

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	7KB (4K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf74t-i-ptg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16F7X

28/40-Pin 8-Bit CMOS FLASH Microcontrollers

Devices Included in this Data Sheet:

- PIC16F73PIC16F74
- PIC16F76PIC16F77

High Performance RISC CPU:

- High performance RISC CPU
- Only 35 single word instructions to learn
- All single cycle instructions except for program branches which are two-cycle
- Operating speed: DC 20 MHz clock input DC - 200 ns instruction cycle
- Up to 8K x 14 words of FLASH Program Memory, Up to 368 x 8 bytes of Data Memory (RAM)
- Pinout compatible to the PIC16C73B/74B/76/77
- Pinout compatible to the PIC16F873/874/876/877
- Interrupt capability (up to 12 sources)
- Eight level deep hardware stack
- Direct, Indirect and Relative Addressing modes
- Processor read access to program memory

Special Microcontroller Features:

- Power-on Reset (POR)
- Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation
- Programmable code protection
- Power saving SLEEP mode
- Selectable oscillator options
- In-Circuit Serial Programming[™] (ICSP[™]) via two pins

Peripheral Features:

- Timer0: 8-bit timer/counter with 8-bit prescaler
- Timer1: 16-bit timer/counter with prescaler, can be incremented during SLEEP via external crystal/clock
- Timer2: 8-bit timer/counter with 8-bit period register, prescaler and postscaler
- Two Capture, Compare, PWM modules
 - Capture is 16-bit, max. resolution is 12.5 ns
 - Compare is 16-bit, max. resolution is 200 ns
 PWM max. resolution is 10-bit
- 8-bit, up to 8-channel Analog-to-Digital converter
- Synchronous Serial Port (SSP) with SPI™ (Master mode) and I²C[™] (Slave)
- Universal Synchronous Asynchronous Receiver Transmitter (USART/SCI)
- Parallel Slave Port (PSP), 8-bits wide with external RD, WR and CS controls (40/44-pin only)
- Brown-out detection circuitry for Brown-out Reset (BOR)

CMOS Technology:

- Low power, high speed CMOS FLASH technology
- Fully static design
- Wide operating voltage range: 2.0V to 5.5V
- High Sink/Source Current: 25 mA
- Industrial temperature range
- Low power consumption:
 - < 2 mA typical @ 5V, 4 MHz
 - 20 μA typical @ 3V, 32 kHz
 - < 1 µA typical standby current

	Program Memory	Data					SS	P		Timoro
Device	(# Single Word Instructions)	SRAM (Bytes)	I/O	Interrupts A/D ((PWM)	SPI (Master)	l ² C (Slave)	USART	8/16-bit
PIC16F73	4096	192	22	11	5	2	Yes	Yes	Yes	2/1
PIC16F74	4096	192	33	12	8	2	Yes	Yes	Yes	2/1
PIC16F76	8192	368	22	11	5	2	Yes	Yes	Yes	2/1
PIC16F77	8192	368	33	12	8	2	Yes	Yes	Yes	2 / 1

PIC16F73 AND PIC16F76 PINOUT DESCRIPTION **TABLE 1-2:**

Pin Name	DIP SSOP SOIC Pin#	MLF Pin#	l/O/P Type	Buffer Type	Description
OSC1/CLKI OSC1	9	6	I	ST/CMOS ⁽³⁾	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST
CLKI			I		buffer when configured in RC mode. Otherwise CMOS. External clock source input. Always associated with pin function OSC1 (see OSC1/CLKI, OSC2/CLKO pins).
OSC2/CLKO OSC2	10	7	0	-	Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator
CLKO			0		mode. In RC mode, OSC2 pin outputs CLKO, which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.
MCLR/VPP MCLR	1	26	I	ST	Master Clear (input) or programming voltage (output). Master Clear (Reset) input. This pin is an active low RESET to the device.
Vpp			Р		Programming voltage input.
					PORTA is a bi-directional I/O port.
RA0/AN0	2	27		TTL	
			1/0		Digital I/O. Analog input 0
	з	28	1	тті	
RA1	5	20	I/O		Digital I/O.
AN1			1		Analog input 1.
RA2/AN2	4	1		TTL	
RA2			I/O		Digital I/O.
AN2			I		Analog input 2.
RA3/AN3/VREF	5	2		TTL	
RA3			I/O		Digital I/O.
AN3			I		Analog input 3.
VREF			I		A/D reference voltage input.
RA4/T0CKI	6	4		ST	
RA4			1/0		Digital I/O – Open drain when configured as output.
	_	_	I		limero external clock input.
RA5/SS/AN4	(5	1/0	IIL	Disting 1/O
			1/0		SPI slove select input
AN4					Analog input 4
Legend: L= inpu	l I	$\Omega = \Omega u^{\dagger}$	iout	I/O = inpu	P = power

— = Not used TTL = TTL input ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

This buffer is a Schmitt Trigger input when used in Serial Programming mode.
 This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

