E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf76-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16F7X

28/40-Pin 8-Bit CMOS FLASH Microcontrollers

Devices Included in this Data Sheet:

- PIC16F73PIC16F74
- PIC16F76PIC16F77

High Performance RISC CPU:

- High performance RISC CPU
- Only 35 single word instructions to learn
- All single cycle instructions except for program branches which are two-cycle
- Operating speed: DC 20 MHz clock input DC - 200 ns instruction cycle
- Up to 8K x 14 words of FLASH Program Memory, Up to 368 x 8 bytes of Data Memory (RAM)
- Pinout compatible to the PIC16C73B/74B/76/77
- Pinout compatible to the PIC16F873/874/876/877
- Interrupt capability (up to 12 sources)
- Eight level deep hardware stack
- Direct, Indirect and Relative Addressing modes
- Processor read access to program memory

Special Microcontroller Features:

- Power-on Reset (POR)
- Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation
- Programmable code protection
- Power saving SLEEP mode
- Selectable oscillator options
- In-Circuit Serial Programming[™] (ICSP[™]) via two pins

Peripheral Features:

- Timer0: 8-bit timer/counter with 8-bit prescaler
- Timer1: 16-bit timer/counter with prescaler, can be incremented during SLEEP via external crystal/clock
- Timer2: 8-bit timer/counter with 8-bit period register, prescaler and postscaler
- Two Capture, Compare, PWM modules
 - Capture is 16-bit, max. resolution is 12.5 ns
 - Compare is 16-bit, max. resolution is 200 ns
 PWM max. resolution is 10-bit
- 8-bit, up to 8-channel Analog-to-Digital converter
- Synchronous Serial Port (SSP) with SPI™ (Master mode) and I²C[™] (Slave)
- Universal Synchronous Asynchronous Receiver Transmitter (USART/SCI)
- Parallel Slave Port (PSP), 8-bits wide with external RD, WR and CS controls (40/44-pin only)
- Brown-out detection circuitry for Brown-out Reset (BOR)

CMOS Technology:

- Low power, high speed CMOS FLASH technology
- Fully static design
- Wide operating voltage range: 2.0V to 5.5V
- High Sink/Source Current: 25 mA
- Industrial temperature range
- Low power consumption:
 - < 2 mA typical @ 5V, 4 MHz
 - 20 μA typical @ 3V, 32 kHz
 - < 1 µA typical standby current

	Program Memory Data		CCD	SS	P		Timoro			
Device	(# Single Word Instructions)	SRAM (Bytes)	I/O	Interrupts	A/D (ch)	(PWM)	SPI (Master)	l ² C (Slave)	USART	8/16-bit
PIC16F73	4096	192	22	11	5	2	Yes	Yes	Yes	2/1
PIC16F74	4096	192	33	12	8	2	Yes	Yes	Yes	2/1
PIC16F76	8192	368	22	11	5	2	Yes	Yes	Yes	2/1
PIC16F77	8192	368	33	12	8	2	Yes	Yes	Yes	2 / 1

PIC16F73 AND PIC16F76 PINOUT DESCRIPTION **TABLE 1-2:**

Pin Name	DIP SSOP SOIC Pin#	MLF Pin#	l/O/P Type	Buffer Type	Description
OSC1/CLKI OSC1	9	6	I	ST/CMOS ⁽³⁾	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST
CLKI			I		buffer when configured in RC mode. Otherwise CMOS. External clock source input. Always associated with pin function OSC1 (see OSC1/CLKI, OSC2/CLKO pins).
OSC2/CLKO OSC2	10	7	0	-	Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator
CLKO			0		mode. In RC mode, OSC2 pin outputs CLKO, which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.
MCLR/VPP MCLR	1	26	I	ST	Master Clear (input) or programming voltage (output). Master Clear (Reset) input. This pin is an active low RESET to the device.
Vpp			Р		Programming voltage input.
					PORTA is a bi-directional I/O port.
RA0/AN0	2	27		TTL	
			1/0		Digital I/O. Analog input 0
	з	28	1	тті	
RA1	5	20	I/O		Digital I/O.
AN1			1		Analog input 1.
RA2/AN2	4	1		TTL	
RA2			I/O		Digital I/O.
AN2			I		Analog input 2.
RA3/AN3/VREF	5	2		TTL	
RA3			I/O		Digital I/O.
AN3			I		Analog input 3.
VREF			I		A/D reference voltage input.
RA4/T0CKI	6	4		ST	
RA4			1/0		Digital I/O – Open drain when configured as output.
	_	_	I		limero external clock input.
RA5/SS/AN4	(5	1/0	IIL	Disting 1/O
			1/0		SPI slove select input
AN4					Analog input 4
Legend: L= inpu	l I	$\Omega = \Omega u^{\dagger}$	iout	I/O = inpu	P = power

— = Not used TTL = TTL input ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

This buffer is a Schmitt Trigger input when used in Serial Programming mode.
 This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

NOTES:

6.1 **Timer1 Operation in Timer Mode**

Timer mode is selected by clearing the TMR1CS (T1CON<1>) bit. In this mode, the input clock to the timer is Fosc/4. The synchronize control bit T1SYNC (T1CON<2>) has no effect, since the internal clock is always in sync.

