Microchip Technology - PIC16LF76T-I/SO Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 5x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf76t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

INDIDECT ADDESSING

2.5 Indirect Addressing, INDF and FSR Registers

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.

Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses the register pointed to by the File Select Register, FSR. Reading the INDF register itself indirectly (FSR = '0') will read 00h. Writing to the INDF register indirectly results in a no operation (although status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 2-5.

A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 2-2.

	- LL Z-Z.		
	MOVLW	0x20	;initialize pointer
	MOVWF	FSR	;to RAM
NEXT	CLRF	INDF	clear INDF register;
	INCF	FSR,F	;inc pointer
	BTFSS	FSR,4	;all done?
	GOTO	NEXT	;no clear next
CONTIN	IUE		
:			;yes continue

EVAMPLE 2.2.

FIGURE 2-5: DIRECT/INDIRECT ADDRESSING

4.6 Parallel Slave Port

The Parallel Slave Port (PSP) is not implemented on the PIC16F73 or PIC16F76.

PORTD operates as an 8-bit wide Parallel Slave Port, or Microprocessor Port, when control bit PSPMODE (TRISE<4>) is set. In Slave mode, it is asynchronously readable and writable by an external system using the read control input pin RE0/RD, the write control input pin RE1/WR, and the chip select control input pin RE2/CS.

The PSP can directly interface to an 8-bit microprocessor data bus. The external microprocessor can read or write the PORTD latch as an 8-bit latch. Setting bit PSPMODE enables port pin RE0/RD to be the RD input, RE1/WR to be the WR input and RE2/CS to be the CS (chip select) input. For this functionality, the corresponding data direction bits of the TRISE register (TRISE<2:0>) must be configured as inputs (i.e., set). The A/D port configuration bits PCFG3:PCFG0 (ADCON1<3:0>) must be set to configure pins RE2:RE0 as digital I/O.

There are actually two 8-bit latches, one for data output (external reads) and one for data input (external writes). The firmware writes 8-bit data to the PORTD output data latch and reads data from the PORTD input data latch (note that they have the same address). In this mode, the TRISD register is ignored, since the external device is controlling the direction of data flow.

An external write to the PSP occurs when the \overline{CS} and \overline{WR} lines are both detected low. Firmware can read the actual data on the PORTD pins during this time. When either the CS or WR lines become high (level triggered), the data on the PORTD pins is latched, and the Input Buffer Full (IBF) status flag bit (TRISE<7>) and interrupt flag bit PSPIF (PIR1<7>) are set on the Q4 clock cycle, following the next Q2 cycle to signal the write is complete (Figure 4-9). Firmware clears the IBF flag by reading the latched PORTD data, and clears the PSPIF bit.

The Input Buffer Overflow (IBOV) status flag bit (TRISE<5>) is set if an external write to the PSP occurs while the IBF flag is set from a previous external write. The previous PORTD data is overwritten with the new data. IBOV is cleared by reading PORTD and clearing IBOV.

A read from the PSP occurs when both the \overline{CS} and \overline{RD} lines are detected low. The data in the PORTD output latch is output to the PORTD pins. The Output Buffer Full (OBF) status flag bit (TRISE<6>) is cleared immediately (Figure 4-10), indicating that the PORTD latch is being read, or has been read by the external bus. If firmware writes new data to the output latch during this time, it is immediately output to the PORTD pins, but OBF will remain cleared.

When either the \overline{CS} or \overline{RD} pins are detected high, the PORTD outputs are disabled, and the interrupt flag bit PSPIF is set on the Q4 clock cycle following the next Q2 cycle, indicating that the read is complete. OBF remains low until firmware writes new data to PORTD.

When not in PSP mode, the IBF and OBF bits are held clear. Flag bit IBOV remains unchanged. The PSPIF bit must be cleared by the user in firmware; the interrupt can be disabled by clearing the interrupt enable bit PSPIE (PIE1<7>).

FIGURE 4-8:

PORTD AND PORTE BLOCK DIAGRAM (PARALLEL SLAVE PORT)

REGISTER 7-1:	T2CON:	TIMER2 C	ONTROL R	EGISTER (ADDRESS	12h)							
	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
		TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0					
	bit 7							bit 0					
bit 7	Unimple	mented: Rea	ad as '0'										
bit 6-3	TOUTPS	FOUTPS3:TOUTPS0 : Timer2 Output Postscale Select bits											
	0000 = 1	0000 = 1:1 Postscale											
	0001 = 1	:2 Postscale											
	0010 = 1	:3 Postscale											
	•												
	•												
	1111 = 1	:16 Postscal	e										
bit 2	TMR2ON	I: Timer2 On	bit										
	1 = Time	r2 is on											
	0 = Time	r2 is off											
bit 1-0	T2CKPS	1:T2CKPS0:	Timer2 Cloc	k Prescale S	elect bits								
	00 = Pres	scaler is 1											
	01 = Pres	scaler is 4											
	1x = Pres	scaler is 16											
	Legend:												
	R = Reada	able bit	W = W	/ritable bit	U = Unim	plemented l	oit, read as '	0'					

TABLE 7-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

- n = Value at POR reset

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR		Valu all c RES	e on other ETS
0Bh,8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
11h	TMR2	Timer2 M	odule Regis	ster						0000	0000	0000	0000
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000	0000	-000	0000
92h	PR2	Timer2 Pe	eriod Regis	ter						1111	1111	1111	1111

'1' = Bit is set

'0' = Bit is cleared

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer2 module.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76; always maintain these bits clear.

x = Bit is unknown

8.5.3 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.
- 3. Make the CCP1 pin an output by clearing the TRISC<2> bit.
- 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.
- 5. Configure the CCP1 module for PWM operation.

