

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf74-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	DIP Pin#	PLCC Pin#	QFP Pin#	I/O/P Type	Buffer Type	Description
						PORTD is a bi-directional I/O port or parallel slave port
						when interfacing to a microprocessor bus.
RD0/PSP0	19	21	38		ST/TTL ⁽³⁾	
RD0				I/O		Digital I/O.
PSP0			00	I/O	ot (3)	Parallel Slave Port data.
RD1/PSP1 RD1	20	22	39	і І/О	ST/TTL ⁽³⁾	Digital I/O.
PSP1				1/O		Parallel Slave Port data.
RD2/PSP2	21	23	40	1, C	ST/TTL ⁽³⁾	
RD2	21	20	40	ı/O	OI/TIE	Digital I/O.
PSP2				I/O		Parallel Slave Port data.
RD3/PSP3	22	24	41		ST/TTL ⁽³⁾	
RD3				I/O		Digital I/O.
PSP3				I/O		Parallel Slave Port data.
RD4/PSP4	27	30	2		ST/TTL ⁽³⁾	
RD4				I/O		Digital I/O.
PSP4				I/O		Parallel Slave Port data.
RD5/PSP5	28	31	3		ST/TTL ⁽³⁾	
RD5				I/O		Digital I/O.
PSP5				I/O	· · · · · · (2)	Parallel Slave Port data.
RD6/PSP6	29	32	4		ST/TTL ⁽³⁾	District I/O
RD6 PSP6				I/O I/O		Digital I/O. Parallel Slave Port data.
RD7/PSP7	30	33	5	1/0	ST/TTL ⁽³⁾	Faraller Slave Folt data.
RD7/PSP7	30	- 33	Э	I/O	51/11L*/	Digital I/O.
PSP7				1/O		Parallel Slave Port data.
-						PORTE is a bi-directional I/O port.
RE0/RD/AN5	8	9	25		ST/TTL ⁽³⁾	
RE0	-	-		I/O		Digital I/O.
RD				I		Read control for parallel slave port .
AN5				I		Analog input 5.
RE1/WR/AN6	9	10	26		ST/TTL ⁽³⁾	
RE1				I/O		Digital I/O.
WR				1		Write control for parallel slave port .
AN6				I	o <i></i> (3)	Analog input 6.
RE2/CS/AN7	10	11	27		ST/TTL ⁽³⁾	
RE2 CS				I/O I		Digital I/O. Chip select control for parallel slave port .
AN7				1		Analog input 7.
Vss	12,31	13,34	6,29	P	_	Ground reference for logic and I/O pins.
VDD	11,32	12,35	7,28	Р	_	Positive supply for logic and I/O pins.
NC	· -	1,17,2	12,13,		_	These pins are not internally connected. These pins should
		8, 40	33, 34			be left unconnected.
Legend: I = input		O = 0		I/C) = input/outpu	ut P = power

TABLE 1-3: PIC16F74 AND PIC16F77 PINOUT DESCRIPTION (CONTINUED)

Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel Slave Port mode (for interfacing to a microprocessor bus).

4: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

2.2.2.5 PIR1 Register

The PIR1 register contains the individual flag bits for the peripheral interrupts.

Note:	Interrupt flag bits are set when an interrupt
	condition occurs, regardless of the state of
	its corresponding enable bit or the global
	enable bit, GIE (INTCON<7>). User soft-
	ware should ensure the appropriate interrupt
	bits are clear prior to enabling an interrupt.

REGISTER 2-5: PIR1 REGISTER (ADDRESS 0Ch)