6.2 **Timer1 Counter Operation**

Timer1 may operate in Asynchronous or Synchronous mode, depending on the setting of the TMR1CS bit.

When Timer1 is being incremented via an external source, increments occur on a rising edge. After Timer1 is enabled in Counter mode, the module must first have a falling edge before the counter begins to increment.

6.3 **Timer1 Operation in Synchronized Counter Mode**

Counter mode is selected by setting bit TMR1CS. In this mode, the timer increments on every rising edge of clock input on pin RC1/T1OSI/CCP2, when bit T1OSCEN is set, or on pin RC0/T1OSO/T1CKI, when bit T1OSCEN is cleared.

If TISYNC is cleared, then the external clock input is synchronized with internal phase clocks. The synchronization is done after the prescaler stage. The prescaler stage is an asynchronous ripple counter.

In this configuration, during SLEEP mode, Timer1 will not increment even if the external clock is present, since the synchronization circuit is shut-off. The prescaler, however, will continue to increment.

FIGURE 6-2: TIMER1 BLOCK DIAGRAM

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh,8Bh. 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 0002	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
87h	TRISC	PORTC Data Direction Register									1111 1111
13h	SSPBUF	Synchronou	us Serial F	Port Recei	ve Buff	er/Transm	it Register	r		XXXX XXXX	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	СКР	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
85h	TRISA	_		PORTA D	Data Dii	ection Re	gister			11 1111	11 1111
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000

TABLE 9-1:REGISTERS ASSOCIATED WITH SPI OPERATION

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the SSP in SPI mode.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76; always maintain these bits clear.

10.3.2 USART SYNCHRONOUS MASTER RECEPTION

Once synchronous mode is selected, reception is enabled by setting either enable bit SREN (RCSTA<5>), or enable bit CREN (RCSTA<4>). Data is sampled on the RC7/RX/DT pin on the falling edge of the clock. If enable bit SREN is set, then only a single word is received. If enable bit CREN is set, the reception is continuous until CREN is cleared. If both bits are set, CREN takes precedence. After clocking the last bit, the received data in the Receive Shift Register (RSR) is transferred to the RCREG register (if it is empty). When the transfer is complete, interrupt flag bit RCIF (PIR1<5>) is set. The actual interrupt can be enabled/ disabled by setting/clearing enable bit RCIE (PIE1<5>). Flag bit RCIF is a read only bit, which is reset by the hardware. In this case, it is reset when the RCREG register has been read and is empty. The RCREG is a double buffered register (i.e., it is a two deep FIFO). It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting into the RSR register. On the clocking of the last bit of the third byte, if the RCREG register is still full, then overrun error bit OERR (RCSTA<1>) is set. The word in the RSR will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Bit OERR has to be cleared in software (by clearing bit CREN). If bit OERR is set, transfers from the RSR to the RCREG are inhibited, so it is essential to clear bit OERR if it is set. The ninth receive bit is buffered the same way as the

receive data. Reading the RCREG register will load bit RX9D with a new value, therefore, it is essential for the user to read the RCSTA register before reading RCREG, in order not to lose the old RX9D information.

Steps to follow when setting up a Synchronous Master Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate (Section 10.1).
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 3. Ensure bits CREN and SREN are clear.
- 4. If interrupts are desired, then set enable bit RCIE.
- 5. If 9-bit reception is desired, then set bit RX9.
- 6. If a single reception is required, set bit SREN. For continuous reception set bit CREN.
- Interrupt flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- 8. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 9. Read the 8-bit received data by reading the RCREG register.
- 10. If any error occurred, clear the error by clearing bit CREN.
- 11. If using interrupts, ensure that GIE and PEIE in the INTCON register are set.

11.2 Selecting the A/D Conversion Clock

The A/D conversion time per bit is defined as TAD. The A/D conversion requires 9.0 TAD per 8-bit conversion. The source of the A/D conversion clock is software selectable. The four possible options for TAD are:

- 2 Tosc (Fosc/2)
- 8 Tosc (Fosc/8)
- 32 Tosc (Fosc/32)
- Internal RC oscillator (2-6 μs)

For correct A/D conversions, the A/D conversion clock (TAD) must be selected to ensure a minimum TAD time as small as possible, but no less than $1.6 \,\mu s$.