TABLE 8-4: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	5.5

TABLE 8-5: REGISTERS ASSOCIATED WITH PWM AND TIMER2

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Valu PC BC	e on:)R,)R	Valu all o RES	e on ther ETS
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
0Dh	PIR2	—	_	_	_	—	—	_	CCP2IF		0		0
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
8Dh	PIE2	_	_	—	-	—	—	-	CCP2IE		0		0
87h	TRISC	PORTC [Data Directi	on Register						1111	1111	1111	1111
11h	TMR2	Timer2 M	odule Regi	ster						0000	0000	0000	0000
92h	PR2	Timer2 M	odule Peric	d Register						1111	1111	1111	1111
12h	T2CON	—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000	0000	-000	0000
15h	CCPR1L	Capture/0	Compare/P	WM Regist	er1 (LSB)					xxxx	xxxx	uuuu	uuuu
16h	CCPR1H	Capture/0	Compare/P	WM Regist	er1 (MSB)					xxxx	xxxx	uuuu	uuuu
17h	CCP1CON	—	_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00	0000	00	0000
1Bh	CCPR2L	Capture/0	apture/Compare/PWM Register2 (LSB)								xxxx	uuuu	uuuu
1Ch	CCPR2H	Capture/0	Capture/Compare/PWM Register2 (MSB)								xxxx	uuuu	uuuu
1Dh	CCP2CON	—	_	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00	0000	00	0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PWM and Timer2.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76; always maintain these bits clear.

REGISTER 9-2:	SSPCON	: SYNC SE	RIAL POR	T CONTROL	REGISTI	ER (ADDF	RESS 14h))					
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0					
	bit 7							bit 0					
bit 7	WCOL: W	rite Collisior	n Detect bit										
	1 = The SS (must I 0 = No col	 = The SSPBUF register is written while it is still transmitting the previous word (must be cleared in software) = No collision 											
bit 6	SSPOV: R	eceive Ove	rflow Indicate	or bit									
	In SPI mod	de:											
	1 = A new of ove must n Maste initiate 0 = No ove	 1 = A new byte is received while the SSPBUF register is still holding the previous data. In case of overflow, the data in SSPSR is lost. Overflow can only occur in Slave mode. The user must read the SSPBUF, even if only transmitting data, to avoid setting overflow. In Master mode, the overflow bit is not set since each new reception (and transmission) is initiated by writing to the SSPBUF register. 0 = No overflow 											
	In I ² C mod	<u>de:</u>											
	1 = A byte is a "d 0 = No ove	e is received lon't care" ir erflow	while the SS Transmit mo	SPBUF registe ode. SSPOV n	r is still hold nust be clea	ding the pre ared in softv	vious byte. S vare in eithe	SSPOV er mode.					
bit 5	SSPEN: S	ynchronous	Serial Port	Enable bit									
	$\frac{\text{In SPI mod}}{1 = \text{Enable}}$ $0 = \text{Disable}$ $\ln 1^2 \text{C mod}$	de: es serial por es serial por	t and configu rt and configu	ires SCK, SDC ures these pin	D, and SDI a s as I/O por	as serial po t pins	rt pins						
	1 = Enable 0 = Disable	es the serial es serial po	port and cor	figures the SE	DA and SCL s as I/O por	. pins as se t pins	rial port pins	6					
	In both mo	des, when e	enabled, thes	se pins must b	e properly o	configured a	is input or o	utput.					
bit 4	CKP: Cloc	k Polaritv S	elect bit		,	0	•	•					
	<u>In SPI mod</u> 1 = IDLE s 0 = IDLE s	de: state for cloc state for cloc	k is a high le	evel (Microwire ∕el (Microwire [€]	[®] default) ³ alternate)								
	$\frac{\ln I^2 C \mod}{SCK \text{ releases}}$	<u>te:</u> se control e clock											
	0 = Holds	clock low (c	lock stretch).	(Used to ensu	ure data set	up time.)							
bit 3-0	SSPM3:SS	SPM0: Sync	hronous Ser	ial Port Mode	Select bits								
	$0000 = SF$ $0001 = SF$ $0010 = SF$ $0100 = SF$ $0100 = SF$ $0101 = SF$ $0110 = I^{2}C$ $0111 = I^{2}C$ $1011 = I^{2}C$ $1110 = I^{2}C$ $1111 = I^{2}C$	PI Master mo PI Master mo PI Master mo PI Master mo PI Slave moo C Slave moo	bde, clock = bde, clock = bde, clock = bde, clock = S de, clock = S de, clock = S de, clock = S de, 7-bit addr de, 10-bit addr de, 7-bit addr de, 7-bit addr	Fosc/4 Fosc/16 Fosc/64 TMR2 output/2 CK pin. <u>SS</u> pir CK pin. <u>SS</u> pir ess dress aster mode (s ess with STAF dress with STAF	2 n control en n control dis lave IDLE) RT and STC RT and ST	abled. abled. SS c P bit interru OP bit interru	an be used opts enablec upts enable	as I/O pin. I					
	Legend:		107 10		11 11	nlomentad	hit rocd	·0'					