R/W-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF
bit 7							bit 0

bit 7	PSPIF⁽¹⁾: Parallel Slave Port Read/Write Interrupt Flag bit 1 = A read or a write operation has taken place (must be cleared in software) 0 = No read or write has occurred	
bit 6	ADIF: A/D Converter Interrupt Flag bit 1 = An A/D conversion is completed (must be cleared in software) 0 = The A/D conversion is not complete	
bit 5	RCIF: USART Receive Interrupt Flag bit 1 = The USART receive buffer is full 0 = The USART receive buffer is empty	
bit 4	TXIF : USART Transmit Interrupt Flag bit 1 = The USART transmit buffer is empty 0 = The USART transmit buffer is full	
bit 3	 SSPIF: Synchronous Serial Port (SSP) Interrupt Flag 1 = The SSP interrupt condition has occurred, and must be cleared in software before returning from the Interrupt Service Routine. The conditions that will set this bit are: <u>SPI</u> A transmission/reception has taken place. <u>I²C Slave</u> A transmission/reception has taken place. <u>I²C Master</u> A transmission/reception has taken place. The initiated START condition was completed by the SSP module. The initiated Restart condition was completed by the SSP module. The initiated Restart condition was completed by the SSP module. A START condition occurred while the SSP module was IDLE (multi-master system). A STOP condition has occurred 	
bit 2	CCP1IF: CCP1 Interrupt Flag bit <u>Capture mode:</u> 1 = A TMR1 register capture occurred (must be cleared in software) 0 = No TMR1 register capture occurred <u>Compare mode:</u> 1 = A TMR1 register compare match occurred (must be cleared in software) 0 = No TMR1 register compare match occurred <u>PWM mode:</u> Unused in this mode	
bit 1	TMR2IF : TMR2 to PR2 Match Interrupt Flag bit 1 = TMR2 to PR2 match occurred (must be cleared in software) 0 = No TMR2 to PR2 match occurred	
bit 0	 TMR1IF: TMR1 Overflow Interrupt Flag bit 1 = TMR1 register overflowed (must be cleared in software) 0 = TMR1 register did not overflow Note 1: PSPIF is reserved on 28-pin devices; always maintain this bit clear. 	
	Legend.	
	 No read or write has occurred DiF: A/D Converter Interrupt Flag bit An A/D Conversion is completed (must be cleared in software) The A/D conversion is not complete DiF: A/D conversion is not complete DiF: USART Receive Interrupt Flag bit The USART receive buffer is full The USART receive buffer is empty UF: USART transmit buffer is empty The USART transmit buffer is enclassion/reception has cocurred, and must be cleared in software before returning from the Interrupt Service Routine. The conditions that will set this bit are: SPI A transmission/reception has taken place. <u>I^CC Master</u> A transmission/reception has taken place. <u>I^CC Master</u> A transmission/reception has taken place. The initiated Restart condition was completed by the SSP module. The initiated Restart condition was completed by the SSP module. The initiated Restart condition was completed by the SSP module. A START condition occurred while the SSP module was IDLE (multi-master system). A STOP condition occurred while the SSP module was IDLE (multi-master system). A SSP interrupt Condition has occurred CPIIF: CCP1 Interrupt Flag bit <u>splute mode</u>: A TMR1 register capture occurred (must be cleared in software) No TMR1 register compare match occurred (must be cleared in software) No TMR1 register compare match occurred (must be cleared in software) No TMR1 register compare match occurred (must be cleared in software) No TMR1 register occurred Multis be cleared in software) No TMR2 to PR2 match occu	

'1' = Bit is set

'0' = Bit is cleared

- n = Value at POR reset

x = Bit is unknown

4.0 I/O PORTS

Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

Additional information on I/O ports may be found in the PICmicro[™] Mid-Range Reference Manual, (DS33023).

4.1 PORTA and the TRISA Register

PORTA is a 6-bit wide, bi-directional port. The corresponding data direction register is TRISA. Setting a TRISA bit (= '1') will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISA bit (= '0') will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin).

Reading the PORTA register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, the value is modified and then written to the port data latch.

Pin RA4 is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin. The RA4/T0CKI pin is a Schmitt Trigger input and an open drain output. All other PORTA pins have TTL input levels and full CMOS output drivers.

Other PORTA pins are multiplexed with analog inputs and analog VREF input. The operation of each pin is selected by clearing/setting the control bits in the ADCON1 register (A/D Control Register1).

Note: On a Power-on Reset, these pins are configured as analog inputs and read as '0'.

The TRISA register controls the direction of the RA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set, when using them as analog inputs.

BCF BCF CLRF	STATUS, STATUS, PORTA		; ; Bank0 ; Initialize PORTA by ; clearing output : data latches	Y
BSF MOVLW MOVWF MOVLW MOVWF	STATUS, 0x06 ADCON1 0xCF TRISA	RPO	,	

FIGURE 4-1:

BLOCK DIAGRAM OF RA3:RA0 AND RA5 PINS

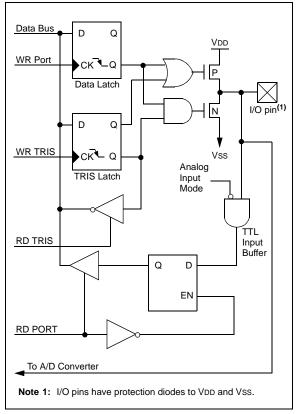
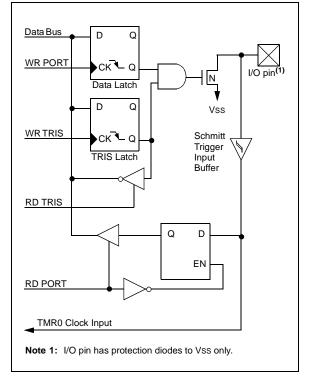



FIGURE 4-2:

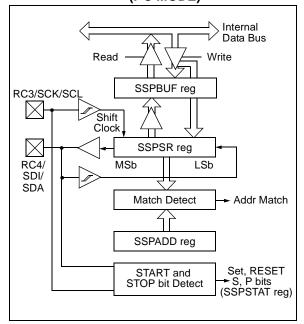
BLOCK DIAGRAM OF RA4/T0CKI PIN

5.2 Using Timer0 with an External Clock

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of T0CKI, with the internal phase clocks, is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks. Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device.