11.3 Configuring Analog Port Pins

The ADCON1, TRISA and TRISE registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The A/D operation is independent of the state of the CHS2:CHS0 bits and the TRIS bits.

- Note 1: When reading the port register, all pins configured as analog input channels will read as cleared (a low level). Pins configured as digital inputs will convert an analog input. Analog levels on a digitally configured input will not affect the conversion accuracy.
 - 2: Analog levels on any pin that is defined as a digital input, but not as an analog input, may cause the digital input buffer to consume current that is out of the device's specification.

11.4 A/D Conversions

Note: The GO/DONE bit should **NOT** be set in the same instruction that turns on the A/D.

Setting the GO/DONE bit begins an A/D conversion. When the conversion completes, the 8-bit result is placed in the ADRES register, the GO/DONE bit is cleared, and the ADIF flag (PIR<6>) is set.

If both the A/D interrupt bit ADIE (PIE1<6>) and the peripheral interrupt enable bit PEIE (INTCON<6>) are set, the device will wake from SLEEP whenever ADIF is set by hardware. In addition, an interrupt will also occur if the global interrupt bit GIE (INTCON<7>) is set.

Clearing the GO/DONE bit during a conversion will abort the current conversion. The ADRES register will NOT be changed, and the ADIF flag will not be set.

After the GO/DONE bit is cleared at either the end of a conversion, or by firmware, another conversion can be initiated by setting the GO/DONE bit. Users must still take into account the appropriate acquisition time for the application.

11.5 A/D Operation During SLEEP

The A/D module can operate during SLEEP mode. This requires that the A/D clock source be set to RC (ADCS1:ADCS0 = '11'). When the RC clock source is selected, the A/D module waits one instruction cycle before starting the conversion. This allows the SLEEP instruction to be executed, which eliminates all digital switching noise from the conversion. When the conversion is completed, the GO/DONE bit will be cleared, and the result loaded into the ADRES register. If the A/D interrupt is enabled, the device will wake-up from SLEEP. If the A/D interrupt is not enabled, the ADON bit will remain set.

When the A/D clock source is another clock option (not RC), a SLEEP instruction will cause the present conversion to be aborted and the A/D module to be turned off, though the ADON bit will remain set.

Turning off the A/D places the A/D module in its lowest current consumption state.

Note: For the A/D module to operate in SLEEP, the A/D clock source must be set to RC (ADCS1:ADCS0 = 11). To perform an A/D conversion in SLEEP, ensure the SLEEP instruction immediately follows the instruction that sets the GO/DONE bit.

11.6 Effects of a RESET

A device RESET forces all registers to their RESET state. The A/D module is disabled and any conversion in progress is aborted. All A/D input pins are configured as analog inputs.

The ADRES register will contain unknown data after a Power-on Reset.

12.0 SPECIAL FEATURES OF THE CPU

These devices have a host of features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- Oscillator Selection
- RESET
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP
- Code Protection
- ID Locations
- In-Circuit Serial Programming

These devices have a Watchdog Timer, which can be enabled or disabled, using a configuration bit. It runs off its own RC oscillator for added reliability.

There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only. It is designed to keep the part in RESET while the power supply stabilizes, and is enabled or disabled, using a configuration bit. With these two timers on-chip, most applications need no external RESET circuitry. SLEEP mode is designed to offer a very low current power-down mode. The user can wake-up from SLEEP through external RESET, Watchdog Timer Wake-up, or through an interrupt.

Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. Configuration bits are used to select the desired oscillator mode.

Additional information on special features is available in the PICmicro[™] Mid-Range Reference Manual (DS33023).

12.1 Configuration Bits

The configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space, which can be accessed only during programming.

12.2 Oscillator Configurations

12.2.1 OSCILLATOR TYPES

The PIC16F7X can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor

12.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

In XT, LP or HS modes, a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 12-1). The PIC16F7X oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in HS mode, the device can accept an external clock source to drive the OSC1/CLKIN pin (Figure 12-2). See Figure 15-1 or Figure 15-2 (depending on the part number and VDD range) for valid external clock frequencies.

FIGURE 12-1: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)

3: RF varies with the crystal chosen.

FIGURE 12-2:

EXTERNAL CLOCK INPUT OPERATION (HS OSC CONFIGURATION)

TABLE 12-1: CERAMIC RESONATORS (FOR DESIGN GUIDANCE ONLY)

1	Typical Capac	itor Values Use	ed:
Mode	Freq	OSC1	OSC2
XT	455 kHz	56 pF	56 pF
	2.0 MHz	47 pF	47 pF
	4.0 MHz	33 pF	33 pF
HS	8.0 MHz	27 pF	27 pF
	16.0 MHz	22 pF	22 pF

Capacitor values are for design guidance only.