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
 n = Value at POR reset 	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

10.1 USART Baud Rate Generator (BRG)

The BRG supports both the Asynchronous and Synchronous modes of the USART. It is a dedicated 8-bit baud rate generator. The SPBRG register controls the period of a free running 8-bit timer. In Asynchronous mode, bit BRGH (TXSTA<2>) also controls the baud rate. In Synchronous mode, bit BRGH is ignored. Table 10-1 shows the formula for computation of the baud rate for different USART modes which only apply in Master mode (internal clock).

Given the desired baud rate and FOSC, the nearest integer value for the SPBRG register can be calculated using the formula in Table 10-1. From this, the error in baud rate can be determined. It may be advantageous to use the high baud rate (BRGH = 1), even for slower baud clocks. This is because the FOSC/(16(X + 1)) equation can reduce the baud rate error in some cases.

Writing a new value to the SPBRG register causes the BRG timer to be reset (or cleared). This ensures the BRG does not wait for a timer overflow before outputting the new baud rate.

10.1.1 SAMPLING

The data on the RC7/RX/DT pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RX pin.

TABLE 10-1: BAUD RATE FORMULA

SYNC	BRGH = 0 (Low Speed)	BRGH = 1 (High Speed)
0	(Asynchronous) Baud Rate = FOSC/(64(X+1))	Baud Rate = Fosc/(16(X+1))
1	(Synchronous) Baud Rate = Fosc/(4(X+1))	N/A

X = value in SPBRG (0 to 255)

TABLE 10-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
98h	TXSTA	CSRC	TX9	TXEN	SYNC	—	BRGH	TRMT	TX9D	0000 -010	0000 -010
18h	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	x00-000x
99h	SPBRG	Baud Ra	ate Gene	erator Re	gister					0000 0000	0000 0000

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used by the BRG.

10.2 USART Asynchronous Mode

In this mode, the USART uses standard non-return-tozero (NRZ) format (one START bit, eight or nine data bits, and one STOP bit). The most common data format is 8-bits. An on-chip, dedicated, 8-bit baud rate generator can be used to derive standard baud rate frequencies from the oscillator. The USART transmits and receives the LSb first. The USART's transmitter and receiver are functionally independent, but use the same data format and baud rate. The baud rate generator produces a clock, either x16 or x64 of the bit shift rate, depending on bit BRGH (TXSTA<2>). Parity is not supported by the hardware, but can be implemented in software (and stored as the ninth data bit). Asynchronous mode is stopped during SLEEP.

Asynchronous mode is selected by clearing bit SYNC (TXSTA<4>).

The USART Asynchronous module consists of the following important elements:

- · Baud Rate Generator
- Sampling Circuit
- Asynchronous Transmitter
- Asynchronous Receiver

10.2.1 USART ASYNCHRONOUS TRANSMITTER

The USART transmitter block diagram is shown in Figure 10-1. The heart of the transmitter is the transmit (serial) shift register (TSR). The shift register obtains its data from the read/write transmit buffer, TXREG. The TXREG register is loaded with data by firmware. The TSR register is not loaded until the STOP bit has been transmitted from the previous load. As soon as the STOP bit is transmitted, the TSR is loaded with new data from the TXREG register (if available). Once the TXREG register transfers the data to the TSR register, the TXREG register is empty. One instruction cycle later, flag bit TXIF (PIR1<4>) and flag bit TRMT (TXSTA<1>)

are set. The TXIF interrupt can be enabled/disabled by setting/clearing enable bit TXIE (PIE1<4>). Flag bit TXIF will be set, regardless of the state of enable bit TXIE and cannot be cleared in software. It will reset only when new data is loaded into the TXREG register. While flag bit TXIF indicates the status of the TXREG register, another bit TRMT (TXSTA<1>) shows the status of the TSR register. Status bit TRMT is a read only bit, which is set one instruction cycle after the TSR register becomes empty, and is cleared one instruction cycle after the TSR register is loaded. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR register is empty.

Note 1:	The TSR register is not mapped in data
	memory, so it is not available to the user.
2.	Flag bit TXIE is set when enable bit TXEN

is set. TXIF is cleared by loading TXREG.

