

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf76-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-2:	PIC16F73 AND PIC16F76 PINOUT DESCRIPTION (CONTINUED)
------------	--

Pin Name	DIP SSOP SOIC Pin#	MLF Pin#	I/O/P Type	Buffer Type	Description
					PORTB is a bi-directional I/O port. PORTB can be software
				(o(1)	programmed for internal weak pull-up on all inputs.
RB0/INT	21	18	1/0	TTL/ST ⁽¹⁾	
RB0			I/O		Digital I/O.
INT			I		External interrupt.
RB1	22	19	I/O	TTL	Digital I/O.
RB2	23	20	I/O	TTL	Digital I/O.
RB3/PGM	24	21		TTL	
RB3			I/O		Digital I/O.
PGM			I/O		Low voltage ICSP programming enable pin.
RB4	25	22	I/O	TTL	Digital I/O.
RB5	26	23	I/O	TTL	Digital I/O.
RB6/PGC	27	24	., 0	TTL/ST ⁽²⁾	Digital i/ O.
RB6	21	24	I/O	112/31.7	Digital I/O.
PGC			I/O		In-Circuit Debugger and ICSP programming clock.
	20	25	., O	TTL/ST ⁽²⁾	
RB7/PGD RB7	28	25	I/O	11L/51(-)	Digital I/O.
PGD			1/O		In-Circuit Debugger and ICSP programming data.
FGD			1/0		
					PORTC is a bi-directional I/O port.
RC0/T1OSO/T1CKI	11	8		ST	
RC0			I/O		Digital I/O.
T1OSO			0		Timer1 oscillator output.
T1CKI			I		Timer1 external clock input.
RC1/T1OSI/CCP2	12	9		ST	
RC1			I/O		Digital I/O.
T1OSI			I		Timer1 oscillator input.
CCP2			I/O		Capture2 input, Compare2 output, PWM2 output.
RC2/CCP1	13	10		ST	
RC2			I/O		Digital I/O.
CCP1			I/O		Capture1 input/Compare1 output/PWM1 output.
RC3/SCK/SCL	14	11		ST	
RC3			I/O		Digital I/O.
SCK			I/O		Synchronous serial clock input/output for SPI mode.
SCL			I/O		Synchronous serial clock input/output for I ² C mode.
RC4/SDI/SDA	15	12		ST	
RC4			I/O		Digital I/O.
SDI			I		SPI data in.
SDA			I/O		I ² C data I/O.
RC5/SDO	16	13		ST	
RC5			I/O		Digital I/O.
SDO			0		SPI data out.
RC6/TX/CK	17	14		ST	
RC6			I/O		Digital I/O.
TX			0		USART asynchronous transmit.
CK			I/O		USART 1 synchronous clock.
RC7/RX/DT	18	15		ST	
RC7			I/O		Digital I/O.
RX			I		USART asynchronous receive.
DT			I/O		USART synchronous data.
Vss	8, 19	5, 16	Р	—	Ground reference for logic and I/O pins.
V 55	1	47	Р	1	Desitive events for legic and 1/0 nine
VDD	20	17	Р	—	Positive supply for logic and I/O pins.

This buffer is a Schmitt Trigger input when used in Serial Programming mode.
 This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

2.2.2.3 INTCON Register

The INTCON register is a readable and writable register, which contains various enable and flag bits for the TMR0 register overflow, RB Port change and External RB0/INT pin interrupts.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-3: INTCON REGISTER (ADDRESS 0Bh, 8Bh, 10Bh, 18Bh)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF
	bit 7							bit 0
bit 7	GIE: Globa	al Interrupt E	nable bit					
	1 = Enable	•	ked interrupt	S				
bit 6			upt Enable b	oit				
			ked peripher eral interrup		i			
bit 5	TMR0IE: T	MR0 Overfl	ow Interrupt	Enable bit				
		es the TMR0 es the TMR0						
bit 4	INTE: RB0	/INT Externa	al Interrupt E	nable bit				
			NT external i NT external	•				
bit 3	RBIE: RB	Port Change	e Interrupt Er	nable bit				
			ort change in ort change in					
bit 2	TMR0IF: T	MR0 Overfle	ow Interrupt	Flag bit				
			overflowed not overflow	(must be cle	eared in soft	ware)		
bit 1	INTF: RB0	/INT Externa	al Interrupt F	lag bit				
			nal interrupt nal interrupt			red in softwa	are)	
bit 0	A mismatc	h condition v	e Interrupt Fla will continue g bit RBIF to	to set flag b		ding PORTE	3 will end the	e mismatch
			RB7:RB4 pi B4 pins hav			be cleared i	n software)	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Name	Bit#	Buffer	Function
RA0/AN0	bit0	TTL	Input/output or analog input.
RA1/AN1	bit1	TTL	Input/output or analog input.
RA2/AN2	bit2	TTL	Input/output or analog input.
RA3/AN3/VREF	bit3	TTL	Input/output or analog input or VREF.
RA4/T0CKI	bit4	ST	Input/output or external clock input for Timer0. Output is open drain type.
RA5/SS/AN4	bit5	TTL	Input/output or slave select input for synchronous serial port or analog input.