TABLE 1-2:	PIC16F73 AND PIC16F76 PINOUT DESCRIPTION (CONTINUED)
------------	--

RB0/INT 2' RB0 INT RB1 2' RB2 2' RB3 2' RB3/PGM 2' RB4 2' RB5 2' RB6/PGC 2' RB7/PGD 2' RB7 PGD RC0/T10S0/T1CKI 1' RC0/T10S0/T1CKI 1' RC0/T10S0/T1CKI 1' RC0 T10S0 T1CKI 1' RC1 T10SI CCP2 1'				.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
RB0/INT 2' RB0 INT RB1 2' RB2 2' RB3/PGM 2' RB3 2' RB4 2' RB5 2' RB6 2' PGC 2' RB7/PGD 2' RB7 PGD RC0/T10SO/T1CKI 1' RC0 T10SO T1CKI 1' RC1/T10SI/CCP2 1' RC1 T10SI CCP2 1'					PORTB is a bi-directional I/O port. PORTB can be software				
RB0/INT 2' RB0 INT RB1 2' RB2 2' RB3/PGM 2' PGM 2' RB4 2' RB5 2' RB6 2' PGC 2' RB7 2' RB7 2' RC0/T1OSO/T1CKI 1' RC0/T1OSO/T1CKI 1' RC1 1' RC1/T1OSI/CCP2 1' RC1 1' T1OSI 2' CCP2 1'					programmed for internal weak pull-up on all inputs.				
RB0 INT RB1 22 RB2 22 RB3/PGM 22 RB3 PGM RB4 22 RB5 26 RB6/PGC 27 RB6 PGC RB7/PGD 28 RB7/PGD 28 RC0/T10SO/T1CKI 17 RC0 T10SO T10SO T1CKI RC1/T10SI/CCP2 112 RC1 T10SI CCP2 1	1	18		TTL/ST ⁽¹⁾					
INT 21 RB1 22 RB2 22 RB3/PGM 24 RB3 26 RB4 22 RB5 26 RB6/PGC 27 RB6 26 PGC 27 RB7 26 RB7/PGD 28 RB7 29 RC0/T10SO/T1CKI 17 RC0 110SO T10SO 11 RC1/T10SI/CCP2 112 RC1 110SI CCP2 110			I/O		Digital I/O.				
RB1 2: RB2 2: RB3/PGM 2: RB3 PGM RB4 2: RB5 26 RB6/PGC 2: RB6 PGC RB7/PGD 28 RB7 PGD RC0/T10S0/T1CKI 1* RC0 T10SO T1CKI RC1 RC1/T10SI/CCP2 12 RC1 T10SI CCP2 1*			I		External interrupt.				
RB2 2: RB3/PGM 24 RB3 PGM RB4 2: RB5 2: RB6 2: PGC 2: RB7 2: PGD 2: RC0/T1OSO/T1CKI 1* RC0/T1OSO/T1CKI 1* RC0/T1OSO/T1CKI 1* RC1 1* RC1/T1OSI/CCP2 12 RC1 1* T1OSI CCP2	2	19	I/O	TTL	Digital I/O.				
RB3/PGM 24 RB3 PGM RB4 24 RB5 20 RB6/PGC 21 RB6/PGC 21 RB7 PGD RB7 PGD RC0/T10S0/T1CKI 11 RC0 T10S0 T1CKI RC1 RC1/T10SI/CCP2 112 RC1 T10SI CCP2 112	3	20	I/O	TTL	Digital I/O.				
RB3 PGM PGM 24 RB4 24 RB5 26 RB6/PGC 23 RB6 PGC RB7/PGD 28 RB7 PGD RC0/T10S0/T1CKI 17 RC0 T10S0 T1CKI RC1 RC1/T10SI/CCP2 12 RC1 T10SI CCP2 14	4	21		TTL					
PGM 24 RB4 24 RB5 26 RB6/PGC 27 RB6 PGC RB7/PGD 28 RB7 PGD RC0/T10S0/T1CKI 17 RC0/T10S0/T1CKI 17 RC0/T10S0/T1CKI 17 RC0 T10S0 T1CKI 17 RC1/T10SI/CCP2 12 RC1 T10SI CCP2 12			I/O		Digital I/O.				
RB4 2! RB5 2! RB6 PGC PGC 2! RB7/PGD 2! RB7 PGD RC0/T10S0/T1CKI 1' RC0 T10S0 T1CKI RC1/T10SI/CCP2 RC1 T10SI CCP2 1'			I/O		Low voltage ICSP programming enable pin.				
RB5 24 RB6/PGC 21 RB6 PGC RB7/PGD 28 RB7 PGD RC0/T10S0/T1CKI 11 RC0 T10S0 T1CKI 12 RC1/T10SI/CCP2 12 RC1 T10SI CCP2 12	5	22	I/O	TTL	Digital I/O.				
RB6/PGC 2" RB6 PGC PGC 2% RB7/PGD 2% RB7 PGD RC0/T10S0/T1CKI 1" RC0 T10S0 T1CKI 1" RC1/T10SI/CCP2 12 RC1 T10SI CCP2 1"	6	23	I/O	TTL	Digital I/O.				
RB6 PGC PGC 24 RB7/PGD 24 PGD 24 RC0/T1OSO/T1CKI 14 RC0 T1OSO T1OSO T1CKI RC1/T1OSI/CCP2 12 RC1 T1OSI CCP2 14	7	24		TTL/ST(2)					
PGC RB7/PGD 23 RB7 PGD 21 RC0/T1OSO/T1CKI 11 RC0 T1OSO T1CKI RC1/T1OSI/CCP2 112 RC1 T1OSI CCP2			I/O		Digital I/O.				
RB7/PGD 21 RB7 PGD PGD 11 RC0/T10S0/T1CKI 11 RC0 T10S0 T1CKI 12 RC1/T10SI/CCP2 12 RC1 T10SI CCP2 12			I/O		In-Circuit Debugger and ICSP programming clock.				
RB7 PGD RC0/T1OSO/T1CKI 1" RC0 110SO T1OSO 11CKI RC1/T1OSI/CCP2 12 RC1 110SI CCP2 12	8	25		TTL/ST ⁽²⁾					
PGD RC0/T1OSO/T1CKI 11 RC0 T1OSO T1CKI RC1/T1OSI/CCP2 112 RC1 T1OSI CCP2	-	-	I/O		Digital I/O.				
RC0/T1OSO/T1CKI 1' RC0 T1OSO T1CKI RC1/T1OSI/CCP2 12 RC1 T1OSI CCP2			I/O		In-Circuit Debugger and ICSP programming data.				
RC0/T1OSO/T1CKI 1' RC0 10SO T1OSO 1' RC1/T1OSI/CCP2 1' RC1 1' T1OSI CCP2					PORTC is a bi-directional I/O port.				
RC0 T1OSO T1CKI RC1/T1OSI/CCP2 RC1 T1OSI CCP2	1	8		ST	·				
T1OSO T1CKI RC1/T1OSI/CCP2 12 RC1 T1OSI CCP2		Ũ	I/O		Digital I/O.				
T1CKI RC1/T1OSI/CCP2 12 RC1 T1OSI CCP2			0		Timer1 oscillator output.				
RC1/T1OSI/CCP2 12 RC1 T1OSI CCP2			I		Timer1 external clock input.				
RC1 T1OSI CCP2	2	9		ST					
T1OSI CCP2			I/O		Digital I/O.				
CCP2			Ι		Timer1 oscillator input.				
			I/O		Capture2 input, Compare2 output, PWM2 output.				
RC2/CCP1 1:	3	10		ST					
RC2			I/O		Digital I/O.				
CCP1			I/O		Capture1 input/Compare1 output/PWM1 output.				
RC3/SCK/SCL 14	4	11		ST					
RC3			I/O		Digital I/O.				
SCK			I/O		Synchronous serial clock input/output for SPI mode.				
SCL			I/O		Synchronous serial clock input/output for I ² C mode.				
RC4/SDI/SDA 15	5	12		ST					
RC4			I/O		Digital I/O.				
SDI					SPI data in.				
SDA			I/O		I ² C data I/O.				
RC5/SDO 16	6	13	1/2	ST	Distribution				
RC5			1/0		Digital I/O.				
SUU	_		0	6 -	SPI data out.				
RC6/TX/CK 17	1	14	1/0	ST					
			1/0		LIGITALI/O.				
		15	1/0	<u>ст</u>					
	0	сı	1/0	51					
RX			1		USART asynchronous receive				
DT			I/O		USART synchronous data				
	19	5 16	# C P		Ground reference for logic and I/O pins				
	0	17	г [.] Р						
	U	17	۲	_	Fusitive supply for logic and i/O pins.				
Legena: I = input	Legend: I = input O = output I/O = input/output P = power								