These capacitors were tested with the resonators listed below for basic start-up and operation. These values were not optimized.

Different capacitor values may be required to produce acceptable oscillator operation. The user should test the performance of the oscillator over the expected VDD and temperature range for the application.

See the notes at the bottom of page 92 for additional information.

	Resonators Used:
455 kHz	Panasonic EFO-A455K04B
2.0 MHz	Murata Erie CSA2.00MG
4.0 MHz	Murata Erie CSA4.00MG
8.0 MHz	Murata Erie CSA8.00MT
16.0 MHz	Murata Erie CSA16.00MX

12.11 Interrupts

The PIC16F7X family has up to 12 sources of interrupt. The interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

Note:	Individual interrupt flag bits are set, regard-
	less of the status of their corresponding
	mask bit or the GIE bit.

A global interrupt enable bit, GIE (INTCON<7>) enables (if set) all unmasked interrupts, or disables (if cleared) all interrupts. When bit GIE is enabled and an interrupt's flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in various registers. Individual interrupt bits are set, regardless of the status of the GIE bit. The GIE bit is cleared on RESET.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine, as well as sets the GIE bit, which re-enables interrupts.

The RB0/INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.

The peripheral interrupt flags are contained in the Special Function Registers, PIR1 and PIR2. The corresponding interrupt enable bits are contained in Special Function Registers, PIE1 and PIE2, and the peripheral interrupt enable bit is contained in Special Function Register, INTCON.

When an interrupt is responded to, the GIE bit is cleared to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid recursive interrupts.

For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs, relative to the current Q cycle. The latency is the same for one or two-cycle instructions. Individual interrupt flag bits are set, regardless of the status of their corresponding mask bit, PEIE bit, or the GIE bit.

FIGURE 12-10: INTERRUPT LOGIC

14.8 MPLAB ICD In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD, is a powerful, low cost, run-time development tool. This tool is based on the FLASH PICmicro MCUs and can be used to develop for this and other PICmicro microcontrollers. The MPLAB ICD utilizes the in-circuit debugging capability built into the FLASH devices. This feature, along with Microchip's In-Circuit Serial Programming[™] protocol, offers cost-effective in-circuit FLASH debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by watching variables, single-stepping and setting break points. Running at full speed enables testing hardware in realtime.

14.9 PRO MATE II Universal Device Programmer

The PRO MATE II universal device programmer is a full-featured programmer, capable of operating in stand-alone mode, as well as PC-hosted mode. The PRO MATE II device programmer is CE compliant.

The PRO MATE II device programmer has programmable VDD and VPP supplies, which allow it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for instructions and error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In stand-alone mode, the PRO MATE II device programmer can read, verify, or program PICmicro devices. It can also set code protection in this mode.

14.10 PICSTART Plus Entry Level Development Programmer

The PICSTART Plus development programmer is an easy-to-use, low cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient.

The PICSTART Plus development programmer supports all PICmicro devices with up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus development programmer is CE compliant.

14.11 PICDEM 1 Low Cost PICmicro Demonstration Board

The PICDEM 1 demonstration board is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44, All necessary hardware and software is included to run basic demo programs. The user can program the sample microcontrollers provided with the PICDEM 1 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer, and easily test firmware. The user can also connect the PICDEM 1 demonstration board to the MPLAB ICE incircuit emulator and download the firmware to the emulator for testing. A prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push button switches and eight LEDs connected to PORTB.

14.12 PICDEM 2 Low Cost PIC16CXX Demonstration Board

The PICDEM 2 demonstration board is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM 2 demonstration board on a PRO MATE II device programmer, or a PICSTART Plus development programmer, and easily test firmware. The MPLAB ICE in-circuit emulator may also be used with the PICDEM 2 demonstration board to test firmware. A prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push button switches, a potentiometer for simulated analog input, a serial EEPROM to demonstrate usage of the I^2C^{TM} bus and separate headers for connection to an LCD module and a keypad.