Transmission is enabled by setting enable bit TXEN (TXSTA<5>). The actual transmission will not occur until the TXREG register has been loaded with data and the baud rate generator (BRG) has produced a shift clock (Figure 10-2). The transmission can also be started by first loading the TXREG register and then setting enable bit TXEN. Normally, when transmission is first started, the TSR register is empty. At that point, transfer to the TXREG register will result in an immediate transfer to TSR, resulting in an empty TXREG. A back-to-back transfer is thus possible (Figure 10-3). Clearing enable bit TXEN during a transmission will cause the transmission to be aborted and will reset the transmitter. As a result, the RC6/TX/CK pin will revert to hi-impedance.

In order to select 9-bit transmission, transmit bit TX9 (TXSTA<6>) should be set and the ninth bit should be written to TX9D (TXSTA<0>). The ninth bit must be written before writing the 8-bit data to the TXREG register. This is because a data write to the TXREG register can result in an immediate transfer of the data to the TSR register (if the TSR is empty). In such a case, an incorrect ninth data bit may be loaded in the TSR register.

FIGURE 10-1: USART TRANSMIT BLOCK DIAGRAM

10.2.2 USART ASYNCHRONOUS RECEIVER

The receiver block diagram is shown in Figure 10-4. The data is received on the RC7/RX/DT pin and drives the data recovery block. The data recovery block is actually a high speed shifter operating at x16 times the baud rate, whereas the main receive serial shifter operates at the bit rate, or at FOSC.

Once Asynchronous mode is selected, reception is enabled by setting bit CREN (RCSTA<4>).

The heart of the receiver is the receive (serial) shift register (RSR). After sampling the STOP bit, the received data in the RSR is transferred to the RCREG register (if it is empty). If the transfer is complete, flag bit RCIF (PIR1<5>) is set. The actual interrupt can be enabled/ disabled by setting/clearing enable bit RCIE (PIE1<5>). Flag bit RCIF is a read only bit which is cleared by the hardware. It is cleared when the RCREG register has been read and is empty. The RCREG is a double buffered register (i.e., it is a two deep FIFO). It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting to the RSR register. On the detection of the STOP bit of the third byte, if the RCREG register is still full, the overrun error bit OERR (RCSTA<1>) will be set. The word in the RSR will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Overrun bit OERR has to be cleared in software. This is done by resetting the receive logic (CREN is cleared and then set). If bit OERR is set, transfers from the RSR register to the RCREG register are inhibited and no further data will be received, therefore, it is essential to clear error bit OERR if it is set. Framing error bit FERR (RCSTA<2>) is set if a STOP bit is detected as clear. Bit FERR and the 9th receive bit are buffered the same way as the receive data. Reading the RCREG will load bits RX9D and FERR with new values, therefore, it is essential for the user to read the RCSTA register before reading RCREG register, in order not to lose the old FERR and RX9D information.

10.3.2 USART SYNCHRONOUS MASTER RECEPTION

Once synchronous mode is selected, reception is enabled by setting either enable bit SREN (RCSTA<5>), or enable bit CREN (RCSTA<4>). Data is sampled on the RC7/RX/DT pin on the falling edge of the clock. If enable bit SREN is set, then only a single word is received. If enable bit CREN is set, the reception is continuous until CREN is cleared. If both bits are set, CREN takes precedence. After clocking the last bit, the received data in the Receive Shift Register (RSR) is transferred to the RCREG register (if it is empty). When the transfer is complete, interrupt flag bit RCIF (PIR1<5>) is set. The actual interrupt can be enabled/ disabled by setting/clearing enable bit RCIE (PIE1<5>). Flag bit RCIF is a read only bit, which is reset by the hardware. In this case, it is reset when the RCREG register has been read and is empty. The RCREG is a double buffered register (i.e., it is a two deep FIFO). It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting into the RSR register. On the clocking of the last bit of the third byte, if the RCREG register is still full, then overrun error bit OERR (RCSTA<1>) is set. The word in the RSR will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Bit OERR has to be cleared in software (by clearing bit CREN). If bit OERR is set, transfers from the RSR to the RCREG are inhibited, so it is essential to clear bit OERR if it is set. The ninth receive bit is buffered the same way as the

receive data. Reading the RCREG register will load bit RX9D with a new value, therefore, it is essential for the user to read the RCSTA register before reading RCREG, in order not to lose the old RX9D information.

Steps to follow when setting up a Synchronous Master Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate (Section 10.1).
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 3. Ensure bits CREN and SREN are clear.
- 4. If interrupts are desired, then set enable bit RCIE.
- 5. If 9-bit reception is desired, then set bit RX9.
- 6. If a single reception is required, set bit SREN. For continuous reception set bit CREN.
- Interrupt flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- 8. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 9. Read the 8-bit received data by reading the RCREG register.
- 10. If any error occurred, clear the error by clearing bit CREN.
- 11. If using interrupts, ensure that GIE and PEIE in the INTCON register are set.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/P-1	U-0	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
_	—		—			-	BOREN	_	CP0	PWRTEN	WDTEN	FOSC1	FOSC0
bit13													bit0
bit 13-7		Unimpl	lemente	d: Read	l as '1'								
bit 6		BOREN	: Browr	n-out Re	set Ena	ble bit							
		1 = BO	R enable	∋d									
		0 = BO	R disabl	ed									
bit 5		Unimpl	lemente	d: Read	l as '1'								
bit 4		CP0: F	LASH P	rogram l	Memory	Code P	rotection b	oit					
		1 = Coc	de prote	ction off									
		0 = All I	memory	location	s code	protecte	d						
bit 3		PWRTE	EN: Pow	er-up Ti	mer Ena	able bit							
		1 = PW	RT disa	bled									
		0 = PW	RT enal	bled									
bit 2		WDTEN	: Watch	ndog Tim	her Enal	ole bit							
		1 = WD	T enabl	ed									
		0 = VVD	disab	ed									
bit 1-0		FOSC1	:FOSC	: Oscilla	ator Sele	ection bil	IS						
		11 = R(C oscilla	tor									
		$10 = H_{01}^{2}$	5 OSCIIIA E oscillat	tor									
		01 = K	oscillat	or									
		20 LI	500.101										
		Mata	4. The		1			41	<i></i>				