This buffer is a Schmitt Trigger input when configured as the external interrupt.

This buffer is a Schmitt Trigger input when used in Serial Programming mode.
 This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

r											
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Details on page
Bank 1											
80h ⁽⁴⁾	INDF	Addressin	ddressing this location uses contents of FSR to address data memory (not a physical register)								27, 96
81h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	20, 44, 96
82h ⁽⁴⁾	PCL	Program C	Program Counter's (PC) Least Significant Byte								26, 96
83h ⁽⁴⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	19, 96
84h ⁽⁴⁾	FSR	Indirect da	ita memory a	address poin	ter					xxxx xxxx	27, 96
85h	TRISA	_		PORTA Dat	ta Direction Re	egister				11 1111	32, 96
86h	TRISB	PORTB D	ata Direction	Register						1111 1111	34, 96
87h	TRISC	PORTC D	ata Direction	Register						1111 1111	35, 96
88h ⁽⁵⁾	TRISD	PORTD D	ata Direction	Register						1111 1111	36, 96
89h (5)	TRISE	IBF	OBF	IBOV	PSPMODE	—	PORTE Da	ta Direction	Bits	0000 -111	38, 96
8Ah ^(1,4)	PCLATH	_	— — Write Buffer for the upper 5 bits of the Program Counter							0 0000	21, 96
8Bh ⁽⁴⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	23, 96
8Ch	PIE1	PSPIE ⁽³⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	22, 96
8Dh	PIE2	_		_	_	_	_		CCP2IE	0	24, 97
8Eh	PCON	—									25, 97
8Fh		Unimplem	ented							_	_
90h	_	Unimplem	ented							_	_
91h	_	Unimplem	ented							_	—
92h	PR2	Timer2 Pe	riod Registe	r						1111 1111	52, 97
93h	SSPADD	Synchrono	ous Serial Po	ort (I ² C mode	e) Address Re	gister				0000 0000	68, 97
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	60, 97
95h	—	Unimplem	ented							_	_
96h		Unimplem	ented							_	_
97h	—	Unimplem	ented				_			_	_
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	69, 97
99h	SPBRG	Baud Rate	e Generator I	Register						0000 0000	71, 97
9Ah	—	Unimplem	ented							_	
9Bh	—	Unimplem	Unimplemented							_	
9Ch	—	Unimplem	Unimplemented							—	
9Dh	—	Unimplem	ented							_	
9Eh	—	Unimplem	ented							_	
9Fh	ADCON1	—	_	—	—	—	PCFG2	PCFG1	PCFG0	000	84, 97

TABLE 2-1: SPECIAL FUNCTION REGISTER SUMMARY (CONTINU

 $\label{eq:legend: Legend: Legend: u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved.$ Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter during branches (CALL or GOTO).

2: Other (non power-up) RESETS include external RESET through MCLR and Watchdog Timer Reset. 3: Bits PSPIE and PSPIF are reserved on the 28-pin devices; always maintain these bits clear.

4: These registers can be addressed from any bank.

5: PORTD, PORTE, TRISD, and TRISE are not physically implemented on the 28-pin devices, read as '0'.

6: This bit always reads as a '1'.

2.2.2.4 PIE1 Register

The PIE1 register contains the individual enable bits for the peripheral interrupts.

