disables the PSP read/write interrupt											
bit 6	ADIE: A/D	Converter I	nterrupt Ena	able bit									
		es the A/D co											
	0 = Disabl	es the A/D c	onverter inte	errupt									
bit 5		ART Receive	•										
		es the USAR											
		es the USAF											
bit 4		RT Transmi	-										
		es the USAR											
h # 0		es the USAF			hla h:+								
bit 3	•	nchronous S		iterrupt Ena	DIE DIT								
		es the SSP in es the SSP i											
bit 2		CP1 Interru		i+									
		es the CCP1	•	it i									
		es the CCP	•										
bit 1		MR2 to PR		rrupt Enable	e bit								
		es the TMR2		•									
		es the TMR2											
bit 0	TMR1IE: T	MR1 Overfl	ow Interrupt	Enable bit									
		es the TMR1											
		es the TMR'		•									

Note 1: PSPIE is reserved on 28-pin devices; always maintain this bit clear.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

NOTES:

3.0 **READING PROGRAM MEMORY**

The FLASH Program Memory is readable during normal operation over the entire VDD range. It is indirectly addressed through Special Function Registers (SFR). Up to 14-bit numbers can be stored in memory for use as calibration parameters, serial numbers, packed 7-bit ASCII, etc. Executing a program memory location containing data that forms an invalid instruction results in a NOP.

There are five SFRs used to read the program and memory. These registers are:

- PMCON1
- PMDATA
- PMDATH
- PMADR
- PMADRH

The program memory allows word reads. Program memory access allows for checksum calculation and reading calibration tables.

When interfacing to the program memory block, the PMDATH:PMDATA registers form a two-byte word, which holds the 14-bit data for reads. The PMADRH:PMADR registers form a two-byte word, which holds the 13-bit address of the FLASH location being accessed. These devices can have up to 8K words of program FLASH, with an address range from Oh to 3FFFh. The unused upper bits in both the PMDATH and PMADRH registers are not implemented and read as "0's".

3.1 **PMADR**

The address registers can address up to a maximum of 8K words of program FLASH.

When selecting a program address value, the MSByte of the address is written to the PMADRH register and the LSByte is written to the PMADR register. The upper MSbits of PMADRH must always be clear.

3.2 PMCON1 Register

PMCON1 is the control register for memory accesses.

The control bit RD initiates read operations. This bit cannot be cleared, only set, in software. It is cleared in hardware at the completion of the read operation.

REGISTER 3-1: PMCON1 REGISTER (ADDRESS 18Ch)

	R-1	U-0	U-0	U-0	U-x	U-0	U-0	R/S-0						
	reserved — — — — — — RD													
	bit 7 bit 0													
bit 7	Reserved: Read as '1'													
bit 6-1	Unimplemented: Read as '0'													
bit 0	RD: Read	Control bit												
	1 = Initiates in softw		ead, RD is c	leared in har	dware. The	RD bit can c	only be set (n	ot cleared)						
	0 = FLASH read completed													
	_													
	Legend:													

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

3.3 Reading the FLASH Program Memory

A program memory location may be read by writing two bytes of the address to the PMADR and PMADRH registers and then setting control bit RD (PMCON1<0>). Once the read control bit is set, the microcontroller will use the next two instruction cycles to read the data. The data is available in the PMDATA and PMDATH registers after the second NOP instruction. Therefore, it can be read as two bytes in the following instructions. The PMDATA and PMDATH registers will hold this value until the next read operation.

3.4 Operation During Code Protect

FLASH program memory has its own code protect mechanism. External Read and Write operations by programmers are disabled if this mechanism is enabled.

The microcontroller can read and execute instructions out of the internal FLASH program memory, regardless of the state of the code protect configuration bits.

	BSF	STATUS, RP1	;
	BCF	STATUS, RP0	; Bank 2
	MOVF	ADDRH, W	;
	MOVWF	PMADRH	; MSByte of Program Address to read
	MOVF	ADDRL, W	;
	MOVWF	PMADR	; LSByte of Program Address to read
	BSF	STATUS, RP0	; Bank 3 Required
Required Sequence	BSF NOP NOP	PMCON1, RD	; EEPROM Read Sequence ; memory is read in the next two cycles after BSF PMCON1,RD ;
	BCF	STATUS, RPO	; Bank 2
	MOVF	PMDATA, W	; W = LSByte of Program PMDATA
	MOVF	PMDATH, W	; W = MSByte of Program PMDATA

EXAMPLE 3-1: FLASH PROGRAM READ

TABLE 3-1: REGISTERS ASSOCIATED WITH PROGRAM FLASH

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
10Dh	PMADR	Address F	ddress Register Low Byte								uuuu uuuu
10Fh	PMADRH	_	—	— — Address Register High Byte						xxxx xxxx	uuuu uuuu
10Ch	PMDATA	Data Reg	Data Register Low Byte							xxxx xxxx	uuuu uuuu
10Eh	PMDATH	_	_	Data Reg	Data Register High Byte						uuuu uuuu
18Ch	PMCON1	_(1)	—	_	_	—	_	—	RD	10	10

Legend: x = unknown, u = unchanged, r = reserved, - = unimplemented read as '0'. Shaded cells are not used during FLASH access. **Note 1:** This bit always reads as a '1'.