TABLE 14-1: DEVELOPMENT TOOLS FROM MICROCHIP

Model Model <th< th=""><th></th><th>PIC12CXXX</th><th>PIC14000</th><th>PIC16C5X</th><th>ХәЭәгың</th><th>тст6сххх</th><th>PIC16F62X</th><th>X7O31OI9</th><th>XXTO31019</th><th>PIC16C8X</th><th>PIC16F8XX</th><th>PIC16C9XX</th><th>X#37121919</th><th>XX7371319</th><th>PIC18CXX2</th><th>PIC18FXXX</th><th>83CXX 52CXX/ 54CXX/</th><th>нсеххх</th><th>мскеххх</th><th>WCP2510</th></th<>		PIC12CXXX	PIC14000	PIC16C5X	ХәЭәгың	тст6сххх	PIC16F62X	X7O31OI9	XXTO31019	PIC16C8X	PIC16F8XX	PIC16C9XX	X#37121919	XX7371319	PIC18CXX2	PIC18FXXX	83CXX 52CXX/ 54CXX/	нсеххх	мскеххх	WCP2510
Montal Monta Monta Monta <th>MPLAB[®] Integrated Development Environment</th> <th>></th> <th></th> <th></th> <th></th> <th></th>	MPLAB [®] Integrated Development Environment	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>				
Defende Defende <t< td=""><th>MPLAB® C17 C Compiler</th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>></td><td>></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	MPLAB® C17 C Compiler												>	>						
MCM MCM <th>MPLAB® C18 C Compiler</th> <td></td> <td>></td> <td>></td> <td></td> <td></td> <td></td> <td></td>	MPLAB® C18 C Compiler														>	>				
MetAP ³ (CE In-Circuit Enulator < < <	MPASM TM Assembler/ MPLINK TM Object Linker	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>	>		
CEPIC*Int. CEPIC*Int. Add # Contact Emulator Add # CEPIC*Int. Add # CepIC Add # Add # Add #	MPLAB® ICE In-Circuit Emulator	>	>	>	>	>	**`	>	>	>	>	>	>	>	>	>				
MetaBa Controlled Contecter Controlled Controled <th>ICEPICTM In-Circuit Emulator</th> <td>></td> <td></td> <td>></td> <td>></td> <td>></td> <td></td> <td>></td> <td>></td> <td>></td> <td></td> <td>></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	ICEPICTM In-Circuit Emulator	>		>	>	>		>	>	>		>								
Plose Plose <th< td=""><th>MPLAB® ICD In-Circuit Debugger De</th><td></td><td></td><td></td><td>*</td><td></td><td></td><td>*></td><td></td><td></td><td>></td><td></td><td></td><td></td><td></td><td>></td><td></td><td></td><td></td><td></td></th<>	MPLAB® ICD In-Circuit Debugger De				*			*>			>					>				
PROMATE ^M II Universal Device Programmer V	<pre>PICSTART® Plus Entry Level Development Programmer</pre>	>	>	>	>	>	**`	>	>	>	>	>	>	>	>	>				
PICDEMINA 1 Demonstration 1 <th>ଅଟେ MATE® II ପୁମ୍ବା Universal Device Programmer</th> <td>></td> <td>></td> <td>></td> <td>></td> <td>></td> <td>** ></td> <td>></td> <td></td> <td></td>	ଅଟେ MATE® II ପୁମ୍ବା Universal Device Programmer	>	>	>	>	>	** >	>	>	>	>	>	>	>	>	>	>	>		
PICDEM™ Demonstration 1 Board 0 1 1 Board 0 1 1 PICDEM™ 2 Demonstration 1 1 PicDEM™ 2 Demonstration 1 1 PicDEM™ 2 Demonstration 1 1 PicDEM™ 1 Demonstration 1 1 1 PicDEM™ 1 Demonstration 1 1 1 1 PicDEM™ 1 Demonstration 1 1 1 1 1 PicDEM™ 1 Demonstration 1 1 1 1 1 1 PicDEM™ 1 Demonstration 1	PICDEM TM 1 Demonstration Board			>		>		+		>			>							
PICDEM™ 3 Demonstration Image: mark a manual constration Image: mark a mark a manual constration Image: mark a m	PICDEM TM 2 Demonstration Board				+			+		<u> </u>					>	>				
PICDEMI* 14A Demonstration Board 0<	PICDEM TM 3 Demonstration Board											>								
PICDEM™ 17 Demonstration Demonstration PICDEM™ 17 Demonstration PICDEM™ 17 Demonstration Board KELLOa® Evaluation Kit I </td <th>번 PICDEMTM 14A Demonstration 편 Board</th> <td></td> <td>></td> <td></td> <td><u> </u></td> <td></td> <td><u> </u></td> <td></td> <td></td> <td><u> </u></td> <td></td>	번 PICDEM TM 14A Demonstration 편 Board		>		<u> </u>		<u> </u>			<u> </u>										
KEELOa® Evaluation Kit Image: marked background	PICDEM TM 17 Demonstration B Board				<u> </u>		<u> </u>			<u> </u>				>						
KEELOa® Transponder Kit I	KEELOQ® Evaluation Kit																	>		
Image Image <th< td=""><th>ଞ୍ଚୁ KEELoq® Transponder Kit</th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>~</td><td></td><td></td></th<>	ଞ୍ଚୁ KEELoq® Transponder Kit																	~		
125 KHz microlD TM Developer's Kit Developer's Kit 125 KHz Anticollision microlD TM 125 KHz Anticollision 125 KHz Anticollision 13.56 MHz Anticollision MCP2510 CAN Developer's Kit	m microlD™ Programmer's Kit																		>	
125 kHz Anticollision microlD TM 125 kHz Anticollision microlD TM Developer's Kit 13.56 MHz Anticollision InterolD TM Developer's Kit 1 MCP2510 CAN Developer's Kit 1	et 125 kHz microlD™ Developer's Kit																		>	
13.56 MHz Anticollision microlD TM Developer's Kit MCP2510 CAN Developer's Kit	125 kHz Anticollision microlD TM Developer's Kit																		>	
MCP2510 CAN Developer's Kit	13.56 MHz Anticollision microlD™ Developer's Kit																		>	
	MCP2510 CAN Developer's Kit																			>