Note: Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

REGISTER 2-4: PIE1 REGISTER (ADDRESS 8Ch)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE			
	bit 7							bit 0			
bit 7	PSPIE ⁽¹⁾ : I	SPIE ⁽¹⁾ : Parallel Slave Port Read/Write Interrupt Enable bit									
	 1 = Enables the PSP read/write interrupt 0 = Disables the PSP read/write interrupt 										
bit 6	ADIE: A/D	Converter I	nterrupt Ena	ble bit							
	1 = Enable	s the A/D co	onverter inte	rrupt							
	0 = Disable	es the A/D c	onverter inte	errupt							
bit 5	RCIE: USA	ART Receive	e Interrupt E	nable bit							
	1 = Enable	s the USAR	T receive in	terrupt							
	0 = Disable	0 = Disables the USART receive interrupt									
bit 4	TXIE: USA	RT Transmi	it Interrupt E	nable bit							
	1 = Enable	s the USAR	T transmit ir	nterrupt							
	0 = Disable	es the USAF	RT transmit i	nterrupt							
bit 3	SSPIE: Sy	nchronous S	Serial Port Ir	iterrupt Enal	ole bit						
	1 = Enable	s the SSP i	nterrupt								
	0 = Disable	es the SSP	interrupt								
bit 2	CCP1IE: C	CP1 Interru	pt Enable bi	t							
	1 = Enable	s the CCP1	interrupt								
	0 = Disable	es the CCP	l interrupt								
bit 1	TMR2IE: T	MR2 to PR2	2 Match Inte	rrupt Enable	e bit						
	1 = Enable	s the TMR2	to PR2 mat	ch interrupt							
	0 = Disable	es the TMR2	2 to PR2 ma	tch interrupt							
bit 0	TMR1IE: T	MR1 Overfl	ow Interrupt	Enable bit							
	1 = Enable	s the TMR1	overflow int	terrupt							
	0 = Disable	es the TMR	l overflow in	terrupt							

Note 1: PSPIE is reserved on 28-pin devices; always maintain this bit clear.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	l bit, read as '0'
- n = Value at POR reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

4.2 PORTB and the TRISB Register

PORTB is an 8-bit wide, bi-directional port. The corresponding data direction register is TRISB. Setting a TRISB bit (= '1') will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISB bit (= '0') will make the corresponding PORTB pin an output (i.e., put the contents of the output latch on the selected pin).

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit RBPU (OPTION_REG<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

Four of the PORTB pins (RB7:RB4) have an interrupt-on-change feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB4 pin configured as an output is excluded from the interrupt-on-change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are ORed together to generate the RB Port Change Interrupt with flag bit RBIF (INTCON<0>). This interrupt can wake the device from SLEEP. The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared.

The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

This interrupt on mismatch feature, together with software configureable pull-ups on these four pins, allow easy interface to a keypad and make it possible for wake-up on key depression. Refer to the Embedded Control Handbook, "Implementing Wake-up on Key Stroke" (AN552).

RB0/INT is an external interrupt input pin and is configured using the INTEDG bit (OPTION_REG<6>).

RB0/INT is discussed in detail in Section 12.11.1.

FIGURE 4-4: BLOCK DIAGRAM OF RB7:RB4 PINS

REGISTER 7-1:	T2CON:	TIMER2 C	ONTROL R	EGISTER (ADDRESS	12h)						
	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
		TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0				
	bit 7							bit 0				
bit 7	Unimple	mented: Rea	ad as '0'									
bit 6-3	TOUTPS	3:TOUTPS0	: Timer2 Out	put Postscale	e Select bits							
	0000 = 1	:1 Postscale										
	0001 = 1	0001 = 1:2 Postscale										
	0010 = 1	:3 Postscale										
	•											
	•											
	1111 = 1	:16 Postscal	e									
bit 2	TMR2ON	I: Timer2 On	bit									
	1 = Time	r2 is on										
	0 = Time	r2 is off										
bit 1-0	T2CKPS	1:T2CKPS0:	Timer2 Cloc	k Prescale S	elect bits							
	00 = Pres	scaler is 1										
	01 = Pres	scaler is 4										
	1x = Pres	scaler is 16										
	Legend:											
	R = Reada	able bit	W = W	/ritable bit	U = Unim	plemented l	oit, read as '	0'				

TABLE 7-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

- n = Value at POR reset

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value PC BC	e on: DR, DR	Valu all c RES	e on other ETS
0Bh,8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
11h	TMR2	Timer2 M	Timer2 Module Register							0000	0000	0000	0000
12h	T2CON	_	- TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS							-000	0000	-000	0000
92h	PR2	R2 Timer2 Period Register								1111	1111	1111	1111

'1' = Bit is set

'0' = Bit is cleared

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer2 module.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76; always maintain these bits clear.

x = Bit is unknown

8.3 Capture Mode

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register when an event occurs on pin RC2/CCP1. An event is defined as one of the following and is configured by CCPxCON<3:0>:

- · Every falling edge
- · Every rising edge
- Every 4th rising edge
- Every 16th rising edge

An event is selected by control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). When a capture is made, the interrupt request flag bit CCP1IF (PIR1<2>) is set. The interrupt flag must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value is overwritten by the new captured value.

8.3.1 CCP PIN CONFIGURATION

In Capture mode, the RC2/CCP1 pin should be configured as an input by setting the TRISC<2> bit.

Note: If the RC2/CCP1 pin is configured as an output, a write to the port can cause a capture condition.

FIGURE 8-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

8.3.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

8.3.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep bit CCP1IE (PIE1<2>) clear to avoid false interrupts and should clear the flag bit CCP1IF following any such change in operating mode.

8.3.4 CCP PRESCALER

There are four prescaler settings, specified by bits CCP1M3:CCP1M0. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. Any RESET will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared, therefore, the first capture may be from a non-zero prescaler. Example 8-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 8-1: CHANGING BETWEEN CAPTURE PRESCALERS

CLRF	CCP1CON	;Turn CCP module off
MOVLW	NEW_CAPT_PS	;Load the W reg with
		;the new prescaler
		;move value and CCP ON
MOVWF	CCP1CON	;Load CCP1CON with this
		;value

8.4 Compare Mode

In Compare mode, the 16-bit CCPR1 register value is constantly compared against the TMR1 register pair value. When a match occurs, the RC2/CCP1 pin is:

- Driven high
- Driven low
- Remains unchanged

The action on the pin is based on the value of control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). At the same time, interrupt flag bit CCP1IF is set.