TABLE 4-1: PORTA FUNCTIONS

Legend: TTL = TTL input, ST = Schmitt Trigger input

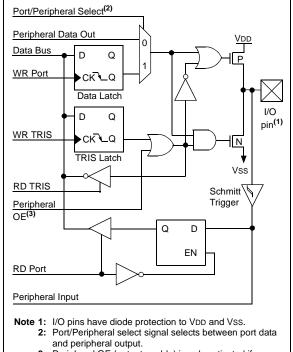
TABLE 4-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
05h	PORTA	_	_	RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
85h	TRISA	_	_	PORTA	PORTA Data Direction Register					11 1111	11 1111
9Fh	ADCON1		_	_	_	_	PCFG2	PCFG1	PCFG0	000	000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

Note: When using the SSP module in SPI Slave mode and \overline{SS} enabled, the A/D converter must be set to one of the following modes where PCFG2:PCFG0 = 100, 101, 11x.

4.3 PORTC and the TRISC Register


PORTC is an 8-bit wide, bi-directional port. The corresponding data direction register is TRISC. Setting a TRISC bit (= '1') will make the corresponding PORTC pin an input (i.e., put the corresponding output driver in a Hi-Impedance mode). Clearing a TRISC bit (= '0') will make the corresponding PORTC pin an output (i.e., put the contents of the output latch on the selected pin).

PORTC is multiplexed with several peripheral functions (Table 4-5). PORTC pins have Schmitt Trigger input buffers.

When enabling peripheral functions, care should be taken in defining TRIS bits for each PORTC pin. Some peripherals override the TRIS bit to make a pin an output, while other peripherals override the TRIS bit to make a pin an input. Since the TRIS bit override is in effect while the peripheral is enabled, read-modify-write instructions (BSF, BCF, XORWF) with TRISC as destination should be avoided. The user should refer to the corresponding peripheral section for the correct TRIS bit settings, and to Section 13.1 for additional information on read-modify-write operations.

FIGURE 4-5:

PORTC BLOCK DIAGRAM (PERIPHERAL OUTPUT OVERRIDE)

3: Peripheral OE (output enable) is only activated if peripheral select is active.

Name	Bit#	Buffer Type	Function
RC0/T1OSO/T1CKI	bit0	ST	Input/output port pin or Timer1 oscillator output/Timer1 clock input.
RC1/T1OSI/CCP2	bit1	ST	Input/output port pin or Timer1 oscillator input or Capture2 input/Compare2 output/PWM2 output.
RC2/CCP1	bit2	ST	Input/output port pin or Capture1 input/Compare1 output/PWM1 output.
RC3/SCK/SCL	bit3	ST	RC3 can also be the synchronous serial clock for both SPI and I^2C modes.
RC4/SDI/SDA	bit4	ST	RC4 can also be the SPI Data In (SPI mode) or Data I/O (I ² C mode).
RC5/SDO	bit5	ST	Input/output port pin or Synchronous Serial Port data output.
RC6/TX/CK	bit6	ST	Input/output port pin or USART Asynchronous Transmit or Synchronous Clock.
RC7/RX/DT	bit7	ST	Input/output port pin or USART Asynchronous Receive or Synchronous Data.