REGISTER 5-1:	OPTION_REG REGISTER
---------------	----------------------------

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0				
	bit 7							bit 0				
bit 7	RBPU : PORTB Pull-up Enable bit (see Section 2.2.2.2)											
bit 6	INTEDG: Interrupt Edge Select bit (see Section 2.2.2.2)											
bit 5	T0CS: TMR0 Clock Source Select bit											
		tion on T0Ck al instruction		(CLKOUT)								
bit 4	TOSE: TM	R0 Source E	Edge Select	bit								
	1 = Incren	nent on high-	to-low trans	ition on TOC	KI pin							
	0 = Incren	nent on low-t	o-high trans	ition on TOC	KI pin							
bit 3	PSA: Pres	PSA: Prescaler Assignment bit										
	 1 = Prescaler is assigned to the WDT 0 = Prescaler is assigned to the Timer0 module 											
bit 2-0	PS2:PS0:	Prescaler R	ate Select b	its								
	Bit Value	TMR0 Rate	WDT Rate									
	000	1:2	1:1									
	001	1:4 1:8	1:2 1:4									
	010 011	1:16	1:4									
	100	1:32	1:16									
	101	1:64	1:32									
	110	1:128	1:64									
	111	1 : 256	1 : 128									
	Legend:											
	R = Reada	able bit	W = V	Vritable bit	U = Unii	mplemented	bit, read as	'0'				
	- n = Value	e at POR res	et '1' = B	Bit is set	'0' = Bit	is cleared	x = Bit is ι	unknown				
		To avoid ar										
		Example 5-1 caler assigni even if the W	ment betwee	en Timer0 a								


9.3 SSP I²C Operation

The SSP module in l^2C mode, fully implements all slave functions, except general call support, and provides interrupts on START and STOP bits in hardware to facilitate firmware implementations of the master functions. The SSP module implements the standard mode specifications as well as 7-bit and 10-bit addressing.

Two pins are used for data transfer. These are the RC3/ SCK/SCL pin, which is the clock (SCL), and the RC4/ SDI/SDA pin, which is the data (SDA). The user must configure these pins as inputs or outputs through the TRISC<4:3> bits.

The SSP module functions are enabled by setting SSP enable bit SSPEN (SSPCON<5>).

FIGURE 9-5: SSP BLOCK DIAGRAM (I²C MODE)

The SSP module has five registers for $\mathsf{I}^2\mathsf{C}$ operation. These are the:

- SSP Control Register (SSPCON)
- SSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer (SSPBUF)
- SSP Shift Register (SSPSR) Not directly accessible
- SSP Address Register (SSPADD)

The SSPCON register allows control of the I^2C operation. Four mode selection bits (SSPCON<3:0>) allow one of the following I^2C modes to be selected:

- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- I²C Slave mode (7-bit address), with START and STOP bit interrupts enabled to support Firmware Master mode
- I²C Slave mode (10-bit address), with START and STOP bit interrupts enabled to support Firmware Master mode
- I²C START and STOP bit interrupts enabled to support Firmware Master mode, Slave is IDLE

Selection of any I^2C mode with the SSPEN bit set, forces the SCL and SDA pins to be open drain, provided these pins are programmed to inputs by setting the appropriate TRISC bits. Pull-up resistors must be provided externally to the SCL and SDA pins for proper operation of the I^2C module.

Additional information on SSP I²C operation can be found in the PICmicro[™] Mid-Range MCU Family Reference Manual (DS33023A).

9.3.1 SLAVE MODE

In Slave mode, the SCL and SDA pins must be configured as inputs (TRISC<4:3> set). The SSP module will override the input state with the output data when required (slave-transmitter).

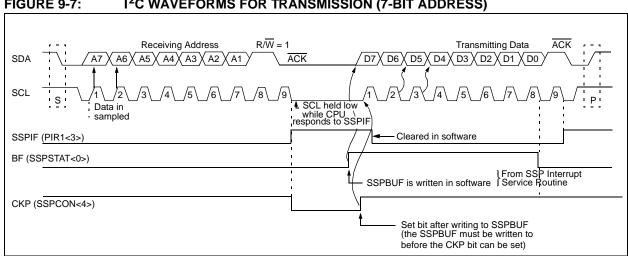
When an address is matched, or the data transfer after an address match is received, the hardware automatically will generate the Acknowledge (\overline{ACK}) pulse, and then load the SSPBUF register with the received value currently in the SSPSR register.

There are certain conditions that will cause the SSP module not to give this ACK pulse. They include (either or both):

- a) The buffer full bit BF (SSPSTAT<0>) was set before the transfer was received.
- b) The overflow bit SSPOV (SSPCON<6>) was set before the transfer was received.

In this case, the SSPSR register value is not loaded into the SSPBUF, but bit SSPIF (PIR1<3>) is set. Table 9-2 shows what happens when a data transfer byte is received, given the status of bits BF and SSPOV. The shaded cells show the condition where user software did not properly clear the overflow condition. Flag bit BF is cleared by reading the SSPBUF register, while bit SSPOV is cleared through software.

The SCL clock input must have a minimum high and low for proper operation. The high and low times of the I^2C specification, as well as the requirements of the SSP module, are shown in timing parameter #100 and parameter #101.