REGISTER 12-1: CONFIGURATION WORD (ADDRESS 2007h)⁽¹⁾

Note 1: The erased (unprogrammed) value of the configuration word is 3FFFh.

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
- n = Value when device is un	programmed	u = Unchanged from programmed state

12.10 Power Control/Status Register (PCON)

The Power Control/Status Register, PCON, has two bits to indicate the type of RESET that last occurred.

Bit0 is Brown-out Reset Status bit, BOR. Bit BOR is unknown on a Power-on Reset. It must then be set by the user and checked on subsequent RESETS to see

TABLE 12-3: TIME-OUT IN VARIOUS SITUATIONS

if bit $\overline{\text{BOR}}$ cleared, indicating a Brown-out Reset occurred. When the Brown-out Reset is disabled, the state of the $\overline{\text{BOR}}$ bit is unpredictable.

Bit1 is POR (Power-on Reset Status bit). It is cleared on a Power-on Reset and unaffected otherwise. The user must set this bit following a Power-on Reset.

Oppillator Configuration	Power	-up	Brown out	Wake-up from	
Oscillator Configuration	PWRTE = 0	PWRTE = 1	Brown-out	SLEEP	
XT, HS, LP	72 ms + 1024 Tosc	1024 Tosc	72 ms + 1024 Tosc	1024 Tosc	
RC	72 ms	_	72 ms	_	

TABLE 12-4: STATUS BITS AND THEIR SIGNIFICANCE

POR (PCON<1>)	BOR (PCON<0>)	TO (STATUS<4>)	PD (STATUS<3>)	Significance
0	х	1	1	Power-on Reset
0	x	0	х	Illegal, TO is set on POR
0	х	x	0	Illegal, PD is set on POR
1	0	1	1	Brown-out Reset
1	1	0	1	WDT Reset
1	1	0	0	WDT Wake-up
1	1	u	u	MCLR Reset during normal operation
1	1	1	0	MCLR Reset during SLEEP or interrupt wake-up from SLEEP

TABLE 12-5: RESET CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	0x
MCLR Reset during normal operation	000h	000u uuuu	uu
MCLR Reset during SLEEP	000h	0001 0uuu	uu
WDT Reset	000h	0000 luuu	uu
WDT Wake-up	PC + 1	uuu0 0uuu	uu
Brown-out Reset	000h	0001 luuu	u0
Interrupt wake-up from SLEEP	PC + 1 ⁽¹⁾	uuul 0uuu	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0'

Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

12.14 Power-down Mode (SLEEP)

Power-down mode is entered by executing a $\ensuremath{\mathtt{SLEEP}}$ instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the PD bit (STATUS<3>) is cleared, the TO (STATUS<4>) bit is set, and the oscillator driver is turned off. The I/O ports maintain the status they had before the SLEEP instruction was executed (driving high, low, or hi-impedance).

For lowest current consumption in this mode, place all I/O pins at either VDD or Vss, ensure no external circuitry is drawing current from the I/O pin, power-down the A/D and disable external clocks. Pull all I/O pins that are hi-impedance inputs, high or low externally, to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or Vss for lowest current consumption. The contribution from on-chip pull-ups on PORTB should also be considered.

The $\overline{\text{MCLR}}$ pin must be at a logic high level (VIHMC).

12.14.1 WAKE-UP FROM SLEEP

The device can wake-up from SLEEP through one of the following events:

- 1. External RESET input on MCLR pin.
- 2. Watchdog Timer wake-up (if WDT was enabled).
- 3. Interrupt from INT pin, RB port change or a Peripheral Interrupt.

External MCLR Reset will cause a device RESET. All other events are considered a continuation of program execution and cause a "wake-up". The TO and PD bits in the STATUS register can be used to determine the cause of device RESET. The PD bit, which is set on power-up, is cleared when SLEEP is invoked. The TO bit is cleared if a WDT time-out occurred and caused wake-up.

The following peripheral interrupts can wake the device from SLEEP:

- 1. PSP read or write (PIC16F74/77 only).
- 2. TMR1 interrupt. Timer1 must be operating as an asynchronous counter.
- 3. CCP Capture mode interrupt.
- 4. Special event trigger (Timer1 in Asynchronous mode, using an external clock).
- 5. SSP (START/STOP) bit detect interrupt.
- SSP transmit or receive in Slave mode (SPI/I²C).
- 7. USART RX or TX (Synchronous Slave mode).
- 8. A/D conversion (when A/D clock source is RC).