TABLE 4-5: PORTC FUNCTIONS

Legend: ST = Schmitt Trigger input

TABLE 4-6: SUMMARY OF REGISTERS ASSOCIATED WITH PORTC

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
07h	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	uuuu uuuu
87h	TRISC	PORTC	DRTC Data Direction Register					1111 1111	1111 1111		

Legend: x = unknown, u = unchanged

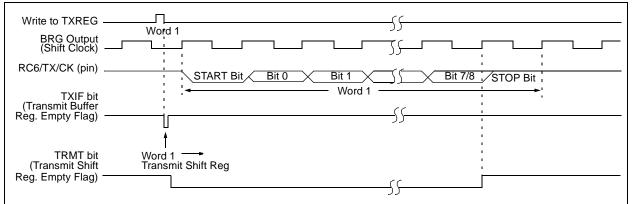
PIC16F7X

REGISTER 4-1: TRISE REGISTER (ADDRESS 89h)

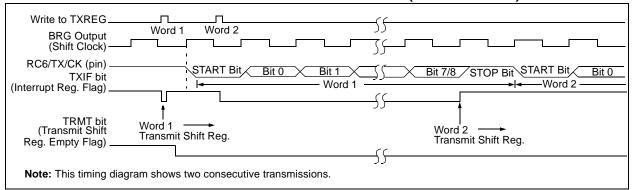
		•		,				
	R-0	R-0	R/W-0	R/W-0	U-0	R/W-1	R/W-1	R/W-1
	IBF	OBF	IBOV	PSPMODE	—	Bit2	Bit1	Bit0
	bit 7							bit 0
bit 7	Parallel S	ave Port St	atus/Contro	l bits:				
		Buffer Full S		<u></u>				
		l has been re rd has been		is waiting to be	read by the	e CPU		
bit 6	OBF: Outp	out Buffer Fu	ll Status bit					
		•	till holds a pi as been rea	reviously writte d	n word			
bit 5	IBOV: Inpu	ut Buffer Ove	erflow Detect	bit (in Micropro	ocessor mo	de)		
	(must l	e occurred w be cleared in erflow occurr	software)	usly input word	has not be	en read		
bit 4	PSPMODE	E: Parallel SI	ave Port Mo	de Select bit				
	1 = Paralle	el Slave Port	mode					
	0 = Genera	al Purpose I/	O mode					
bit 3	Unimplem	nented: Read	d as '0'					
bit 2	PORTE Da	ata Directio	n bits:					
	Bit2: Direc	tion Control	bit for pin RE	E2/CS/AN7				
	1 = Input 0 = Output	t						
bit 1	Bit1: Direc	tion Control	bit for pin RE	E1/WR/AN6				
	1 = Input 0 = Output	t						
bit 0	Bit0: Direc	tion Control	bit for pin RE	E0/RD/AN5				
	1 = Input 0 = Output							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 9-1: SSPSTAT: SYNC SERIAL PORT STATUS REGISTER (ADDRESS 94	,										
R/W-0 R/W-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R	-0 R-0										
SMP CKE D/A P S R/W U	A BF										
bit 7	bit C										
bit 7 SMP: SPI Data Input Sample Phase bit											
SPI Master mode:											
1 = Input data sampled at end of data output time											
0 = Input data sampled at middle of data output time (Microwire®)											
<u>SPI Slave mode:</u> SMP must be cleared when SPI is used in Slave mode											
I ² C mode:											
This bit must be maintained clear											
bit 6 CKE : SPI Clock Edge Select bit (Figure 9-2, Figure 9-3, and Figure 9-4)											
<u>SPI mode, CKP = 0:</u>											
 1 = Data transmitted on rising edge of SCK (Microwire[®] alternate) 0 = Data transmitted on falling edge of SCK 											
SPI mode, $CKP = 1$:											
1 = Data transmitted on falling edge of SCK (Microwire [®] default)											
0 = Data transmitted on rising edge of SCK											
I ² C mode: This bit must be maintained clear											
bit 5 D/A : Data/Address bit (I ² C mode only)											
1 = Indicates that the last byte received or transmitted was data											
0 = Indicates that the last byte received or transmitted was address											
bit 4 P : STOP bit (I ² C mode only)											
	This bit is cleared when the SSP module is disabled, or when the START bit is detected last. SSPEN is cleared.										
1 = Indicates that a STOP bit has been detected last (this bit is '0' on RESET)											
0 = STOP bit was not detected last											
bit 3 S : START bit (I ² C mode only)											
This bit is cleared when the SSP module is disabled, or when the STOP bit is SSPEN is cleared.	detected last.										
1 = Indicates that a START bit has been detected last (this bit is '0' on RESET)										
0 = START bit was not detected last											
bit 2 R/W : Read/Write bit Information (I ² C mode only)											
This bit holds the R/W bit information following the last address match. This bit i the address match to the next START bit, STOP bit, or ACK bit.	s only valid from										
1 = Read											
0 = Write											
bit 1 UA : Update Address bit (10-bit I ² C mode only)											
1 = Indicates that the user needs to update the address in the SSPADD regist	er										
 0 = Address does not need to be updated bit 0 BF: Buffer Full Status bit 											
Receive (SPI and I ² C modes):											
1 = Receive complete, SSPBUF is full											
0 = Receive not complete, SSPBUF is empty											
Transmit (I ² C mode only):											
1 = Transmit in progress, SSPBUF is full											
0 = Transmit complete, SSPBUF is empty											
Legend:											
R = Readable bit W = Writable bit U = Unimplemented bit, rea	id as '0'										
- n = Value at POR reset $'1'$ = Bit is set $'0'$ = Bit is cleared x = B	Bit is unknown										