5.0 TIMER0 MODULE

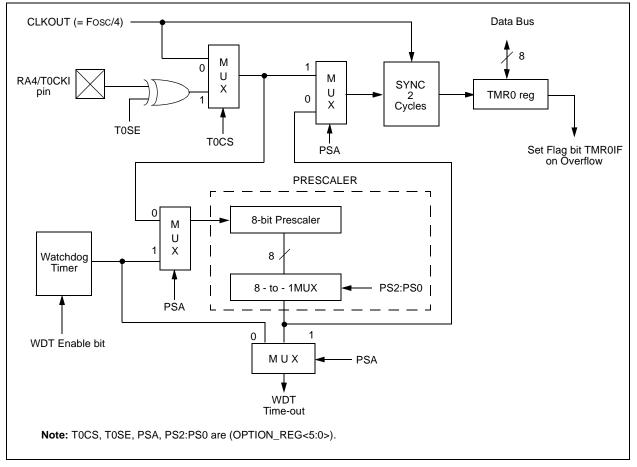
The Timer0 module timer/counter has the following features:

- 8-bit timer/counter
- Readable and writable
- 8-bit software programmable prescaler
- · Internal or external clock select
- Interrupt on overflow from FFh to 00h
- Edge select for external clock

Additional information on the Timer0 module is available in the PICmicro[™] Mid-Range MCU Family Reference Manual (DS33023).

Figure 5-1 is a block diagram of the Timer0 module and the prescaler shared with the WDT.

Timer0 operation is controlled through the OPTION_REG register (Register 5-1 on the following page). Timer mode is selected by clearing bit TOCS (OPTION_REG<5>). In Timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If the TMR0 register is written, the increment is inhibited for the following two instruction cycles. The user can work around this by writing an adjusted value to the TMR0 register.

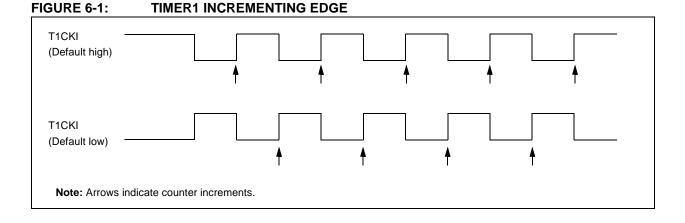

Counter mode is selected by setting bit T0CS (OPTION_REG<5>). In Counter mode, Timer0 will increment, either on every rising or falling edge of pin RA4/T0CKI. The incrementing edge is determined by the Timer0 Source Edge Select bit T0SE (OPTION_REG<4>). Clearing bit T0SE selects the rising edge. Restrictions on the external clock input are discussed in detail in Section 5.2.

The prescaler is mutually exclusively shared between the Timer0 module and the Watchdog Timer. The prescaler is not readable or writable. Section 5.3 details the operation of the prescaler.

5.1 Timer0 Interrupt

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h. This overflow sets bit TMR0IF (INTCON<2>). The interrupt can be masked by clearing bit TMR0IE (INTCON<5>). Bit TMR0IF must be cleared in software by the Timer0 module Interrupt Service Routine, before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from SLEEP, since the timer is shut-off during SLEEP.

NOTES:

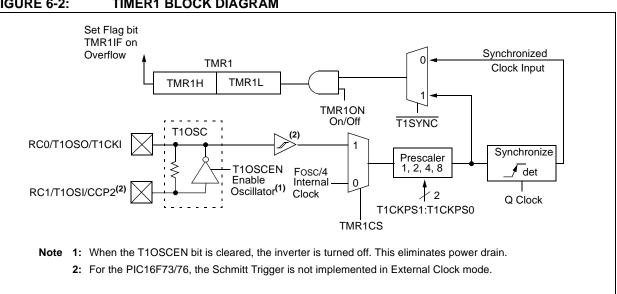

6.1 **Timer1 Operation in Timer Mode**

Timer mode is selected by clearing the TMR1CS (T1CON<1>) bit. In this mode, the input clock to the timer is Fosc/4. The synchronize control bit T1SYNC (T1CON<2>) has no effect, since the internal clock is always in sync.

6.2 **Timer1 Counter Operation**

Timer1 may operate in Asynchronous or Synchronous mode, depending on the setting of the TMR1CS bit.