FIGURE 9-6: I ² C WAVEFO	DRMS FOR RECEPTION (7-BIT ADDRESS)
Receiving Address $R\overline{W}$ SDA $\overline{\sqrt{1}}$ $\overline{A7} \overline{A6} \overline{A5} \overline{A4} \overline{A3} \overline{A2} \overline{A1}$ SCL $\frac{1}{1} S^{1} \sqrt{1} \sqrt{2} \sqrt{3} \sqrt{4} \sqrt{5} \sqrt{6} \sqrt{7} \sqrt{8}$ SSPIF (PIR1<3>)	=0 Receiving Data ACK Receiving Data ACK
BF (SSPSTAT<0>)	SSPBUF register is read
SSPOV (SSPCON<6>)	Bit SSPOV is set because the SSPBUF register is still full.

9.3.1.3 Transmission

When the R/W bit of the incoming address byte is set and an address match occurs, the R/W bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register. The ACK pulse will be sent on the ninth bit, and pin RC3/SCK/SCL is held low. The transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. Then, pin RC3/SCK/SCL should be enabled by setting bit CKP (SSPCON<4>). The master must monitor the SCL pin prior to asserting another clock pulse. The slave devices may be holding off the master by stretching the clock. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 9-7).

An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF must be cleared in software, and the SSPSTAT register is used to determine the status of the byte. Flag bit SSPIF is set on the falling edge of the ninth clock pulse.

As a slave-transmitter, the ACK pulse from the masterreceiver is latched on the rising edge of the ninth SCL input pulse. If the SDA line was high (not ACK), then the data transfer is complete. When the \overline{ACK} is latched by the slave, the slave logic is reset (resets SSPSTAT register) and the slave then monitors for another occurrence of the START bit. If the SDA line was low (ACK), the transmit data must be loaded into the SSPBUF reqister, which also loads the SSPSR register. Then pin RC3/SCK/SCL should be enabled by setting bit CKP.

I²C WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS) FIGURE 9-7:

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
1Ah	RCREG	USART Re	USART Receive Register								0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Generat	or Registe	r		•	•		0000 0000	0000 0000

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous master reception. **Note** 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76 devices; always maintain these bits clear.

10.4 USART Synchronous Slave Mode

Synchronous Slave mode differs from the Master mode, in that the shift clock is supplied externally at the RC6/TX/CK pin (instead of being supplied internally in Master mode). This allows the device to transfer or receive data while in SLEEP mode. Slave mode is entered by clearing bit CSRC (TXSTA<7>).

10.4.1 USART SYNCHRONOUS SLAVE TRANSMIT

The operation of the Synchronous Master and Slave modes are identical except in the case of the SLEEP mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit when the master device drives the CK line.
- b) The second word will remain in TXREG register.
- c) Flag bit TXIF will not be set.
- d) When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit TXIF will now be set.
- e) If enable bit TXIE is set, the interrupt will wake the chip from SLEEP and if the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Follow these steps when setting up a Synchronous Slave Transmission:

- 1. Enable the synchronous slave serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. Clear bits CREN and SREN.
- 3. If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set bit TX9.
- 5. Enable the transmission by setting enable bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.
- 8. If using interrupts, ensure that GIE and PEIE in the INTCON register are set.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
19h	TXREG	USART Tr	ansmit R	egister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Baud Rate Generator Register								0000 0000

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous slave transmission.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76 devices; always maintain these bits clear.

10.4.2 USART SYNCHRONOUS SLAVE RECEPTION

The operation of the Synchronous Master and Slave modes is identical, except in the case of the SLEEP mode. Bit SREN is a "don't care" in Slave mode.

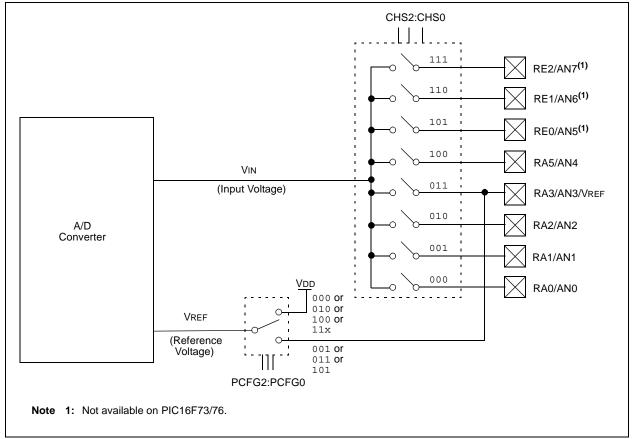
If receive is enabled by setting bit CREN prior to the SLEEP instruction, then a word may be received during SLEEP. On completely receiving the word, the RSR register will transfer the data to the RCREG register and if enable bit RCIE bit is set, the interrupt generated will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Follow these steps when setting up a Synchronous Slave Reception:

- Enable the synchronous master serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. If interrupts are desired, set enable bit RCIE.
- 3. If 9-bit reception is desired, set bit RX9.
- 4. To enable reception, set enable bit CREN.
- 5. Flag bit RCIF will be set when reception is complete and an interrupt will be generated, if enable bit RCIE was set.
- Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 7. Read the 8-bit received data by reading the RCREG register.
- 8. If any error occurred, clear the error by clearing bit CREN.
- 9. If using interrupts, ensure that GIE and PEIE in the INTCON register are set.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	0000 000x
1Ah	RCREG	USART R	eceive R	egister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	e Genera	ator Registe	er					0000 0000	0000 0000

TABLE 10-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION


Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous slave reception. Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76 devices, always maintain these bits clear. The following steps should be followed for doing an $\ensuremath{\mathsf{A}}\xspace/\ensuremath{\mathsf{D}}\xspace$ conversion:

- 1. Configure the A/D module:
 - Configure analog pins, voltage reference, and digital I/O (ADCON1)
 - Select A/D conversion clock (ADCON0)
 - Turn on A/D module (ADCON0)
- 2. Configure the A/D interrupt (if desired):
 - Clear ADIF bit
 - Set ADIE bit
 - Set PEIE bit
 - Set GIE bit
- 3. Select an A/D input channel (ADCON0).