Other peripherals cannot generate interrupts, since during SLEEP, no on-chip clocks are present.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up occurs, regardless of the state of the GIE bit. If the GIE bit is clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

12.14.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs **before** the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared.
- If the interrupt occurs during or after the execution of a SLEEP instruction, the device will immediately wake-up from SLEEP. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP.

To ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

14.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK object linker combines relocatable objects created by the MPASM assembler and the MPLAB C17 and MPLAB C18 C compilers. It can also link relocatable objects from pre-compiled libraries, using directives from a linker script.

The MPLIB object librarian is a librarian for precompiled code to be used with the MPLINK object linker. When a routine from a library is called from another source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications. The MPLIB object librarian manages the creation and modification of library files.

The MPLINK object linker features include:

- Integration with MPASM assembler and MPLAB C17 and MPLAB C18 C compilers.
- Allows all memory areas to be defined as sections to provide link-time flexibility.

The MPLIB object librarian features include:

- Easier linking because single libraries can be included instead of many smaller files.
- Helps keep code maintainable by grouping related modules together.
- Allows libraries to be created and modules to be added, listed, replaced, deleted or extracted.

14.5 MPLAB SIM Software Simulator

The MPLAB SIM software simulator allows code development in a PC-hosted environment by simulating the PICmicro series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user-defined key press, to any of the pins. The execution can be performed in single step, execute until break, or trace mode.

The MPLAB SIM simulator fully supports symbolic debugging using the MPLAB C17 and the MPLAB C18 C compilers and the MPASM assembler. The software simulator offers the flexibility to develop and debug code outside of the laboratory environment, making it an excellent multiproject software development tool.

14.6 MPLAB ICE High Performance Universal In-Circuit Emulator with MPLAB IDE

The MPLAB ICE universal in-circuit emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PICmicro microcontrollers (MCUs). Software control of the MPLAB ICE in-circuit emulator is provided by the MPLAB Integrated Development Environment (IDE), which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the MPLAB ICE in-circuit emulator allows expansion to support new PICmicro microcontrollers.

The MPLAB ICE in-circuit emulator system has been designed as a real-time emulation system, with advanced features that are generally found on more expensive development tools. The PC platform and Microsoft[®] Windows environment were chosen to best make these features available to you, the end user.

14.7 ICEPIC In-Circuit Emulator

The ICEPIC low cost, in-circuit emulator is a solution for the Microchip Technology PIC16C5X, PIC16C6X, PIC16C7X and PIC16CXXX families of 8-bit One-Time-Programmable (OTP) microcontrollers. The modular system can support different subsets of PIC16C5X or PIC16CXXX products through the use of interchangeable personality modules, or daughter boards. The emulator is capable of emulating without target application circuitry being present.

FIGURE 15-11: SPI MASTER MODE TIMING (CKE = 0, SMP = 0)

FIGURE 15-12: SPI MASTER MODE TIMING (CKE = 1, SMP = 1)

TABLE 15-12: A/D CONVERTER CHARACTERISTICS: PIC16F7X (INDUSTRIAL, EXTENDED) PIC16LF7X (INDUSTRIAL)

Param No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
A01	NR	Resolution	PIC16F7X		_	8 bits	bit	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
			PIC16LF7X	—	_	8 bits	bit	VREF = VDD = 2.2V
A02	Eabs	Total absolute e	rror	—	—	< ±1	LSb	VREF = VDD = 5.12V, $VSS \le VAIN \le VREF$
A03	EIL	Integral linearity error		—	_	< ±1	LSb	VREF = VDD = 5.12V, VSS ≤ VAIN ≤ VREF
A04	Edl	Differential linearity error		—	-	< ±1	LSb	VREF = VDD = 5.12V, $VSS \le VAIN \le VREF$
A05	Efs	Full scale error		—	_	< ±1	LSb	VREF = VDD = 5.12V, $VSS \le VAIN \le VREF$
A06	Eoff	Offset error		—	—	< ±1	LSb	VREF = VDD = 5.12V, VSS ≤ VAIN ≤ VREF
A10		Monotonicity (Note 3)		—	guaranteed	—	_	$VSS \leq VAIN \leq VREF$
A20	Vref	Reference voltage		2.5 2.2		5.5 5.5	V V	-40°C to +125°C 0°C to +125°C
A25	VAIN	Analog input vol	tage	Vss - 0.3	_	Vref + 0.3	V	
A30	ZAIN	Recommended impedance of analog voltage source		—	—	10.0	kΩ	
A40	IAD	A/D conversion	PIC16F7X	—	180	—	μΑ	Average current
		current (VDD)	PIC16LF7X	—	90	—	μA	consumption when A/D is on (Note 1) .
A50	IREF	VREF input curre	ent (Note 2)	N/A 		±5 500	μΑ μΑ	During VAIN acquisition. During A/D Conversion cycle.