When Timer1 is being incremented via an external source, increments occur on a rising edge. After Timer1 is enabled in Counter mode, the module must first have a falling edge before the counter begins to increment.



6.3 **Timer1 Operation in Synchronized Counter Mode**

Counter mode is selected by setting bit TMR1CS. In this mode, the timer increments on every rising edge of clock input on pin RC1/T1OSI/CCP2, when bit T1OSCEN is set, or on pin RC0/T1OSO/T1CKI, when bit T1OSCEN is cleared.

If TISYNC is cleared, then the external clock input is synchronized with internal phase clocks. The synchronization is done after the prescaler stage. The prescaler stage is an asynchronous ripple counter.

In this configuration, during SLEEP mode, Timer1 will not increment even if the external clock is present, since the synchronization circuit is shut-off. The prescaler, however, will continue to increment.

FIGURE 6-2: TIMER1 BLOCK DIAGRAM

8.4.1 CCP PIN CONFIGURATION

The user must configure the RC2/CCP1 pin as an output by clearing the TRISC<2> bit.

Note:	Clearing the CCP1CON register will force
	the RC2/CCP1 compare output latch to the
	default low level. This is not the PORTC
	I/O data latch.

8.4.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode if the CCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work.

8.4.3 SOFTWARE INTERRUPT MODE

When Generate Software Interrupt mode is chosen, the CCP1 pin is not affected. The CCP1IF or CCP2IF bit is set, causing a CCP interrupt (if enabled).

8.4.4 SPECIAL EVENT TRIGGER

In this mode, an internal hardware trigger is generated, which may be used to initiate an action.

The special event trigger output of CCP1 resets the TMR1 register pair. This allows the CCPR1 register to effectively be a 16-bit programmable period register for Timer1.

The special event trigger output of CCP2 resets the TMR1 register pair and starts an A/D conversion (if the A/D module is enabled).

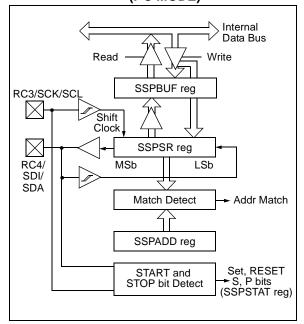
Note: The special event trigger from the CCP1 and CCP2 modules will not set interrupt flag bit TMR1IF (PIR1<0>).

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
0Dh	PIR2	—	—	—	—	_	_	_	CCP2IF	0	0
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
8Dh	PIE2	—	_	—	_	_	—	_	CCP2IE	0	0
87h	TRISC	PORTC D	ata Direc	tion Registe	er					1111 1111	1111 1111
0Eh	TMR1L	Holding R	egister fo	r the Least	Significant	Byte of the 1	6-bit TMR	1 Register		xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding R	egister fo	r the Most S	Significant E	Byte of the 16	6-bit TMR1	Register		xxxx xxxx	uuuu uuuu
10h	T1CON	—		T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu
15h	CCPR1L	Capture/C	ompare/l	PWM Regis	ster1 (LSB)					xxxx xxxx	uuuu uuuu
16h	CCPR1H	Capture/C	ompare/l	PWM Regis	ster1 (MSB)					xxxx xxxx	uuuu uuuu
17h	CCP1CON	—		CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	00 0000
1Bh	CCPR2L	Capture/C	Capture/Compare/PWM Register2 (LSB)								uuuu uuuu
1Ch	CCPR2H	Capture/C	ompare/l	PWM Regis	ster2 (MSB)					xxxx xxxx	uuuu uuuu
1Dh	CCP2CON	—	_	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	00 0000

TABLE 8-3: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE, AND TIMER1

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by Capture and Timer1.

Note 1: The PSP is not implemented on the PIC16F73/76; always maintain these bits clear.


9.3 SSP I²C Operation

The SSP module in l^2C mode, fully implements all slave functions, except general call support, and provides interrupts on START and STOP bits in hardware to facilitate firmware implementations of the master functions. The SSP module implements the standard mode specifications as well as 7-bit and 10-bit addressing.

Two pins are used for data transfer. These are the RC3/ SCK/SCL pin, which is the clock (SCL), and the RC4/ SDI/SDA pin, which is the data (SDA). The user must configure these pins as inputs or outputs through the TRISC<4:3> bits.

The SSP module functions are enabled by setting SSP enable bit SSPEN (SSPCON<5>).