- 4. Wait for at least an appropriate acquisition period.
- 5. Start conversion:Set GO/DONE bit (ADCON0)
- 6. Wait for the A/D conversion to complete, by either:
 - Polling for the GO/DONE bit to be cleared (interrupts disabled)

OR

- Waiting for the A/D interrupt
- 7. Read A/D result register (ADRES), and clear bit ADIF if required.
- 8. For next conversion, go to step 3 or step 4, as required.

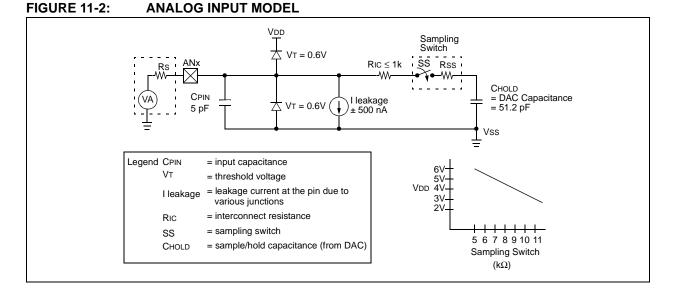


FIGURE 11-1: A/D BLOCK DIAGRAM

11.1 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 11-2. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), see Figure 11-2. The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 10 k Ω . After the analog input channel is selected (changed), the acquisition period must pass before the conversion can be started.

To calculate the minimum acquisition time, TACQ, see the PICmicroTM Mid-Range MCU Family Reference Manual (DS33023). In general, however, given a maximum source impedance of 10 k Ω and at a temperature of 100°C, TACQ will be no more than 16 µsec.

TABLE 11-1: TAD vs. MAXIMUM DEVICE OPERATING FREQUENCIES (STANDARD DEVICES (C))

AD Cloc	Maximum Device Frequency	
Operation	ADCS1:ADCS0	Max.
2Tosc	0.0	1.25 MHz
8Tosc	01	5 MHz
32Tosc	10	20 MHz
RC ^(1, 2, 3)	11	(Note 1)

Note 1: The RC source has a typical TAD time of 4 µs but can vary between 2-6 µs.

2: When the device frequencies are greater than 1 MHz, the RC A/D conversion clock source is only recommended for SLEEP operation.

3: For extended voltage devices (LC), please refer to the Electrical Specifications section.

TABLE 12-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR (FOR DESIGN GUIDANCE ONLY)

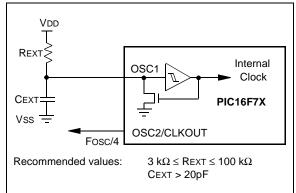
Osc Type	Crystal Freq	Typical Capacitor Values Tested:				
	ITEG	C1	C2			
LP	32 kHz	33 pF	33 pF			
	200 kHz	15 pF	15 pF			
XT	200 kHz	56 pF	56 pF			
	1 MHz	15 pF	15 pF			
	4 MHz	15 pF	15 pF			
HS	4 MHz	15 pF	15 pF			
	8 MHz	15 pF	15 pF			
	20 MHz	15 pF	15 pF			

Capacitor values are for design guidance only.

These capacitors were tested with the crystals listed below for basic start-up and operation. These values were not optimized.

Different capacitor values may be required to produce acceptable oscillator operation. The user should test the performance of the oscillator over the expected VDD and temperature range for the application.

See the notes following this table for additional information.


	Crystals Used:								
32 kHz	Epson C-001R32.768K-A								
200 kHz	STD XTL 200.000KHz								
1 MHz	ECS ECS-10-13-1								
4 MHz	ECS ECS-40-20-1								
8 MHz	EPSON CA-301 8.000M-C								
20 MHz	EPSON CA-301 20.000M-C								

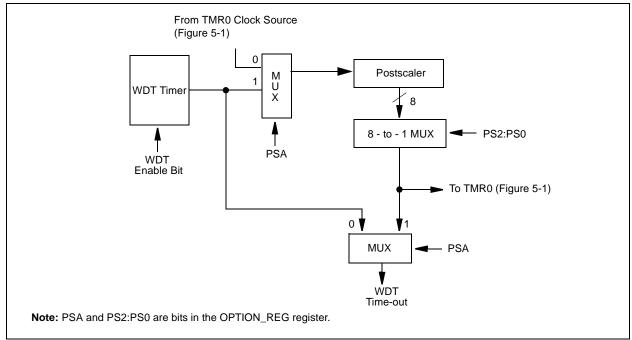
- **Note 1:** Higher capacitance increases the stability of oscillator, but also increases the start-up time.
 - 2: Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components.
 - 3: Rs may be required in HS mode, as well as XT mode, to avoid overdriving crystals with low drive level specification.
 - **4:** Always verify oscillator performance over the VDD and temperature range that is expected for the application.