_

Steps to follow when setting up an Asynchronous Transmission:


- 1. Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH (Section 10.1).
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set transmit bit TX9.

- 5. Enable the transmission by setting bit TXEN, which will also set bit TXIF.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Load data to the TXREG register (starts transmission).
- 8. If using interrupts, ensure that GIE and PEIE in the INTCON register are set.

FIGURE 10-2: ASYNCHRONOUS MASTER TRANSMISSION

FIGURE 10-3: ASYNCHRONOUS MASTER TRANSMISSION (BACK TO BACK)

TABLE 10-5: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN		FERR	OERR	RX9D	x00-000x	x00- 0000
19h	TXREG	USART Tra	USART Transmit Register 0000 0000 0000 0000					0000 0000			
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate Generator Register 0000 0000 0000 0000					0000 0000				

Legend: x = unknown, - = unimplemented locations read as '0'. Shaded cells are not used for asynchronous transmission. Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76; always maintain these bits clear.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
1Ah	RCREG	USART Re	USART Receive Register 0000 000 000					0000 0000			
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate Generator Register 0000 000 00					0000 0000				

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous master reception. **Note** 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76 devices; always maintain these bits clear.

10.4 USART Synchronous Slave Mode

Synchronous Slave mode differs from the Master mode, in that the shift clock is supplied externally at the RC6/TX/CK pin (instead of being supplied internally in Master mode). This allows the device to transfer or receive data while in SLEEP mode. Slave mode is entered by clearing bit CSRC (TXSTA<7>).

10.4.1 USART SYNCHRONOUS SLAVE TRANSMIT

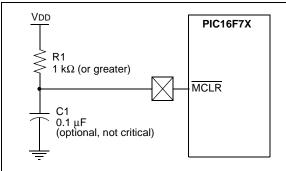
The operation of the Synchronous Master and Slave modes are identical except in the case of the SLEEP mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit when the master device drives the CK line.
- b) The second word will remain in TXREG register.
- c) Flag bit TXIF will not be set.
- d) When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit TXIF will now be set.
- e) If enable bit TXIE is set, the interrupt will wake the chip from SLEEP and if the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Follow these steps when setting up a Synchronous Slave Transmission:

- 1. Enable the synchronous slave serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. Clear bits CREN and SREN.
- 3. If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set bit TX9.
- 5. Enable the transmission by setting enable bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.
- 8. If using interrupts, ensure that GIE and PEIE in the INTCON register are set.


12.4 MCLR

PIC16F7X devices have a noise filter in the $\overline{\text{MCLR}}$ Reset path. The filter will detect and ignore small pulses.

It should be noted that a WDT Reset does not drive MCLR pin low.

The behavior of the ESD protection on the $\overline{\text{MCLR}}$ pin has been altered from previous devices of this family. Voltages applied to the pin that exceed its specification can result in both $\overline{\text{MCLR}}$ Resets and excessive current beyond the device specification during the ESD event. For this reason, Microchip recommends that the $\overline{\text{MCLR}}$ pin no longer be tied directly to VDD. The use of an RC network, as shown in Figure 12-5, is suggested.