FIGURE 9-5: SSP BLOCK DIAGRAM (I²C MODE)

The SSP module has five registers for $\mathsf{I}^2\mathsf{C}$ operation. These are the:

- SSP Control Register (SSPCON)
- SSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer (SSPBUF)
- SSP Shift Register (SSPSR) Not directly accessible
- SSP Address Register (SSPADD)

The SSPCON register allows control of the I^2C operation. Four mode selection bits (SSPCON<3:0>) allow one of the following I^2C modes to be selected:

- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- I²C Slave mode (7-bit address), with START and STOP bit interrupts enabled to support Firmware Master mode
- I²C Slave mode (10-bit address), with START and STOP bit interrupts enabled to support Firmware Master mode
- I²C START and STOP bit interrupts enabled to support Firmware Master mode, Slave is IDLE

Selection of any I^2C mode with the SSPEN bit set, forces the SCL and SDA pins to be open drain, provided these pins are programmed to inputs by setting the appropriate TRISC bits. Pull-up resistors must be provided externally to the SCL and SDA pins for proper operation of the I^2C module.

Additional information on SSP I²C operation can be found in the PICmicro[™] Mid-Range MCU Family Reference Manual (DS33023A).

9.3.1 SLAVE MODE

In Slave mode, the SCL and SDA pins must be configured as inputs (TRISC<4:3> set). The SSP module will override the input state with the output data when required (slave-transmitter).

When an address is matched, or the data transfer after an address match is received, the hardware automatically will generate the Acknowledge (\overline{ACK}) pulse, and then load the SSPBUF register with the received value currently in the SSPSR register.

There are certain conditions that will cause the SSP module not to give this ACK pulse. They include (either or both):

- a) The buffer full bit BF (SSPSTAT<0>) was set before the transfer was received.
- b) The overflow bit SSPOV (SSPCON<6>) was set before the transfer was received.

In this case, the SSPSR register value is not loaded into the SSPBUF, but bit SSPIF (PIR1<3>) is set. Table 9-2 shows what happens when a data transfer byte is received, given the status of bits BF and SSPOV. The shaded cells show the condition where user software did not properly clear the overflow condition. Flag bit BF is cleared by reading the SSPBUF register, while bit SSPOV is cleared through software.

The SCL clock input must have a minimum high and low for proper operation. The high and low times of the I^2C specification, as well as the requirements of the SSP module, are shown in timing parameter #100 and parameter #101.

9.3.2 MASTER MODE

Master mode of operation is supported in firmware using interrupt generation on the detection of the START and STOP conditions. The STOP (P) and START (S) bits are cleared from a RESET or when the SSP module is disabled. The STOP (P) and START (S) bits will toggle based on the START and STOP conditions. Control of the I²C bus may be taken when the P bit is set, or the bus is IDLE and both the S and P bits are clear.

In Master mode, the SCL and SDA lines are manipulated by clearing the corresponding TRISC<4:3> bit(s). The output level is always low, irrespective of the value(s) in PORTC<4:3>. So when transmitting data, a '1' data bit must have the TRISC<4> bit set (input) and a '0' data bit must have the TRISC<4> bit cleared (output). The same scenario is true for the SCL line with the TRISC<3> bit. Pull-up resistors must be provided externally to the SCL and SDA pins for proper operation of the I²C module.

The following events will cause SSP Interrupt Flag bit, SSPIF, to be set (SSP Interrupt will occur if enabled):

- START condition
- STOP condition
- Data transfer byte transmitted/received

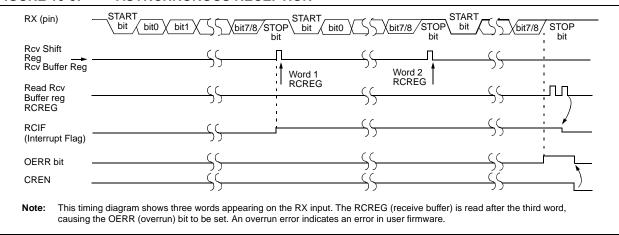
Master mode of operation can be done with either the Slave mode IDLE (SSPM3:SSPM0 = 1011), or with the Slave active. When both Master and Slave modes are enabled, the software needs to differentiate the source(s) of the interrupt.

9.3.3 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the START and STOP conditions, allows the determination of when the bus is free. The STOP (P) and START (S) bits are cleared from a RESET or when the SSP module is disabled. The STOP (P) and START (S) bits will toggle based on the START and STOP conditions. Control of the I^2C bus may be taken when bit P (SSPSTAT<4>) is set, or the bus is IDLE and both the S and P bits clear. When the bus is busy, enabling the SSP Interrupt will generate the interrupt when the STOP condition occurs.