12.2.3 RC OSCILLATOR

For timing insensitive applications, the "RC" device option offers additional cost savings. The RC oscillator frequency is a function of the supply voltage, the resistor (REXT) and capacitor (CEXT) values, and the operating temperature. In addition to this, the oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 12-3 shows how the R/C combination is connected to the PIC16F7X.

FIGURE 12-3: RC OSCILLATOR MODE

12.13 Watchdog Timer (WDT)


The Watchdog Timer is a free running on-chip RC oscillator, which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin. That means that the WDT will run, even if the clock on the OSC1/CLKIN and OSC2/ CLKOUT pins of the device has been stopped, for example, by execution of a SLEEP instruction.

During normal operation, a WDT time-out generates a device RESET (Watchdog Timer Reset). If the device is in SLEEP mode, a WDT time-out causes the device to wake-up and continue with normal operation (Watchdog Timer Wake-up). The $\overline{\text{TO}}$ bit in the STATUS register will be cleared upon a Watchdog Timer time-out.

The WDT can be permanently disabled by clearing configuration bit, WDTE (Section 12.1).

WDT time-out period values may be found in the Electrical Specifications section under parameter #31. Values for the WDT prescaler (actually a postscaler, but shared with the Timer0 prescaler) may be assigned using the OPTION_REG register.

- Note 1: The CLRWDT and SLEEP instructions clear the WDT and the postscaler, if assigned to the WDT, and prevent it from timing out and generating a device RESET condition.
 - 2: When a CLRWDT instruction is executed and the prescaler is assigned to the WDT, the prescaler count will be cleared, but the prescaler assignment is not changed.

FIGURE 12-11: WATCHDOG TIMER BLOCK DIAGRAM

TABLE 12-7: SUMMARY OF WATCHDOG TIMER REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
2007h	Config. bits	(1)	BODEN ⁽¹⁾	_	CP0	PWRTE ⁽¹⁾	WDTE	FOSC1	FOSC0
81h,181h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0

Legend: Shaded cells are not used by the Watchdog Timer.

Note 1: See Register 12-1 for operation of these bits.

15.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Ambient temperature under bias	55 to +125°C
Storage temperature	
Voltage on any pin with respect to Vss (except VDD, MCLR. and RA4)	
Voltage on VDD with respect to Vss	
Voltage on MCLR with respect to Vss (Note 2)	
Voltage on RA4 with respect to Vss	
Total power dissipation (Note 1)	
Maximum current out of Vss pin	
Maximum current into VDD pin	
Input clamp current, Iк (Vi < 0 or Vi > VDD)	
Output clamp current, loк (Vo < 0 or Vo > Voo)	
Maximum output current sunk by any I/O pin	
Maximum output current sourced by any I/O pin	
Maximum current sunk by PORTA, PORTB, and PORTE (combined) (Note 3)	200 mA
Maximum current sourced by PORTA, PORTB, and PORTE (combined) (Note 3)	
Maximum current sunk by PORTC and PORTD (combined) (Note 3)	200 mA
Maximum current sourced by PORTC and PORTD (combined) (Note 3)	
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD - V	$√$ ОН) x IOH} + Σ (VOI x IOL)
 Voltage spikes at the MCLR pin may cause latchup. A series resistor of greater the to pull MCLR to VDD, rather than tying the pin directly to VDD. 	nan 1 k Ω should be used

3: PORTD and PORTE are not implemented on the PIC16F73/76 devices.

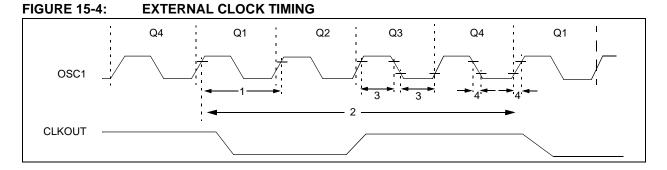
† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