© 2002 Microchip Technology Inc.

15.1 DC Characteristics: PIC16F73/74/76/77 (Industrial, Extended) PIC16LF73/74/76/77 (Industrial)

PIC16L (Indus	F73/74/7 strial)	76/77	Standa Operati	ing tem	e rating peratu	g Cond ire -40	itions (unless otherwise stated) °C \leq TA \leq +85°C for industrial
PIC16F (Indus	73/74/76 strial, Ext	5 /77 tended)	Standa Operati	ing tem	erating peratu	g Cond ire -40 -40	itions (unless otherwise stated) $^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial $^{\circ}C \leq TA \leq +125^{\circ}C$ for extended
Param No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Vdd	Supply Voltage					
D001		PIC16LF7X	2.5 2.2 2.0		5.5 5.5 5.5	V V V	A/D in use, -40°C to +85°C A/D in use, 0°C to +85°C A/D not used, -40°C to +85°C
D001 D001A		PIC16F7X	4.0 Vbor*	-	5.5 5.5	V V	All configurations BOR enabled (Note 7)
D002*	Vdr	RAM Data Retention Voltage (Note 1)	-	1.5	-	V	
D003	Vpor	VDD Start Voltage to ensure internal Power-on Reset signal	-	Vss	-	V	See section on Power-on Reset for details
D004*	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	-	-	V/ms	See section on Power-on Reset for details
D005	VBOR	Brown-out Reset Voltage	3.65	4.0	4.35	V	BODEN bit in configuration word enabled

Legend: Shading of rows is to assist in readability of of the table.

* These parameters are characterized but not tested.

- † Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.
- **Note 1:** This is the limit to which VDD can be lowered without losing RAM data.
 - 2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature also have an impact on the current consumption.
 - The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from-rail to-rail; all I/O pins tri-stated, pulled to VDD

- MCLR = VDD; WDT enabled/disabled as specified.
- **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.
- **5:** Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
- 7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.

15.1 DC Characteristics: PIC16F73/74/76/77 (Industrial, Extended) PIC16LF73/74/76/77 (Industrial) (Continued)

PIC16L (Indus	F73/74/ 7 strial)	76/77	Standa Operat	ard Ope ing tem	e rating peratu	g Cond ire -40	litions (unless otherwise stated) ${}^{\circ}C \leq TA \leq +85 {}^{\circ}C$ for industrial
PIC16F (Indus	73/74/76 strial, Ex	5/77 tended)	Standa Operat	ard Ope ing tem	erating peratu	g Cond ire -40 -40	litions (unless otherwise stated) $P^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial $P^{\circ}C \leq TA \leq +125^{\circ}C$ for extended
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Idd	Supply Current (Notes 2, 5	5)				
D010		PIC16LF7X	—	0.4	2.0	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 3.0V (Note 4)
D010A			—	20	48	μA	LP osc configuration Fosc = 32 kHz, VDD = 3.0V, WDT disabled
D010		PIC16F7X	-	0.9	4	mA	XT, RC osc configuration Fosc = 4 MHz, VDD = 5.5V (Note 4)
D013			_	5.2	15	mA	HS osc configuration Fosc = 20 MHz, VDD = 5.5V
D015*	Δ Ibor	Brown-out Reset Current (Note 6)	—	25	200	μA	BOR enabled, VDD = 5.0V
D020	IPD	Power-down Current (Note	es 3, 5)		•		•
D021		PIC16LF7X	_	2.0 0.1	30 5	μΑ μΑ	$VDD = 3.0V$, WDT enabled, $-40^{\circ}C$ to $+85^{\circ}C$ $VDD = 3.0V$, WDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$
D020		PIC16F7X		5.0	42	μA	VDD = $4.0V$, WDT enabled, $-40^{\circ}C$ to $+85^{\circ}C$
D021			—	0.1	19	μA	VDD = $4.0V$, WDT disabled, $-40^{\circ}C$ to $+85^{\circ}C$
D021A			—	10.5	57	μΑ	$VDD = 4.0V$, WDT enabled, $-40^{\circ}C$ to $+125^{\circ}C$
				1.5	42	μΑ	$VDD = 4.0V$, VDT disabled, $-40^{\circ}C$ to $+125^{\circ}C$
D023*	Δ IBOR	Brown-out Reset Current (Note 6)		25	200	μA	BOR enabled, VDD = 5.0V