In Multi-Master operation, the SDA line must be monitored to see if the signal level is the expected output level. This check only needs to be done when a high level is output. If a high level is expected and a low level is present, the device needs to release the SDA and SCL lines (set TRISC<4:3>). There are two stages where this arbitration can be lost, these are:

- Address Transfer
- Data Transfer


When the slave logic is enabled, the slave continues to receive. If arbitration was lost during the address transfer stage, communication to the device may be in progress. If addressed, an ACK pulse will be generated. If arbitration was lost during the data transfer stage, the device will need to retransfer the data at a later time.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
13h	SSPBUF	Synchrono	us Serial	Port Rece	eive Buff	er/Transn	nit Registe	ər		xxxx xxxx	uuuu uuuu
93h	SSPADD	Synchrono	us Serial	Port (I ² C	mode) A	ddress R	egister			0000 0000	0000 0000
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
94h	SSPSTAT	SMP ⁽²⁾	CKE ⁽²⁾	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
87h	TRISC	PORTC Da	ata Direct	•	1111 1111	1111 1111					

 TABLE 9-3:
 REGISTERS ASSOCIATED WITH I²C OPERATION

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by SSP module in I²C mode. **Note 1:** PSPIF and PSPIE are reserved on the PIC16F73/76; always maintain these bits clear.

2: Maintain these bits clear in I²C mode.

FIGURE 10-5: ASYNCHRONOUS RECEPTION

Steps to follow when setting up an Asynchronous Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH (Section 10.1).
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit RCIE.
- 4. If 9-bit reception is desired, then set bit RX9.
- 5. Enable the reception by setting bit CREN.

- 6. Flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE is set.
- 7. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading the RCREG register.
- 9. If any error occurred, clear the error by clearing enable bit CREN.
- 10. If using interrupts, ensure that GIE and PEIE in the INTCON register are set.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN		FERR	OERR	RX9D	0000 -00x	0000 -00x
1Ah	RCREG	USART R	eceive Re	gister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate Generator Register							0000 0000	0000 0000	

TABLE 10-6: REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for asynchronous reception. Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76 devices; always maintain these bits clear.

12.0 SPECIAL FEATURES OF THE CPU

These devices have a host of features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- Oscillator Selection
- RESET
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP
- Code Protection
- ID Locations
- In-Circuit Serial Programming

These devices have a Watchdog Timer, which can be enabled or disabled, using a configuration bit. It runs off its own RC oscillator for added reliability.

There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only. It is designed to keep the part in RESET while the power supply stabilizes, and is enabled or disabled, using a configuration bit. With these two timers on-chip, most applications need no external RESET circuitry. SLEEP mode is designed to offer a very low current power-down mode. The user can wake-up from SLEEP through external RESET, Watchdog Timer Wake-up, or through an interrupt.

Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. Configuration bits are used to select the desired oscillator mode.

Additional information on special features is available in the PICmicro[™] Mid-Range Reference Manual (DS33023).

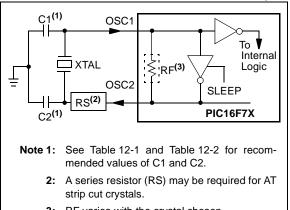
12.1 Configuration Bits

The configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space, which can be accessed only during programming.

12.2 Oscillator Configurations

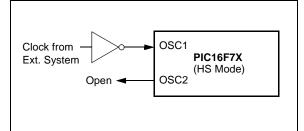
12.2.1 OSCILLATOR TYPES


The PIC16F7X can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor

12.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

In XT, LP or HS modes, a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 12-1). The PIC16F7X oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in HS mode, the device can accept an external clock source to drive the OSC1/CLKIN pin (Figure 12-2). See Figure 15-1 or Figure 15-2 (depending on the part number and VDD range) for valid external clock frequencies.


FIGURE 12-1: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)

3: RF varies with the crystal chosen.

FIGURE 12-2:

EXTERNAL CLOCK INPUT OPERATION (HS OSC CONFIGURATION)

TABLE 12-1: CERAMIC RESONATORS (FOR DESIGN GUIDANCE ONLY)

Typical Capacitor Values Used:								
Mode	Freq	OSC1	OSC2					
XT	455 kHz	56 pF	56 pF					
	2.0 MHz	47 pF	47 pF					
	4.0 MHz	33 pF	33 pF					
HS	8.0 MHz	27 pF	27 pF					
	16.0 MHz	22 pF	22 pF					

Capacitor values are for design guidance only.

These capacitors were tested with the resonators listed below for basic start-up and operation. These values were not optimized.

Different capacitor values may be required to produce acceptable oscillator operation. The user should test the performance of the oscillator over the expected VDD and temperature range for the application.

See the notes at the bottom of page 92 for additional information.