15.1 DC Characteristics: PIC16F73/74/76/77 (Industrial, Extended) PIC16LF73/74/76/77 (Industrial) (Continued)

			Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
PIC16F73/74/76/77 (Industrial, Extended)				Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended						
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions			
	Idd	Supply Current (Notes 2, 5	i)							
D010		PIC16LF7X	—	0.4	2.0	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)			
D010A			—	20	48	μA	LP osc configuration FOSC = 32 kHz, VDD = 3.0V, WDT disabled			
D010		PIC16F7X	-	0.9	4	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 5.5V (Note 4)			
D013			—	5.2	15	mA	HS osc configuration Fosc = 20 MHz, VDD = 5.5V			
D015*	∆Ibor	Brown-out Reset Current (Note 6)	_	25	200	μA	BOR enabled, VDD = 5.0V			
D020	IPD	Power-down Current (Note	es 3, 5)							
D021		PIC16LF7X		2.0 0.1	30 5	μΑ μΑ	VDD = $3.0V$, WDT enabled, $-40^{\circ}C$ to $+85^{\circ}C$ VDD = $3.0V$, WDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$			
D020 D021		PIC16F7X	_	5.0 0.1	42 19	μΑ μΑ	$VDD = 4.0V$, WDT enabled, $-40^{\circ}C$ to $+85^{\circ}C$ $VDD = 4.0V$, WDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$			
D021A			_	10.5 1.5	57 42	μΑ μΑ	$VDD = 4.0V$, WDT enabled, $-40^{\circ}C$ to $+125^{\circ}C$ $VDD = 4.0V$, WDT disabled, $-40^{\circ}C$ to $+125^{\circ}C$			
D023*	Δ Ibor	Brown-out Reset Current (Note 6)	—	25	200	μA	BOR enabled, VDD = 5.0V			

Legend: Shading of rows is to assist in readability of of the table.

* These parameters are characterized but not tested.

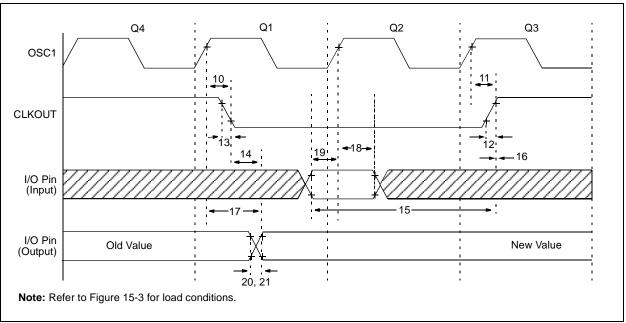

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

- OSC1 = external square wave, from-rail to-rail; all I/O pins tri-stated, pulled to VDD MCLR = VDD; WDT enabled/disabled as specified.
- **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.
- **5:** Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
- 7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.


TABLE 15-1: EXTERNAL CLOCK TIMING REQUIREMENTS

Parameter No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKIN Frequency	DC		1	MHz	XT osc mode
		(Note 1)	DC	_	20	MHz	HS osc mode
			DC	_	32	kHz	LP osc mode
		Oscillator Frequency	DC	_	4	MHz	RC osc mode
		(Note 1)	0.1	_	4	MHz	XT osc mode
			4	_	20	MHz	HS osc mode
			5		200	kHz	LP osc mode
1	Tosc	External CLKIN Period	1000	_	—	ns	XT osc mode
		(Note 1)	50	—	—	ns	HS osc mode
			5	—	—	ms	LP osc mode
		Oscillator Period	250		—	ns	RC osc mode
		(Note 1)	250	—	10,000	ns	XT osc mode
			50	_	250	ns	HS osc mode
			5	_	—	ms	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	200	Тсү	DC	ns	Tcy = 4/Fosc
3	TosL,	External Clock in (OSC1)	500	_	—	ns	XT oscillator
	TosH	High or Low Time	2.5	—	—	ms	LP oscillator
			15	—		ns	HS oscillator
4	TosR,	External Clock in (OSC1)	—	—	25	ns	XT oscillator
	TosF	Rise or Fall Time	_	—	50	ns	LP oscillator
			_	—	15	ns	HS oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions, with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

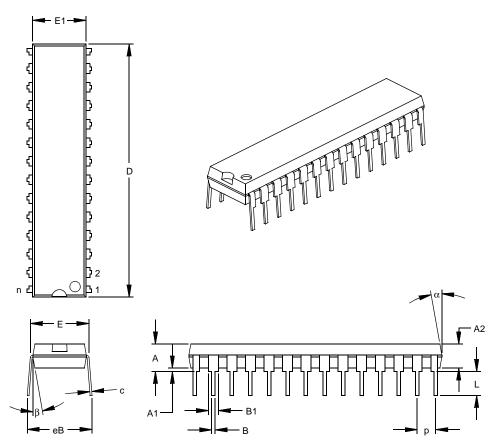
TABLE 15-2:	CLKOUT AND I/O TIMING REQUIREMENTS
-------------	------------------------------------

Param No.	Symbol	Characteristic		Min	Тур†	Мах	Units	Conditions
10*	TosH2ckL	OSC1↑ to CLKOUT↓		_	75	200	ns	(Note 1)
11*	TosH2ckH	OSC1 [↑] to CLKOUT [↑]		—	75	200	ns	(Note 1)
12*	TckR	CLKOUT rise time		—	35	100	ns	(Note 1)
13*	TckF	CLKOUT fall time		—	35	100	ns	(Note 1)
14*	TckL2ioV	CLKOUT↓ to Port out vali	d	—	-	0.5Tcy + 20	ns	(Note 1)
15*	TioV2ckH	Port in valid before CLKO	Tosc + 200	—	_	ns	(Note 1)	
16*	TckH2iol	Port in hold after CLKOUT	0	—	_	ns	(Note 1)	
17*	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port	—	100	255	ns		
18*	TosH2iol	OSC1 [↑] (Q2 cycle) to	Standard (F)	100	—	_	ns	
		Port input invalid (I/O in hold time)	Extended (LF)	200	—	—	ns	
19*	TioV2osH	Port input valid to OSC11	(I/O in setup time)	0	-	_	ns	
20*	TioR	Port output rise time	Standard (F)	—	10	40	ns	
			Extended (LF)	—	—	145	ns	
21*	TioF	Port output fall time	Standard (F)	—	10	40	ns	
			Extended (LF)	—	—	145	ns	
22††*	Tinp	INT pin high or low time		Тсү	-	_	ns	
23††*	Trbp	RB7:RB4 change INT hig	n or low time	Тсү	-	_	ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

†† These parameters are asynchronous events, not related to any internal clock edges.