Legend: Shading of rows is to assist in readability of of the table.

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

- OSC1 = external square wave, from-rail to-rail; all I/O pins tri-stated, pulled to VDD MCLR = VDD; WDT enabled/disabled as specified.
- **3:** The power-down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc configuration, current through REXT is not included. The current through the resistor can be estimated by the formula Ir = VDD/2REXT (mA) with REXT in kOhm.
- **5:** Timer1 oscillator (when enabled) adds approximately 20 μA to the specification. This value is from characterization and is for design guidance only. This is not tested.
- 6: The ∆ current is the additional current consumed when this peripheral is enabled. This current should be added to the base IDD or IPD measurement.
- 7: When BOR is enabled, the device will operate correctly until the VBOR voltage trip point is reached.

15.2 DC Characteristics: PIC16F73/74/76/77 (Industrial, Extended) PIC16LF73/74/76/77 (Industrial) (Continued)

DC CHA	ARACT	ERISTICS	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extendedOperating voltage VDD range as described in DC Specification, Section 15.1.							
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions			
	Vol	Output Low Voltage								
D080		I/O ports	—	_	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +125°C			
D083		OSC2/CLKOUT (RC osc config)	—	—	0.6	V	IOL = 1.6 mA, VDD = 4.5V, -40°C to +125°C			
			—	—	0.6	V	IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C			
	Vон	Output High Voltage				•				
D090		I/O ports (Note 3)	Vdd - 0.7	—	_	V	IOH = -3.0 mA, VDD = 4.5V, -40°С to +125°С			
D092		OSC2/CLKOUT (RC osc config)	Vdd - 0.7	—	—	V	ІОН = -1.3 mA, VDD = 4.5V, -40°С to +125°С			
			Vdd - 0.7	—	—	V	IOH = -1.0 mA, VDD = 4.5V, -40°С to +125°С			
D150*	Vod	Open Drain High Voltage			12	V	RA4 pin			
		Capacitive Loading Specs on Output Pins								
D100	Cosc2	OSC2 pin	—		15	pF	In XT, HS and LP modes when external clock is used to drive OSC1			
D101	Сю	All I/O pins and OSC2 (in RC mode)	—	—	50	pF				
D102	Св	SCL, SDA in I ² C mode	—	—	400	pF				
		Program FLASH Memory					•			
D130	Ер	Endurance	100	1000	—	E/W	25°C at 5V			
D131	Vpr	VDD for Read	2.0	_	5.5	V				

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16F7X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

15.3 Timing Parameter Symbology

The timing parameter symbols have been created using one of the following formats:

1. TppS2ppS	3	3. Tcc:st	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	Т	Time
Lowercase	e letters (pp) and their meanings:		
рр			
сс	CCP1	OSC	OSC1
ck	CLKOUT	rd	RD
cs	CS	rw	RD or WR
di	SDI	SC	SCK
do	SDO	SS	SS
dt	Data in	tO	ТОСКІ
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
Uppercase	e letters and their meanings:	-	
S			
F	Fall	Р	Period
Н	High	R	Rise
I	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-impedance
I ² C only			
AA	output access	High	High
BUF	Bus free	Low	Low
TCC:ST (I ²	C specifications only)		
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	STOP condition
STA	START condition		