12.5 Power-on Reset (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.2V - 1.7V). To take advantage of the POR, tie the MCLR pin to VDD as described in Section 12.4. A maximum rise time for VDD is specified. See the Electrical Specifications for details.

When the device starts normal operation (exits the RESET condition), device operating parameters (voltage, frequency, temperature,...) must be met to ensure operation. If these conditions are not met, the device must be held in RESET until the operating conditions are met. For additional information, refer to Application Note, AN607, "Power-up Trouble Shooting" (DS00607).

12.6 Power-up Timer (PWRT)

The Power-up Timer provides a fixed 72 ms nominal time-out on power-up only from the POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in RESET as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an accept-able level. A configuration bit is provided to enable/ disable the PWRT.

The power-up time delay will vary from chip to chip, due to VDD, temperature and process variation. See DC parameters for details (TPWRT, parameter #33).

12.7 Oscillator Start-up Timer (OST)

The Oscillator Start-up Timer (OST) provides 1024 oscillator cycles (from OSC1 input) delay after the PWRT delay is over (if enabled). This helps to ensure that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset, or wake-up from SLEEP.

12.8 Brown-out Reset (BOR)

The configuration bit, BODEN, can enable or disable the Brown-out Reset circuit. If VDD falls below VBOR (parameter D005, about 4V) for longer than TBOR (parameter #35, about 100 μ S), the brown-out situation will reset the device. If VDD falls below VBOR for less than TBOR, a RESET may not occur.

Once the brown-out occurs, the device will remain in Brown-out Reset until VDD rises above VBOR. The Power-up Timer then keeps the device in RESET for TPWRT (parameter #33, about 72 mS). If VDD should fall below VBOR during TPWRT, the Brown-out Reset process will restart when VDD rises above VBOR, with the Power-up Timer Reset. The Power-up Timer is always enabled when the Brown-out Reset circuit is enabled, regardless of the state of the PWRT configuration bit.

12.9 Time-out Sequence

On power-up, the time-out sequence is as follows: the PWRT delay starts (if enabled) when a POR Reset occurs. Then, OST starts counting 1024 oscillator cycles when PWRT ends (LP, XT, HS). When the OST ends, the device comes out of RESET.

If MCLR is kept low long enough, all delays will expire. Bringing MCLR high will begin execution immediately. This is useful for testing purposes or to synchronize more than one PIC16F7X device operating in parallel.

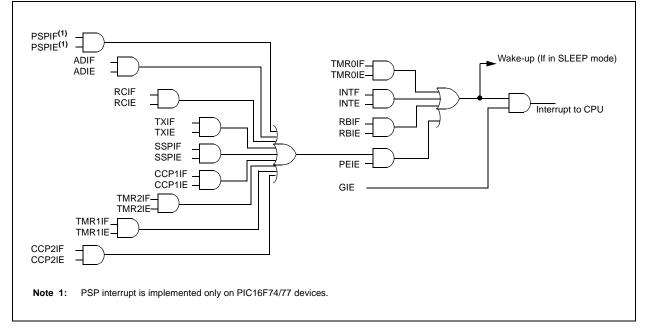
Table 12-5 shows the RESET conditions for the STATUS, PCON and PC registers, while Table 12-6 shows the RESET conditions for all the registers.

12.11 Interrupts

The PIC16F7X family has up to 12 sources of interrupt. The interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

Note:	Individual interrupt flag bits are set, regard-
	less of the status of their corresponding
	mask bit or the GIE bit.

A global interrupt enable bit, GIE (INTCON<7>) enables (if set) all unmasked interrupts, or disables (if cleared) all interrupts. When bit GIE is enabled and an interrupt's flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in various registers. Individual interrupt bits are set, regardless of the status of the GIE bit. The GIE bit is cleared on RESET.


The "return from interrupt" instruction, RETFIE, exits the interrupt routine, as well as sets the GIE bit, which re-enables interrupts.

The RB0/INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.

The peripheral interrupt flags are contained in the Special Function Registers, PIR1 and PIR2. The corresponding interrupt enable bits are contained in Special Function Registers, PIE1 and PIE2, and the peripheral interrupt enable bit is contained in Special Function Register, INTCON.