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from the RA3 pin or the VDD pin, whichever is selected as a reference input.

3: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

PIC16F7X

FIGURE 16-15: TYPICAL, MINIMUM AND MAXIMUM VOH vs. IOH (VDD = 5V, -40°C TO 125°C)

28-Lead Plastic Shrink Small Outline (SS) – 209 mil, 5.30 mm (SSOP)

	Units	INCHES		MILLIMETERS*		S*	
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.026			0.65	
Overall Height	Α	.068	.073	.078	1.73	1.85	1.98
Molded Package Thickness	A2	.064	.068	.072	1.63	1.73	1.83
Standoff §	A1	.002	.006	.010	0.05	0.15	0.25
Overall Width	ш	.299	.309	.319	7.59	7.85	8.10
Molded Package Width	E1	.201	.207	.212	5.11	5.25	5.38
Overall Length	D	.396	.402	.407	10.06	10.20	10.34
Foot Length	L	.022	.030	.037	0.56	0.75	0.94
Lead Thickness	с	.004	.007	.010	0.10	0.18	0.25
Foot Angle	¢	0	4	8	0.00	101.60	203.20
Lead Width	В	.010	.013	.015	0.25	0.32	0.38
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-150 Drawing No. C04-073

APPENDIX C: CONVERSION CONSIDERATIONS

Considerations for converting from previous versions of devices to the ones listed in this data sheet are listed in Table C-1.

TABLE C-1: CONVERSION CONSIDERATIONS

Characteristic	PIC16C7X	PIC16F87X	PIC16F7X
Pins	28/40	28/40	28/40
Timers	3	3	3
Interrupts	11 or 12	13 or 14	11 or 12
Communication	PSP, USART, SSP (SPI, I ² C Slave)	PSP, USART, SSP (SPI, I ² C Master/Slave)	PSP, USART, SSP (SPI, I ² C Slave)
Frequency	20 MHz	20 MHz	20 MHz
A/D	8-bit	10-bit	8-bit
ССР	2	2	2
Program Memory	4K, 8K EPROM	4K, 8K FLASH (1,000 E/W cycles)	4K, 8K FLASH (100 E/W cycles typical)
RAM	192, 368 bytes	192, 368 bytes	192, 368 bytes
EEPROM Data	None	128, 256 bytes	None
Other	_	In-Circuit Debugger, Low Voltage Programming	_

Μ

Master Clear (MCLR)	8	3, 10
MCLR Reset, Normal Operation	3, 95	, 96
MCLR Reset, SLEEP	3, 95	, 96
Operation and ESD Protection		94
MCLR/VPP Pin		8
MCLR/VPP Pin		10
Memory Organization		13
Data Memory		13
Program Memory		13
Program Memory and Stack Maps		13
MPLAB C17 and MPLAB C18 C Compilers		. 113
MPLAB ICD In-Circuit Debugger		. 115
MPLAB ICE High Performance Universal In-Circuit		
Emulator with MPLAB IDE		. 114
MPLAB Integrated Development		
Environment Software		. 113
MPLINK Object Linker/MPLIB Object Librarian		. 114

0

ODCODE Field Descriptions	405
OPCODE Field Descriptions	
OPTION_REG Register	
INTEDG bit	
PS2:PS0 bits	
PSA bit	
RBPU bit	
T0CS bit	
T0SE bit	
OSC1/CLKI Pin	
OSC2/CLKO Pin	
Oscillator Configuration	
Oscillator Configurations	
Crystal Oscillator/Ceramic Resonators	
НŚ	
LP	
RC	
ХТ	
Oscillator, WDT	

Ρ

P (STOP) bit	60
Packaging	
Paging, Program Memory	
Parallel Slave Port	
Associated Registers	41
Parallel Slave Port (PSP)	36, 40
RE0/ <u>RD</u> /AN5 Pin	12, 39
RE1/ <u>WR</u> /AN6 Pin	12, 39
RE2/CS/AN7 Pin	12, 39
Select (PSPMODE bit)	36, 37
PCFG0 bit	
PCFG1 bit	
PCFG2 bit	
PCL Register	
PCLATH Register	
PCON Register	25, 95
POR Bit	25
PICDEM 1 Low Cost PICmicro	
Demonstration Board	115
PICDEM 17 Demonstration Board	116
PICDEM 2 Low Cost PIC16CXX	
Demonstration Board	115
PICDEM 3 Low Cost PIC16CXXX	
Demonstration Board	116