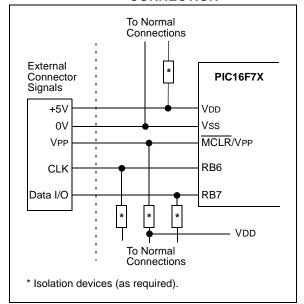
Resonators Used:						
455 kHz	Panasonic EFO-A455K04B					
2.0 MHz	Murata Erie CSA2.00MG					
4.0 MHz	Murata Erie CSA4.00MG					
8.0 MHz	Murata Erie CSA8.00MT					
16.0 MHz	Murata Erie CSA16.00MX					

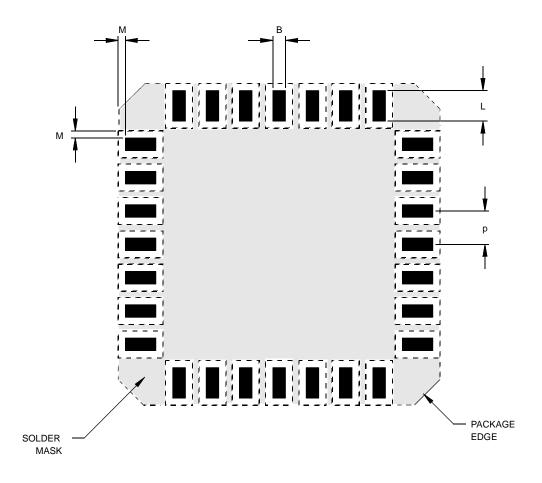
; Q1 Q2 Q3 Q4 OSC1 / CLKOUT ⁽⁴⁾ \	; Q1 Q2 Q3 Q4; Q1 //_//_/_/_/		Q1 Q2 Q3 Q4 	; Q1 Q2 Q3 Q4; ////////////////////////////////////	Q1 Q2 Q3 Q4; (///// 	21 Q2 Q3 Q4; _/_/_/
·	λ/ λ ι ι	1031.1	/	۱۸/ ۱۸ ۱ ۱	/ i\	/
INT pin	<u>ı ı</u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>
INTF Flag (INTCON<1>)	ı ı +			Interrupt Latency (Note 2)		
GIE bit (INTCON<7>)		b			i	
INSTRUCTION FLOW				1 I 1 I	1 1	1
PC X PC	Х РС+1 Х	PC+2	PC+2	<u>X PC + 2 X</u>	0004h X	0005h
Instruction Fetched Inst(PC) = SLEE	P Inst(PC + 1)	1 1 1	Inst(PC + 2)	1 1 1 1 1 1	Inst(0004h)	Inst(0005h)
Instruction Executed { Inst(PC - 1)	SLEEP	1 	Inst(PC + 1)	Dummy cycle	Dummy cycle	Inst(0004h)
3: GIE = '1' assumed. In If GIE = '0', execution	tor mode assumed. Irawing not to scale) This de n this case after wake- up, t n will continue in-line. able in these osc modes, bu	the processor jur	mps to the interrup	ot routine.		

FIGURE 12-12: WAKE-UP FROM SLEEP THROUGH INTERRUPT

12.15 Program Verification/Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.


12.16 ID Locations


Four memory locations (2000h - 2003h) are designated as ID locations, where the user can store checksum or other code identification numbers. These locations are not accessible during normal execution, but are readable and writable during program/verify. It is recommended that only the 4 Least Significant bits of the ID location are used.

12.17 In-Circuit Serial Programming

PIC16F7X microcontrollers can be serially programmed while in the end application circuit. This is simply done, with two lines for clock and data and three other lines for power, ground, and the programming voltage (see Figure 12-13 for an example). This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed. For general information of serial programming, please refer to the In-Circuit Serial Programming (ICSP[™]) Guide (DS30277). For specific details on programming commands and operations for the PIC16F7X devices, please refer to the latest version of the PIC16F7X FLASH Program Memory Programming Specification (DS30324).

28-Lead Plastic Micro Leadframe Package (MF) 6x6 mm Body (MLF) (Continued)

	ι	Units	INCHES MILLIMETERS*					
	Dimension Lim	nits	MIN	NOM	MAX	MIN	NOM	MAX
Pitch		р		.026 BSC			0.65 BSC	
Pad Width		В	.009	.011	.014	0.23	0.28	0.35
Pad Length		L	.020	.024	.030	0.50	0.60	0.75
Pad to Solder Mask		М	.005		.006	0.13		0.15

*Controlling Parameter

Drawing No. C04-2114

APPENDIX A: REVISION HISTORY

Version	Date	Revision Description
A	2000	This is a new data sheet. How- ever, these devices are similar to the PIC16C7X devices found in the PIC16C7X Data Sheet (DS30390) or the PIC16F87X devices (DS30292).
В	2001	Final data sheet. Includes device characterization data. Addition of extended temperature devices. Addition of 28-pin MLF package. Minor typographic revisions throughout.

APPENDIX B: DEVICE DIFFERENCES

The differences between the devices in this data sheet are listed in Table B-1.