COMPARE MODE OPERATION BLOCK DIAGRAM

Special Event Trigger will:

- clear TMR1H and TMR1L registers
- NOT set interrupt flag bit TMR1F (PIR1<0>)
- (for CCP2 only) set the GO/DONE bit (ADCON0<2>)

10.1 USART Baud Rate Generator (BRG)

The BRG supports both the Asynchronous and Synchronous modes of the USART. It is a dedicated 8-bit baud rate generator. The SPBRG register controls the period of a free running 8-bit timer. In Asynchronous mode, bit BRGH (TXSTA<2>) also controls the baud rate. In Synchronous mode, bit BRGH is ignored. Table 10-1 shows the formula for computation of the baud rate for different USART modes which only apply in Master mode (internal clock).

Given the desired baud rate and FOSC, the nearest integer value for the SPBRG register can be calculated using the formula in Table 10-1. From this, the error in baud rate can be determined. It may be advantageous to use the high baud rate (BRGH = 1), even for slower baud clocks. This is because the FOSC/(16(X + 1)) equation can reduce the baud rate error in some cases.

Writing a new value to the SPBRG register causes the BRG timer to be reset (or cleared). This ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

10.1.1 SAMPLING

The data on the RC7/RX/DT pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RX pin.

TABLE 10-1: BAUD RATE FORMULA

SYNC	BRGH = 0 (Low Speed)	BRGH = 1 (High Speed)
0	(Asynchronous) Baud Rate = FOSC/(64(X+1))	Baud Rate = Fosc/(16(X+1))
1	(Synchronous) Baud Rate = Fosc/(4(X+1))	N/A

X = value in SPBRG (0 to 255)

TABLE 10-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
18h	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	x00-000x
99h	SPBRG	Baud Ra	Baud Rate Generator Register 0000 0000 0000 0000								

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used by the BRG.

10.2.2 USART ASYNCHRONOUS RECEIVER

The receiver block diagram is shown in Figure 10-4. The data is received on the RC7/RX/DT pin and drives the data recovery block. The data recovery block is actually a high speed shifter operating at x16 times the baud rate, whereas the main receive serial shifter operates at the bit rate, or at FOSC.

Once Asynchronous mode is selected, reception is enabled by setting bit CREN (RCSTA<4>).

The heart of the receiver is the receive (serial) shift register (RSR). After sampling the STOP bit, the received data in the RSR is transferred to the RCREG register (if it is empty). If the transfer is complete, flag bit RCIF (PIR1<5>) is set. The actual interrupt can be enabled/ disabled by setting/clearing enable bit RCIE (PIE1<5>). Flag bit RCIF is a read only bit which is cleared by the hardware. It is cleared when the RCREG register has been read and is empty. The RCREG is a double buffered register (i.e., it is a two deep FIFO). It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting to the RSR register. On the detection of the STOP bit of the third byte, if the RCREG register is still full, the overrun error bit OERR (RCSTA<1>) will be set. The word in the RSR will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Overrun bit OERR has to be cleared in software. This is done by resetting the receive logic (CREN is cleared and then set). If bit OERR is set, transfers from the RSR register to the RCREG register are inhibited and no further data will be received, therefore, it is essential to clear error bit OERR if it is set. Framing error bit FERR (RCSTA<2>) is set if a STOP bit is detected as clear. Bit FERR and the 9th receive bit are buffered the same way as the receive data. Reading the RCREG will load bits RX9D and FERR with new values, therefore, it is essential for the user to read the RCSTA register before reading RCREG register, in order not to lose the old FERR and RX9D information.

13.2 Instruction Descriptions

ADDLW	Add Literal and W
Syntax:	[<i>label</i>] ADDLW k
Operands:	$0 \le k \le 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Description:	The contents of the W register are added to the eight-bit literal 'k' and the result is placed in the W register.

ADDWF	Add W and f
Syntax:	[label] ADDWF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(W) + (f) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Add the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

BCF	Bit Clear f
Syntax:	[<i>label</i>] BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

BSF	Bit Set f
Syntax:	[<i>label</i>] BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

ANDLW	AND Literal with W
Syntax:	[label] ANDLW k
Operands:	$0 \le k \le 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of W register are AND'ed with the eight-bit literal 'k'. The result is placed in the W register.

BTFSS	Bit Test f, Skip if Set
Syntax:	[label] BTFSS f,b
Operands:	$0 \le f \le 127$ $0 \le b < 7$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruc- tion is discarded and a NOP is executed instead, making this a 2TCY instruction.

ANDWF	AND W with f
Syntax:	[label] ANDWF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(W) .AND. (f) \rightarrow (destination)
Status Affected:	Z
Description:	AND the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

BTFSC	Bit Test, Skip if Clear
Syntax:	[label] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2TCY instruction.

PIC16F7X

CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \le k \le 2047$
Operation:	(PC)+ 1 \rightarrow TOS, k \rightarrow PC<10:0>, (PCLATH<4:3>) \rightarrow PC<12:11>
Status Affected:	None
Description:	Call Subroutine. First, return address (PC+1) is pushed onto the stack. The eleven-bit immedi- ate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two-cycle instruction.

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation: Status Affected:	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \ prescaler, \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \\ \overline{TO}, \ \overline{PD} \end{array}$
Description:	CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.

CLRF	Clear f
Syntax:	[label] CLRF f
Operands:	$0 \le f \le 127$
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	The contents of register 'f' are cleared and the Z bit is set.

COMF	Complement f								
Syntax:	[<i>label</i>] COMF f,d								
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$								
Operation:	$(\overline{f}) \rightarrow$ (destination)								
Status Affected:	Z								
Description:	The contents of register 'f' are complemented. If 'd' is 0, the result is stored in W. If 'd' is 1, the result is stored back in register 'f'.								

CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow (W) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is set.

DECF	Decrement f
Syntax:	[label] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

DECFSZ	Decrement f, Skip if 0
Syntax:	[label] DECFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are decremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruc-
	tion is executed. If the result is 0, then a NOP is executed instead, making it a 2TCY instruction.