TABLE 15-1: EXTERNAL CLOCK TIMING REQUIREMENTS

Parameter No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKIN Frequency	DC	_	1	MHz	XT osc mode
		(Note 1)	DC	—	20	MHz	HS osc mode
			DC	—	32	kHz	LP osc mode
		Oscillator Frequency	DC	—	4	MHz	RC osc mode
		(Note 1)	0.1	—	4	MHz	XT osc mode
			4		20	MHz	HS osc mode
			5		200	kHz	LP osc mode
1	Tosc	External CLKIN Period	1000	—	—	ns	XT osc mode
		(Note 1)	50		—	ns	HS osc mode
			5	—	—	ms	LP osc mode
		Oscillator Period	250	—	—	ns	RC osc mode
		(Note 1)	250	—	10,000	ns	XT osc mode
			50	—	250	ns	HS osc mode
			5	—	—	ms	LP osc mode
2	Тсү	Instruction Cycle Time	200	TCY	DC	ns	TCY = 4/FOSC
		(Note 1)					
3	TosL,	External Clock in (OSC1)	500	—	—	ns	XT oscillator
	TosH	High or Low Time	2.5	—	—	ms	LP oscillator
			15	—	—	ns	HS oscillator
4	TosR,	External Clock in (OSC1)		_	25	ns	XT oscillator
	TosF	Rise or Fall Time	—	—	50	ns	LP oscillator
			_	_	15	ns	HS oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions, with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

16.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "Maximum" or "minimum" represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over the whole temperature range.

PIC16F7X

FIGURE 16-15: TYPICAL, MINIMUM AND MAXIMUM VOH vs. IOH (VDD = 5V, -40°C TO 125°C)

PIC16F7X

Code Protection	103
Computed GOTO	26
Configuration Bits	89
Continuous Receive Enable (CREN Bit)	70
Conversion Considerations	. 162
	-

D

D	
D/A bit	60
Data Memory	
Bank Select (RP1:RP0 bits)	
General Purpose Registers	
Register File Map, PIC16F74/73	
Register File Map, PIC16F77/76	14
Special Function Registers	
Data/Address bit (D/A)	60
DC and AC Characteristics	
Graphs and Tables	
DC Characteristics	121
Development Support	113
Device Differences	
Device Overview	5
Features	5
Direct Addressing	27

Ε

Electrical Characteristics	Э
Errata	4
External Clock Input (RA4/T0CKI). See Timer0	
External Interrupt Input (RB0/INT). See Interrupt Sources	

FSR Register	27
I	
I/O Ports	31
l ² C Mode	
Addressing	66
Associated Registers	
Master Mode	68
Mode Selection	
Multi-Master Mode	
Operation	65
Reception	
Slave Mode	
SCL and SDA pins	65
Transmission	67
ICEPIC In-Circuit Emulator	114
ID Locations	103
In-Circuit Serial Programming (ICSP)	103
INDF Register	27
Indirect Addressing	27
FSR Register	13
Instruction Format	105
Instruction Set	105
ADDLW	107
ADDWF	107
ANDLW	107
ANDWF	107
BCF	107
BSF	107
BTFSC	107
BTFSS	107
CALL	108
CLRF	108
CLRW	108

COMF
DECF
DECFS2
INCE 109
INCFSZ
IORLW 109
IORWF
MOVF
MOVLW
MOVWF
RETFIE 110
RETLW
RETURN 111
RLF 111
RRF
SLEEP
SUBLW
SWAPE 112
XORLW
XORWF 112
Summary Table 106
INT Interrupt (RB0/INT). See Interrupt Sources
INTCON Register
GIE DIT
INTE bit 21
RBIF bit
IMRUE DIL
Inter-Integrated Circuit (I ² C). See I ² C Mode
Inter-Integrated Circuit (I ² C). See I ² C Mode Interrupt Sources
Inter-Integrated Circuit (I ² C). See I ² C Mode Interrupt Sources
Inter-Integrated Circuit (I ² C). See I ² C Mode Interrupt Sources
Inter-Integrated Circuit (I ² C). See I ² C Mode Interrupt Sources
Inter-Integrated Circuit (I ² C). See I ² C Mode Interrupt Sources
Inter-Integrated Circuit (I ² C). See I ² C Mode Interrupt Sources
Inter-Integrated Circuit (I ² C). See I ² C Mode Interrupt Sources
Inter-Integrated Circuit (I ² C). See I ² C Mode Interrupt Sources
Inter-Integrated Circuit (I ² C). See I ² C Mode Interrupt Sources
Interrupt Sources
Inter-Integrated Circuit (I ² C). See I ² C Mode Interrupt Sources
Interrupt Sources
Interrupts, Context Saving During
Interrupt Sources
Interrupt Sources
Inter-Integrated Circuit (I ² C). See I ² C Mode Interrupt Sources
Inter-Integrated Circuit (I ² C). See I ² C Mode Interrupt Sources
Inter-Integrated Circuit (I ² C). See I ² C Mode Interrupt Sources
Inter-Integrated Circuit (I ² C). See I ² C Mode Interrupt Sources
Inter-Integrated Circuit (I ² C). See I ² C Mode Interrupt Sources
Interrupt Sources
Interrupt Sources