When an interrupt is responded to, the GIE bit is cleared to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid recursive interrupts.

For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs, relative to the current Q cycle. The latency is the same for one or two-cycle instructions. Individual interrupt flag bits are set, regardless of the status of their corresponding mask bit, PEIE bit, or the GIE bit.

FIGURE 12-10: INTERRUPT LOGIC

PIC16F7X

MOVF	Move f				
Syntax:	[<i>label</i>] MOVF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$				
Operation:	(f) \rightarrow (destination)				
Status Affected:	Z				
Description:	The contents of register f are moved to a destination dependant upon the status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. d = 1 is useful to test a file register, since status flag Z is affected.				

NOP	No Operation
Syntax:	[label] NOP
Operands:	None
Operation:	No operation
Status Affected:	None
Description:	No operation.

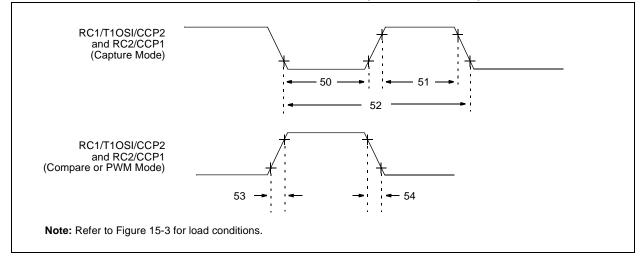
MOVLW	Move Literal to W				
Syntax:	[<i>label</i>] MOVLW k				
Operands:	$0 \le k \le 255$				
Operation:	$k \rightarrow (W)$				
Status Affected:	None				
Description:	The eight-bit literal 'k' is loaded into W register. The don't cares will assemble as 0's.				

RETFIE	Return from Interrupt				
Syntax:	[label] RETFIE				
Operands:	None				
Operation:	$\begin{array}{l} TOS \to PC, \\ 1 \to GIE \end{array}$				
Status Affected:	None				

MOVWF	Move W to f				
Syntax:	[label] MOVWF f				
Operands:	$0 \le f \le 127$				
Operation:	$(W) \to (f)$				
Status Affected:	None				
Description:	Move data from W register to register 'f'.				

RETLW	Return with Literal in W				
Syntax:	[<i>label</i>] RETLW k				
Operands:	$0 \le k \le 255$				
Operation:	$k \rightarrow (W);$ TOS \rightarrow PC				
Status Affected:	None				
Description:	The W register is loaded with the eight-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.				

PIC16F7X


SWAPF	Swap Nibbles in f			
Syntax:	[label] SWAPF f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$			
Operation:	$(f<3:0>) \rightarrow (destination<7:4>),$ $(f<7:4>) \rightarrow (destination<3:0>)$			
Status Affected:	None			
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed in register 'f'.			

XORWF	Exclusive OR W with f				
Syntax:	[label] XORWF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1 \right] \end{array}$				
Operation:	(W) .XOR. (f) \rightarrow (destination)				
Status Affected:	Z				
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.				

XORLW	Exclusive OR Literal with W					
Syntax:	[<i>label</i>] XORLW k					
Operands:	$0 \le k \le 255$					
Operation:	(W) .XOR. $k \rightarrow (W)$					
Status Affected:	Z					
Description:	The contents of the W register are XOR'ed with the eight-bit literal 'k'. The result is placed in the W register.					

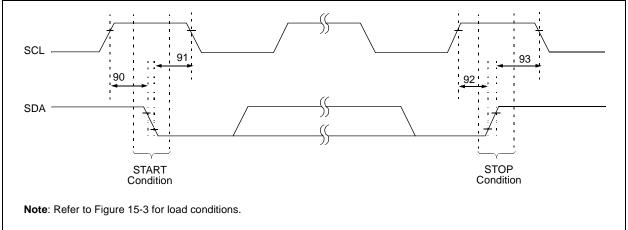
NOTES:

FIGURE 15-9: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)

TABLE 15-5: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)