INCFSZ	Increment f, Skip if 0
Syntax:	[label] INCFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruc- tion is executed. If the result is 0,
	a NOP is executed instead, making it a 2Tcy instruction.

GOTO	Unconditional Branch								
Syntax:	[<i>label</i>] GOTO k								
Operands:	$0 \le k \le 2047$								
Operation:	$k \rightarrow PC<10:0>$ PCLATH<4:3> \rightarrow PC<12:11>								
Status Affected:	None								
Description:	GOTO is an unconditional branch. The eleven-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two- cycle instruction.								

IORLW	Inclusive OR Literal with W
Syntax:	[<i>label</i>] IORLW k
Operands:	$0 \le k \le 255$
Operation:	(W) .OR. $k \rightarrow$ (W)
Status Affected:	Z
Description:	The contents of the W register are OR'ed with the eight-bit literal 'k'. The result is placed in the W register.

INCF	Increment f	IORWF	Inclusive OR W with f
Syntax:	[<i>label</i>] INCF f,d	Syntax:	[label] IORWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (destination)	Operation:	(W) .OR. (f) \rightarrow (destination)
Status Affected:	Z	Status Affected:	Z
Description:	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.	Description:	Inclusive OR the W register with register 'f'. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.

14.8 MPLAB ICD In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD, is a powerful, low cost, run-time development tool. This tool is based on the FLASH PICmicro MCUs and can be used to develop for this and other PICmicro microcontrollers. The MPLAB ICD utilizes the in-circuit debugging capability built into the FLASH devices. This feature, along with Microchip's In-Circuit Serial Programming[™] protocol, offers cost-effective in-circuit FLASH debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by watching variables, single-stepping and setting break points. Running at full speed enables testing hardware in realtime.

14.9 PRO MATE II Universal Device Programmer

The PRO MATE II universal device programmer is a full-featured programmer, capable of operating in stand-alone mode, as well as PC-hosted mode. The PRO MATE II device programmer is CE compliant.

The PRO MATE II device programmer has programmable VDD and VPP supplies, which allow it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for instructions and error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In stand-alone mode, the PRO MATE II device programmer can read, verify, or program PICmicro devices. It can also set code protection in this mode.

14.10 PICSTART Plus Entry Level Development Programmer

The PICSTART Plus development programmer is an easy-to-use, low cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient.

The PICSTART Plus development programmer supports all PICmicro devices with up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus development programmer is CE compliant.

14.11 PICDEM 1 Low Cost PICmicro Demonstration Board

The PICDEM 1 demonstration board is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44, All necessary hardware and software is included to run basic demo programs. The user can program the sample microcontrollers provided with the PICDEM 1 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer, and easily test firmware. The user can also connect the PICDEM 1 demonstration board to the MPLAB ICE incircuit emulator and download the firmware to the emulator for testing. A prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push button switches and eight LEDs connected to PORTB.

14.12 PICDEM 2 Low Cost PIC16CXX Demonstration Board

The PICDEM 2 demonstration board is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM 2 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer, and easily test firmware. The MPLAB ICE in-circuit emulator may also be used with the PICDEM 2 demonstration board to test firmware. A prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push button switches, a potentiometer for simulated analog input, a serial EEPROM to demonstrate usage of the I^2C^{TM} bus and separate headers for connection to an LCD module and a keypad.