Note 1: Measurements are taken in RC mode, where CLKOUT output is 4 x Tosc.

*

17.2 **Package Details**

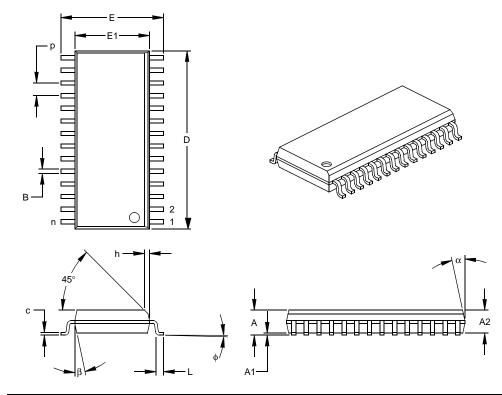
The following sections give the technical details of the packages.

28-Lead Skinny Plastic Dual In-line (SP) – 300 mil (PDIP)

	Units	INCHES*		MILLIMETERS			
Dimension	n Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.140	.150	.160	3.56	3.81	4.06
Molded Package Thickness	A2	.125	.130	.135	3.18	3.30	3.43
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	Е	.300	.310	.325	7.62	7.87	8.26
Molded Package Width	E1	.275	.285	.295	6.99	7.24	7.49
Overall Length	D	1.345	1.365	1.385	34.16	34.67	35.18
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	с	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.040	.053	.065	1.02	1.33	1.65
Lower Lead Width	В	.016	.019	.022	0.41	0.48	0.56
Overall Row Spacing §	eB	.320	.350	.430	8.13	8.89	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter

§ Significant Characteristic


Dimension D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed

.010" (0.254mm) per side. JEDEC Equivalent: MO-095

Drawing No. C04-070

Notes:

28-Lead Plastic Small Outline (SO) - Wide, 300 mil (SOIC)

	Units	INCHES*		MILLIMETERS			
Dimension	n Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.050			1.27	
Overall Height	А	.093	.099	.104	2.36	2.50	2.64
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39
Standoff §	A1	.004	.008	.012	0.10	0.20	0.30
Overall Width	Е	.394	.407	.420	10.01	10.34	10.67
Molded Package Width	E1	.288	.295	.299	7.32	7.49	7.59
Overall Length	D	.695	.704	.712	17.65	17.87	18.08
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74
Foot Length	L	.016	.033	.050	0.41	0.84	1.27
Foot Angle Top	φ	0	4	8	0	4	8
Lead Thickness	С	.009	.011	.013	0.23	0.28	0.33
Lead Width	В	.014	.017	.020	0.36	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15

* Controlling Parameter

§ Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MS-013 Drawing No. C04-052

5

APPENDIX C: CONVERSION CONSIDERATIONS

Considerations for converting from previous versions of devices to the ones listed in this data sheet are listed in Table C-1.

TABLE C-1: CONVERSION CONSIDERATIONS

Characteristic	PIC16C7X	PIC16F87X	PIC16F7X	
Pins	28/40	28/40	28/40	
Timers	3	3	3	
Interrupts	11 or 12	13 or 14	11 or 12	
Communication	PSP, USART, SSP (SPI, I ² C Slave)	PSP, USART, SSP (SPI, I ² C Master/Slave)	PSP, USART, SSP (SPI, I ² C Slave)	
Frequency	20 MHz	20 MHz	20 MHz	
A/D	8-bit	10-bit	8-bit	
ССР	2	2	2	
Program Memory	4K, 8K EPROM	4K, 8K FLASH (1,000 E/W cycles)	4K, 8K FLASH (100 E/W cycles typical)	
RAM	192, 368 bytes	192, 368 bytes	192, 368 bytes	
EEPROM Data	None	128, 256 bytes	None	
Other	_	In-Circuit Debugger, Low Voltage Programming	_	

ON-LINE SUPPORT

Microchip provides on-line support on the Microchip World Wide Web (WWW) site.

The web site is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape or Microsoft Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available by using your favorite Internet browser to attach to:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp://ftp.microchip.com

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked
 Questions
- Design Tips
- Device Errata
- Job Postings
- Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products
- Conferences for products, Development Systems, technical information and more
- · Listing of seminars and events

Systems Information and Upgrade Hot Line

The Systems Information and Upgrade Line provides system users a listing of the latest versions of all of Microchip's development systems software products. Plus, this line provides information on how customers can receive any currently available upgrade kits.The Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada, and

1-480-792-7302 for the rest of the world.

013001