TABLE B-1:DEVICE DIFFERENCES

Difference	PIC16F73	PIC16F74	PIC16F76	PIC16F77
FLASH Program Memory (14-bit words)	4K	4K	8K	8K
Data Memory (bytes)	192	192	368	368
I/O Ports	3	5	3	5
A/D	5 channels, 8 bits	8 channels, 8 bits	5 channels, 8 bits	8 channels, 8 bits
Parallel Slave Port	no	yes	no	yes
Interrupt Sources	11	12	11	12
Packages	28-pin PDIP 28-pin SOIC 28-pin SSOP 28-pin MLF	40-pin PDIP 44-pin TQFP 44-pin PLCC	28-pin PDIP 28-pin SOIC 28-pin SSOP 28-pin MLF	40-pin PDIP 44-pin TQFP 44-pin PLCC

INDEX

	-	
1	Δ	۱
		•

A/D
A/D Conversion Status (GO/DONE Bit)83
Acquisition Requirements86
ADCON0 Register83
ADCON1 Register83
ADRES Register83
Analog Port Pins8, 10, 12, 39
Analog-to-Digital Converter83
Associated Registers88
Configuring Analog Port Pins87
Configuring the Interrupt85
Configuring the Module85
Conversion Clock
Conversion Requirements
Conversions
Converter Characteristics
Effects of a RESET
Faster Conversion - Lower Resolution
Trade-off
Operation During SLEEP
Source Impedance
Absolute Maximum Ratings
ADSolute Maximum Ratings
ADCON0 Register
GO/DONE Bit
ADCON1 Register
ADRES Register
Analog Port Pins. See A/D
Application Notes
AN552 (Implementing Wake-up on Key Strokes
Using PIC16F7X)
AN556 (Implementing a Table Read)
AN578 (Use of the SSP Module in the I ² C
Multi-Master Environment)
AN607 (Power-up Trouble Shooting)94
Assembler
MPASM Assembler113
В
-
Banking, Data Memory13
BF bit
Block Diagrams
A/D
Analog Input Model
Capture Mode Operation55
Compare
Crystal/Ceramic Resonator Operation (HS, XT
or LP Osc Configuration)
External Clock Input Operation
(HS Osc Configuration)
Interrupt Logic
PIC16F73 and PIC16F766 PIC16F74 and PIC16F777
PICTOF74 and PICTOF777 PORTA
RA3:RA0 and RA5 Port Pins
RA4/T0CKI Pin
PORTB
RB3:RB0 Port Pins
RB7:RB4 Port Pins

С

Capture/Compare/PWM (CCP)	
Associated Registers	58
Capture Mode	
Prescaler	
CCP Pin Configuration	
CCP1	
RC2/CCP1 Pin9,	11
CCP2	••
RC1/T1OSI/CCP2 Pin9,	11
Compare Mode	
Software Interrupt Mode	
Special Trigger Output	
Timer1 Mode Selection	
Example PWM Frequencies and Resolutions	
Interaction of Two CCP Modules	53
PWM Duty Cycle	
PWM Mode	
PWM Period	57
Setup for PWM Operation	
Special Event Trigger and A/D Conversions	
Timer Resources	53
CCP1 Module	53
CCP2 Module	53
CCPR1H Register	
CCPR1L Register	
CCPxM<3:0> bits	54
CCPxX and CCPxY bits	54
CKE bit	60
CKP bit	61
Code Examples	
Call of a Subroutine in Page 1 from Page 0	26
Changing Between Capture Prescalers	55
Changing Prescaler Assignment to Timer0	
Changing Prescaler Assignment to WDT	45
FLASH Program Read	
Indirect Addressing	27
Initializing PORTA	31
Reading a 16-bit Free-Running Timer	49
Saving STATUS, W, and PCLATH Registers	
in RAM1	
Writing a 16-bit Free-Running Timer	49

PORTC (Peripheral Output Override)35

PORTE Register			. 37
Postscaler, WDT			
Assignment (PSA bit)			
Rate Select (PS2:PS0 bits)			. 20
Power-down Mode. See SLEEP			
Power-on Reset (POR)89,			
Oscillator Start-up Timer (OST)		89,	94
POR Status (POR bit)			.25
Power Control (PCON) Register			. 95
Power-down (PD bit)			.93
Power-up Timer (PWRT)		89,	94
Time-out (TO bit)			
PR2 Register			.51
Prescaler, Timer0			
Assignment (PSA bit)			.20
Rate Select (PS2:PS0 bits)			
PRO MATE II Universal Device Programmer			
Program Counter			
RESET Conditions			. 95
Program Memory			
Associated Registers			
Interrupt Vector			.13
Memory and Stack Maps			
Operation During Code Protect			
Organization			
Paging			
PMADR Register			
PMADRH Register			
Reading FLASH			
Reading, PMADR Register			
Reading, PMADRH Register			
Reading, PMCON1 Register			
Reading, PMDATA Register			
Reading, PMDATH Register			
RESET Vector			
Program Verification			
Programming Pin (VPP)			
Programming, Device Instructions			
PUSH			
R			
R/W bit	.60.	66.	67
		ο Ω	