TABLE 14-1: DEVELOPMENT TOOLS FROM MICROCHIP

Model Model <th< th=""><th></th><th>PIC12CXXX</th><th>PIC14000</th><th>PIC16C5X</th><th>ХәЭәгың</th><th>тст6сххх</th><th>PIC16F62X</th><th>X7O31OI9</th><th>XXTO31019</th><th>PIC16C8X</th><th>PIC16F8XX</th><th>PIC16C9XX</th><th>X#37121919</th><th>XX7371319</th><th>PIC18CXX2</th><th>PIC18FXXX</th><th>83CXX 52CXX/ 54CXX/</th><th>нсеххх</th><th>мскеххх</th><th>WCP2510</th></th<>		PIC12CXXX	PIC14000	PIC16C5X	ХәЭәгың	тст6сххх	PIC16F62X	X7O31OI9	XXTO31019	PIC16C8X	PIC16F8XX	PIC16C9XX	X#37121919	XX7371319	PIC18CXX2	PIC18FXXX	83CXX 52CXX/ 54CXX/	нсеххх	мскеххх	WCP2510
Montal Monta Monta Monta <th>MPLAB[®] Integrated Development Environment</th> <th>></th> <th></th> <th></th> <th></th> <th></th>	MPLAB [®] Integrated Development Environment	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>				
Defende Defende <t< td=""><th>MPLAB® C17 C Compiler</th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>></td><td>></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	MPLAB® C17 C Compiler												>	>						
MCM MCM <th>MPLAB® C18 C Compiler</th> <td></td> <td>></td> <td>></td> <td></td> <td></td> <td></td> <td></td>	MPLAB® C18 C Compiler														>	>				
MetAP ³ (CE In-Circuit Enulator < < <	MPASM TM Assembler/ MPLINK TM Object Linker	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>		
CEPIC*Int. CEPIC*Int. Add # Contact Emulator Add # CEPIC*Int. Add # CepIC Add # Add # Add #	MPLAB® ICE In-Circuit Emulator	>	>	>	>	>	**`	>	>	>	>	>	>	>	>	>				
MetaBa Controlled Contectee Controlled Controled <th>ICEPICTM In-Circuit Emulator</th> <td>></td> <td></td> <td>></td> <td>></td> <td>></td> <td></td> <td>></td> <td>></td> <td>></td> <td></td> <td>></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	ICEPICTM In-Circuit Emulator	>		>	>	>		>	>	>		>								
Plose Plose <th< td=""><th>MPLAB® ICD In-Circuit Debugger De</th><td></td><td></td><td></td><td>*</td><td></td><td></td><td>*></td><td></td><td></td><td>></td><td></td><td></td><td></td><td></td><td>></td><td></td><td></td><td></td><td></td></th<>	MPLAB® ICD In-Circuit Debugger De				*			*>			>					>				
PROMATE ^M II Universal Device Programmer V	<pre>PICSTART® Plus Entry Level Development Programmer</pre>	>	>	>	>	>	**`	>	>	>	>	>	>	>	>	>				
PICDEMINA 1 Demonstration 1 <th>ଅଟେ MATE® II ପୁମ୍ବା Universal Device Programmer</th> <td>></td> <td>></td> <td>></td> <td>></td> <td>></td> <td>** ></td> <td>></td> <td></td> <td></td>	ଅଟେ MATE® II ପୁମ୍ବା Universal Device Programmer	>	>	>	>	>	** >	>	>	>	>	>	>	>	>	>	>	>		
PICDEM™ Demonstration 1 Board 0 1 1 Board 0 1 1 PICDEM™ 2 Demonstration 1 1 PicDEM™ 2 Demonstration 1 1 PicDEM™ 2 Demonstration 1 1 PicDEM™ 1 Demonstration 1 1 1 PicDEM™ 1 Demonstration 1 1 1 1 PicDEM™ 1 Demonstration 1 1 1 1 1 PicDEM™ 1 Demonstration 1 1 1 1 1 1 PicDEM™ 1 Demonstration 1	PICDEM TM 1 Demonstration Board			>		>		+		>			>							
PICDEM™ 3 Demonstration Image: mark a manual constration Image: mark a mark a manual constration Image: mark a m	PICDEM TM 2 Demonstration Board				+			+		<u> </u>					>	>				
PICDEMI* 14A Demonstration Board 0<	PICDEM TM 3 Demonstration Board											>								
PICDEM™ 17 Demonstration Demonstration PICDEM™ 17 Demonstration PICDEM™ 17 Demonstration REELOa® Evaluation Kit N<	번 PICDEM TM 14A Demonstration 편 Board		>		<u> </u>		<u> </u>			<u> </u>										
KEELOa® Evaluation Kit Image: marked background	PICDEM TM 17 Demonstration B Board				<u> </u>		<u> </u>			<u> </u>				>						
KEELOa® Transponder Kit I	KEELOQ® Evaluation Kit																	>		
Image Image <th< td=""><th>ଞ୍ଚୁ KEELoq® Transponder Kit</th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>~</td><td></td><td></td></th<>	ଞ୍ଚୁ KEELoq® Transponder Kit																	~		
125 KHz microlD TM Developer's Kit Developer's Kit 125 KHz Anticollision microlD TM 125 KHz Anticollision 125 KHz Anticollision 13.56 MHz Anticollision MCP2510 CAN Developer's Kit	m microlD™ Programmer's Kit																		>	
125 kHz Anticollision microlD TM 125 kHz Anticollision microlD TM Developer's Kit 13.56 MHz Anticollision InterolD TM Developer's Kit 1 MCP2510 CAN Developer's Kit 1	et 125 kHz microlD™ Developer's Kit																		>	
13.56 MHz Anticollision microlD TM Developer's Kit MCP2510 CAN Developer's Kit	125 kHz Anticollision microlD TM Developer's Kit																		>	
MCP2510 CAN Developer's Kit	13.56 MHz Anticollision microlD™ Developer's Kit																		>	
	MCP2510 CAN Developer's Kit																			>

© 2002 Microchip Technology Inc.

15.1 DC Characteristics: PIC16F73/74/76/77 (Industrial, Extended) PIC16LF73/74/76/77 (Industrial) (Continued)

PIC16L (Indus	F73/74/ 7 strial)	76/77	Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial							
PIC16F (Indus	73/74/76 strial, Ex	5/77 tended)	Standa Operat	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for extended						
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions			
	Idd	Supply Current (Notes 2, 5	5)							
D010		PIC16LF7X	—	0.4	2.0	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)			
D010A			—	20	48	μA	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled			
D010		PIC16F7X	-	0.9	4	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 5.5V (Note 4)			
D013			_	5.2	15	mA	HS osc configuration Fosc = 20 MHz, VDD = 5.5V			
D015*	Δ Ibor	Brown-out Reset Current (Note 6)	—	25	200	μA	BOR enabled, VDD = 5.0V			
D020	IPD	Power-down Current (Note	t (Notes 3, 5)							
D021		PIC16LF7X	$\begin{array}{ c c c c c c c c }\hline - & 2.0 & 30 & \mu A & VDD = 3.0V, WDT enabled, -40^{\circ}C \text{ to } +85^{\circ}C & - & 0.1 & 5 & \mu A & VDD = 3.0V, WDT disabled, -40^{\circ}C \text{ to } +85^{\circ}C & - & 85^{\circ}C $							
D020		PIC16F7X		5.0	42	μA	VDD = $4.0V$, WDT enabled, $-40^{\circ}C$ to $+85^{\circ}C$			
D021			—	0.1	19	μA	VDD = $4.0V$, WDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$			
D021A			—	10.5	57	μΑ	$VDD = 4.0V$, WDT enabled, $-40^{\circ}C$ to $+125^{\circ}C$			
				1.5	42	μΑ	VDD = 4.0V, VVDT disabled, -40°C to +125°C			
D023*	Δ IBOR	Brown-out Reset Current (Note 6)		25	200	μA	BOR enabled, VDD = 5.0V			

Legend: Shading of rows is to assist in readability of of the table.

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

- OSC1 = external square wave, from-rail to-rail; all I/O pins tri-stated, pulled to VDD MCLR = VDD; WDT enabled/disabled as specified.
- **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.
- **5:** Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
- 7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.