Param No.	Symbol		Characteristic			Тур†	Max	Units	Conditions
50*	TccL	CCP1 and CCP2	No Prescaler		0.5Tcy + 20			ns	
		input low time		Standard(F)	10	—		ns	
			With Prescaler	Extended(LF)	20	—		ns	
51*	ТссН	CCP1 and CCP2	No Prescaler		0.5Tcy + 20	—		ns	
		input high time	With Prescaler	Standard(F)	10	—		ns	
				Extended(LF)	20	—		ns	
52*	TccP	CCP1 and CCP2 in	<u>3Tcy + 40</u> N	-	_	ns	N = prescale value (1,4 or 16)		
53*	TccR	CCP1 and CCP2 output rise time		Standard(F)	—	10	25	ns	
				Extended(LF)	—	25	50	ns	
54*	TccF	CCP1 and CCP2 output fall time		Standard(F)	—	10	25	ns	
				Extended(LF)	—	25	45	ns	

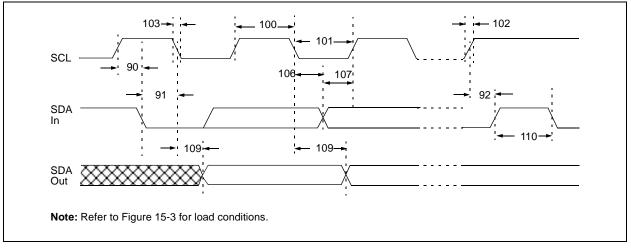
These parameters are characterized but not tested.


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Param No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions	
70*	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input	Тсү		—	ns		
71*	TscH	SCK input high time (Slave mo	de)	TCY + 20	_	—	ns	
72*	TscL	SCK input low time (Slave mod	le)	TCY + 20	_	—	ns	
73*	TdiV2scH, TdiV2scL	Setup time of SDI data input to	100	_	—	ns		
74*	TscH2diL, TscL2diL	Hold time of SDI data input to S	ld time of SDI data input to SCK edge				ns	
75*	TdoR	SDO data output rise time	Standard(F) Extended(LF)	_	10 25	25 50	ns ns	
76*	TdoF	SDO data output fall time	—	10	25	ns		
77*	TssH2doZ	SS↑ to SDO output hi-impedan	10	_	50	ns		
78*	TscR	SCK output rise time (Master mode)	Standard(F) Extended(LF)	_	10 25	25 50	ns ns	
79*	TscF	SCK output fall time (Master m	ode)	_	10	25	ns	
80*	TscH2doV, TscL2doV	SDO data output valid after SCK edge	Standard(F) Extended(LF)	_		50 145	ns ns	
81*	TdoV2scH, TdoV2scL	SDO data output setup to SCK	Тсу			ns		
82*	TssL2doV	SDO data output valid after SS	—	_	50	ns		
83*	TscH2ssH, TscL2ssH	SS ↑ after SCK edge	1.5Tcy + 40		—	ns		

TABLE 15-7: SPI MODE REQUIREMENTS

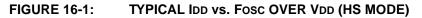
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

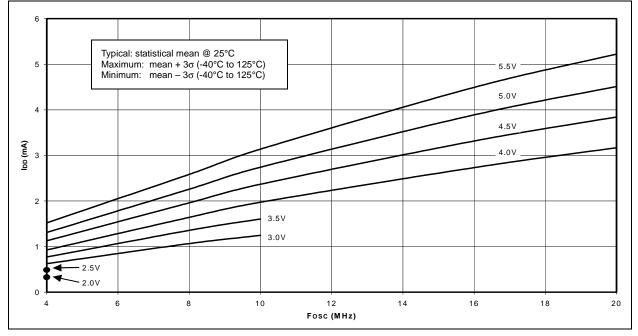

FIGURE 15-15: I²C BUS START/STOP BITS TIMING

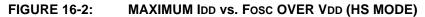
Param No.	Symbol	Characteristic		Min	Тур	Max	Units	Conditions
90*	TSU:STA	START condition	100 kHz mode	4700	—	_	ns	Only relevant for Repeated
		Setup time	400 kHz mode	600	_	—		START condition
91*	THD:STA	START condition	100 kHz mode	4000		—	ns	After this period, the first clock
		Hold time	400 kHz mode	600	_	—		pulse is generated
92*	Tsu:sto	STOP condition	100 kHz mode	4700		—	ns	
		Setup time	400 kHz mode	600		—		
93	THD:STO	STOP condition	100 kHz mode	4000		—	ns	
		Hold time	400 kHz mode	600	_			

TABLE 15-8: I²C BUS START/STOP BITS REQUIREMENTS

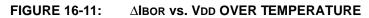
* These parameters are characterized but not tested.