RA0/AN0 Pin	8,	10
RA1/AN1 Pin	8,	10
RA2/AN2 Pin	8,	10
RA3/AN3/VREF Pin	8,	10
RA4/T0CKI Pin		
RA5/SS/AN4 Pin		
RAM. See Data Memory	ĺ	
RB0/INT Pin	9,	11
RB1 Pin	9,	11
RB2 Pin		
RB3/PGM Pin	9,	11
RB4 Pin	9,	11
RB5 Pin	9,	11
RB6/PGC Pin	9,	11
RB7/PGD Pin	9,	11
RC0/T1OSO/T1CKI Pin	9,	11
RC1/T1OSI/CCP2 Pin		
RC2/CCP1 Pin		
RC3/SCK/SCL Pin	9,	11
RC4/SDI/SDA Pin	9,	11
RC5/SDO Pin	9,	11
RC6/TX/CK Pin		
RC7/RX/DT Pin	9,	11

RCSTA Register	
CREN bit	
OERR bit	
SPEN bit	
SREN bit	
RD0/PSP0 Pin	
RD1/PSP1 Pin	
RD2/PSP2 Pin	
RD3/PSP3 Pin	
RD4/PSP4 Pin	
RD5/PSP5 Pin RD6/PSP6 Pin	
RD7/PSP7 Pin	
RE0/RD/AN5 Pin	
RE1/WR/AN6 Pin	
RE2/CS/AN7 Pin	
Read-Modify-Write Operations	
Receive Overflow Indicator bit (SSPOV)	
Register File	
Registers	
ADCON0 (A/D Control 0)	83
ADCON0 (A/D Control 0) Register	
ADCON1 (A/D Control 1)	
ADCON1 (A/D Control 1) Register	
ADRES (A/D Result)	
CCP1CON/CCP2CON (CCP Control) Registers	s 54
Configuration Word Register	
Initialization Conditions (table)	96—97
INTCON (Interrupt Control)	21
INTCON (Interrupt Control) Register	21
OPTION_REG	
OPTION_REG Register	
PCON (Power Control)	
PCON (Power Control) Register	
PIE1 (Peripheral Interrupt Enable 1)	
PIE1 (Peripheral Interrupt Enable 1) Register	
PIE2 (Peripheral Interrupt Enable 2)	
PIE2 (Peripheral Interrupt Enable 2) Register	
PIR1 (Peripheral Interrupt Request 1) PIR1 (Peripheral Interrupt Request 1) Register	
PIR2 (Peripheral Interrupt Request 2)	
PIR2 (Peripheral Interrupt Request 2) PIR2 (Peripheral Interrupt Request 2) Register	
PMCON1 (Program Memory Control 1)	
Register	20
RCSTA (Receive Status and Control) Register	
Special Function, Summary	16-18
SSPCON (Sync Serial Port Control) Register	
SSPSTAT (Sync Serial Port Status) Register	
STATUS Register	
T1CON (Timer 1 Control) Register	
T2CON (Timer2 Control) Register	
TRISE Register	
TXSTA (Transmit Status and Control) Register	69
RESET	
	89, 93
Brown-out Reset (BOR). See Brown-out Reset	
MCLR Reset. See MCLR	(BOR)
MCLR Reset. See MCLR Power-on Reset (POR). See Power-on Reset (I	(BOR) POR)
MCLR Reset. See MCLR Power-on Reset (POR). See Power-on Reset (I RESET Conditions for All Registers	(BOR) POR) 96
MCLR Reset. See MCLR Power-on Reset (POR). See Power-on Reset (I RESET Conditions for All Registers RESET Conditions for PCON Register	(BOR) POR) 96 95
MCLR Reset. See MCLR Power-on Reset (POR). See Power-on Reset (I RESET Conditions for All Registers RESET Conditions for PCON Register RESET Conditions for Program Counter	(BOR) POR) 96 95 95
MCLR Reset. See MCLR Power-on Reset (POR). See Power-on Reset (I RESET Conditions for All Registers RESET Conditions for PCON Register RESET Conditions for Program Counter RESET Conditions for STATUS Register	(BOR) POR) 96 95 95
MCLR Reset. See MCLR Power-on Reset (POR). See Power-on Reset (I RESET Conditions for All Registers RESET Conditions for PCON Register RESET Conditions for Program Counter RESET Conditions for STATUS Register RESET	(BOR) POR) 96 95 95
MCLR Reset. See MCLR Power-on Reset (POR). See Power-on Reset (I RESET Conditions for All Registers RESET Conditions for PCON Register RESET Conditions for Program Counter RESET Conditions for STATUS Register	(BOR) POR)