15.2 DC Characteristics: PIC16F73/74/76/77 (Industrial, Extended) PIC16LF73/74/76/77 (Industrial) (Continued)

DC CHA	ARACT	ERISTICS	Standard Operating Operating Section 1	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extendedOperating voltage VDD range as described in DC Specification, Section 15.1.					
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions		
	Vol	Output Low Voltage							
D080		I/O ports	—	_	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +125°C		
D083		OSC2/CLKOUT (RC osc config)	—	—	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +125°C		
			—	—	0.6	V	IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C		
	Vон	Output High Voltage				•			
D090		I/O ports (Note 3)	Vdd - 0.7	—	_	V	IOH = -3.0 mA, VDD = 4.5V, -40°С to +125°С		
D092		OSC2/CLKOUT (RC osc config)	Vdd - 0.7	—	—	V	ІОН = -1.3 mA, VDD = 4.5V, -40°С to +125°С		
			Vdd - 0.7	—	—	V	IOH = -1.0 mA, VDD = 4.5V, -40°С to +125°С		
D150*	Vod	Open Drain High Voltage			12	V	RA4 pin		
Capacitive Loading Specs on Output Pins									
D100	Cosc2	OSC2 pin	—		15	pF	In XT, HS and LP modes when external clock is used to drive OSC1		
D101	Сю	All I/O pins and OSC2 (in RC mode)	—	—	50	pF			
D102	Св	SCL, SDA in I ² C mode	—	—	400	pF			
		Program FLASH Memory				•	•		
D130	Ер	Endurance	100	1000	—	E/W	25°C at 5V		
D131	Vpr	VDD for Read	2.0	_	5.5	V			

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16F7X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

FIGURE 16-19: MINIMUM AND MAXIMUM VIN vs. VDD, (TTL INPUT, -40°C TO 125°C)

28-Lead Plastic Micro Leadframe Package (MF) 6x6 mm Body (MLF) (Continued)

	Units		INCHES		MILLIMETERS*		
Dim	ension Limits	MIN	NOM	MAX	MIN	NOM	MAX
Pitch	р	.026 BSC			0.65 BSC		
Pad Width	В	.009	.011	.014	0.23	0.28	0.35
Pad Length	L	.020	.024	.030	0.50	0.60	0.75
Pad to Solder Mask	М	.005		.006	0.13		0.15

*Controlling Parameter

Drawing No. C04-2114

40-Lead Plastic Dual In-line (P) - 600 mil (PDIP)

Units	INCHES*			MILLIMETERS		
1 Limits	MIN	NOM	MAX	MIN	NOM	MAX
n		40			40	
р		.100			2.54	
А	.160	.175	.190	4.06	4.45	4.83
A2	.140	.150	.160	3.56	3.81	4.06
A1	.015			0.38		
Е	.595	.600	.625	15.11	15.24	15.88
E1	.530	.545	.560	13.46	13.84	14.22
D	2.045	2.058	2.065	51.94	52.26	52.45
L	.120	.130	.135	3.05	3.30	3.43
С	.008	.012	.015	0.20	0.29	0.38
B1	.030	.050	.070	0.76	1.27	1.78
В	.014	.018	.022	0.36	0.46	0.56
eВ	.620	.650	.680	15.75	16.51	17.27
α	5	10	15	5	10	15
β	5	10	15	5	10	15
	Units n P A A2 A1 E D L C B1 B eB α β	Units MIN n P A .160 A2 .140 A1 .015 E .595 E1 .530 D 2.045 L .120 c .008 B1 .030 B .014 eB .620 α .5 β .5	Units INCHES* nLimits MIN NOM n 40 P .100 A .160 .175 A2 .140 .150 A1 .015 E .595 D 2.045 2.058 L C B1 B2 C B3 C A1 C D 2.045 2.058 L A1 C B4 B5 B6 B7 <td>$\begin{tabular}{ c c c c } \hline Units & INCHES* \\ \hline Limits & MIN & NOM & MAX \\ \hline n & 40 \\ \hline P & 100 \\ \hline A & 160 & 175 \\ \hline A & 160 & 160 \\ \hline B & 100 & 160 \\ \hline B & 100 & 160 \\ \hline B & 100 & 150 \\ \hline B & 5 & 100 & 150 \\ \hline B & 5 & 10 & 15 \\ \hline B & 160 & 160 \\ \hline A & 160 & 1$</td> <td>$\begin{tabular}{ c c c c } \hline Vnits & VNCHES* & NN \\ \hline \mbox{n Limits} & MIN & NOM & MAX & MIN \\ \hline \mbox{n } & 40 &$</td> <td>$\begin{tabular}{ c c c c c } \hline \$\mathbf{V}\$ \$\mathbf{NCHES}^*\$ \$\mathbf{MIN}\$ \$\mathbf{NOM}\$ \$\mathbf{MAX}\$ \$\mathbf{MIN}\$ \$\mathbf{NOM}\$ \N</td>	$\begin{tabular}{ c c c c } \hline Units & INCHES* \\ \hline Limits & MIN & NOM & MAX \\ \hline n & 40 \\ \hline P & 100 \\ \hline A & 160 & 175 \\ \hline A & 160 & 160 \\ \hline B & 100 & 160 \\ \hline B & 100 & 160 \\ \hline B & 100 & 150 \\ \hline B & 5 & 100 & 150 \\ \hline B & 5 & 10 & 15 \\ \hline B & 160 & 160 \\ \hline A & 160 & 1$	$\begin{tabular}{ c c c c } \hline Vnits & VNCHES* & NN \\ \hline \mbox{n Limits} & MIN & NOM & MAX & MIN \\ \hline \mbox{n } & 40 & & & & & & & & & & & & & & & & & $	$\begin{tabular}{ c c c c c } \hline \mathbf{V} \mathbf{NCHES}^* \mathbf{MIN} \mathbf{NOM} \mathbf{MAX} \mathbf{MIN} \mathbf{NOM} N

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-011

Drawing No. C04-016