FIGURE 15-16: I²C BUS DATA TIMING


16.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.


"Typical" represents the mean of the distribution at 25°C. "Maximum" or "minimum" represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over the whole temperature range.

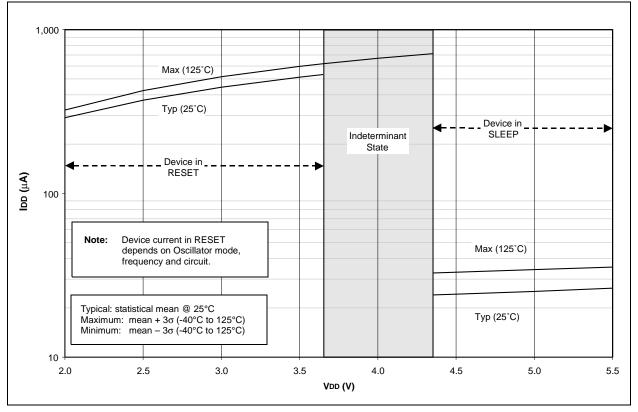
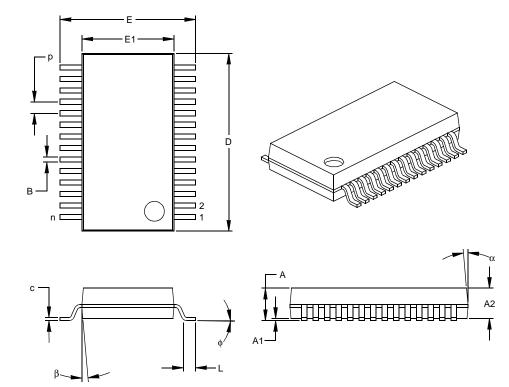



FIGURE 16-12: TYPICAL AND MAXIMUM AlwDT vs. VDD OVER TEMPERATURE

28-Lead Plastic Shrink Small Outline (SS) – 209 mil, 5.30 mm (SSOP)

	Units		INCHES		N	1ILLIMETERS	S*
Dimensior	n Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.026			0.65	
Overall Height	А	.068	.073	.078	1.73	1.85	1.98
Molded Package Thickness	A2	.064	.068	.072	1.63	1.73	1.83
Standoff §	A1	.002	.006	.010	0.05	0.15	0.25
Overall Width	Е	.299	.309	.319	7.59	7.85	8.10
Molded Package Width	E1	.201	.207	.212	5.11	5.25	5.38
Overall Length	D	.396	.402	.407	10.06	10.20	10.34
Foot Length	L	.022	.030	.037	0.56	0.75	0.94
Lead Thickness	С	.004	.007	.010	0.10	0.18	0.25
Foot Angle	¢	0	4	8	0.00	101.60	203.20
Lead Width	В	.010	.013	.015	0.25	0.32	0.38
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-150 Drawing No. C04-073

APPENDIX C: CONVERSION CONSIDERATIONS

Considerations for converting from previous versions of devices to the ones listed in this data sheet are listed in Table C-1.

TABLE C-1: CONVERSION CONSIDERATIONS

Characteristic	PIC16C7X	PIC16F87X	PIC16F7X
Pins	28/40	28/40	28/40
Timers	3	3	3
Interrupts	11 or 12	13 or 14	11 or 12
Communication	PSP, USART, SSP (SPI, I ² C Slave)	PSP, USART, SSP (SPI, I ² C Master/Slave)	PSP, USART, SSP (SPI, I ² C Slave)
Frequency	20 MHz	20 MHz	20 MHz
A/D	8-bit	10-bit	8-bit
ССР	2	2	2
Program Memory	4K, 8K EPROM	4K, 8K FLASH (1,000 E/W cycles)	4K, 8K FLASH (100 E/W cycles typical)
RAM	192, 368 bytes	192, 368 bytes	192, 368 bytes
EEPROM Data	None	128, 256 bytes	None
Other	_	In-Circuit Debugger, Low Voltage Programming	_