PICSTART Plus Entry Level
Development Programmer115
PIE1 Register
PIE2 Register
Pinout Descriptions
PIC16F73/PIC16F768-9
PIC16F74/PIC16F7710-12
PIR1 Register
PIR2 Register
PMADR Register 29
PMADRH Register 29
POP 26
POR See Power-on Reset
PORTA 8 10
Analog Port Pins 8, 10
Accorded Perieters
ASSOCIATED REGISTERS
RA4/10CRI FIII
RA5/55/AN4 PII
I RISA Register
PORTA Register
PORTB
Associated Registers
PORIB Register
Pull-up Enable (RBPU bit) 20
RB0/INT Edge Select (INTEDG bit)
RB0/INT Pin, External
RB7:RB4 Interrupt-on-Change
RB7:RB4 Interrupt-on-Change Enable
(RBIE bit)
RB7:RB4 Interrupt-on-Change Flag
RB7:RB4 Interrupt-on-Change Flag (RBIF bit)21, 33, 100
RB7:RB4 Interrupt-on-Change Flag (RBIF bit)21, 33, 100 TRISB Register
RB7:RB4 Interrupt-on-Change Flag (RBIF bit)
RB7:RB4 Interrupt-on-Change Flag (RBIF bit) 21, 33, 100 TRISB Register 33 PORTB Register 33 PORTC 9, 11 Associated Register 35 PORTC Register 35 RC0/T10S0/T1CKI Pin 9, 11 RC1/T10SI/CCP2 Pin 9, 11
RB7:RB4 Interrupt-on-Change Flag (RBIF bit) 21, 33, 100 TRISB Register 33 PORTB Register 33 PORTC 9, 11 Associated Registers 35 PORTC Register 35 RC0/T10SO/T1CKI Pin 9, 11 RC1/T10SI/CCP2 Pin 9, 11 RC2/CCP1 Pin 9, 11
RB7:RB4 Interrupt-on-Change Flag (RBIF bit) 21, 33, 100 TRISB Register 33 PORTB Register 33 PORTC 9, 11 Associated Registers 35 PORTC Register 35 RC0/T10SO/T1CKI Pin 9, 11 RC2/CCP1 Pin 9, 11 RC2/CCP1 Pin 9, 11 RC3/SCK/SCI Pin 9, 11
RB7:RB4 Interrupt-on-Change Flag (RBIF bit) TRISB Register 33 PORTB Register 33 PORTC 9, 11 Associated Registers 35 PORTC Register 36 RC0/T10SO/T1CKI Pin 9, 11 RC1/T10SI/CCP2 Pin 9, 11 RC2/CCP1 Pin 9, 11 RC3/SCK/SCL Pin 9, 11 RC3/SCK/SCL Pin 9, 11 RC3/SCK/SCL Pin 9, 11
RB7:RB4 Interrupt-on-Change Flag (RBIF bit) 21, 33, 100 TRISB Register 33 PORTB Register 33 PORTC 9, 11 Associated Registers 35 PORTC Register 35 RC0/T10SO/T1CKI Pin 9, 11 RC1/T10SI/CCP2 Pin 9, 11 RC2/CCP1 Pin 9, 11 RC3/SCK/SCL Pin 9, 11 RC4/SDI/SDA Pin 9, 11 RC5/SDO Pin 9, 11
RB7:RB4 Interrupt-on-Change Flag (RBIF bit) 21, 33, 100 TRISB Register 33 PORTB Register 33 PORTC 9, 11 Associated Registers 35 PORTC Register 35 RC0/T10SO/T1CKI Pin 9, 11 RC1/T10SI/CCP2 Pin 9, 11 RC3/SCK/SCL Pin 9, 11 RC4/SDI/SDA Pin 9, 11 RC5/SDO Pin 9, 11 RC6/TY/CK Pin 9, 11
RB7:RB4 Interrupt-on-Change Flag (RBIF bit) 21, 33, 100 TRISB Register 33 PORTB Register 33 PORTC 9, 11 Associated Registers 35 PORTC Register 35 RC0/T10SO/T1CKI Pin 9, 11 RC1/T10SI/CCP2 Pin 9, 11 RC2/CCP1 Pin 9, 11 RC3/SCK/SCL Pin 9, 11 RC4/SDI/SDA Pin 9, 11 RC5/SDO Pin 9, 11 RC6/TX/CK Pin 9, 11, 70
RB7:RB4 Interrupt-on-Change Flag (RBIF bit) 21, 33, 100 TRISB Register 33 PORTB Register 33 PORTC 9, 11 Associated Registers 35 PORTC Register 35 PORTC Register 35 RC0/T10SO/T1CKI Pin 9, 11 RC2/CCP1 Pin 9, 11 RC3/SCK/SCL Pin 9, 11 RC4/SDI/SDA Pin 9, 11 RC6/TX/CK Pin 9, 11, 70 RC6/TX/CK Pin 9, 11, 70 RC7/RX/DT Pin 9, 11, 70, 71 TDISC Parinter 25
RB7:RB4 Interrupt-on-Change Flag (RBIF bit) 21, 33, 100 TRISB Register 33 PORTB Register 33 PORTC 9, 11 Associated Registers 35 PORTC Register 35 PORTC Register 35 RC0/T10SO/T1CKI Pin 9, 11 RC2/CCP1 Pin 9, 11 RC3/SCK/SCL Pin 9, 11 RC4/SDI/SDA Pin 9, 11 RC5/SDO Pin 9, 11 RC6/TX/CK Pin 9, 11, 70 RC7/RX/DT Pin 9, 11, 70, 71 TRISC Register 35
RB7:RB4 Interrupt-on-Change Flag (RBIF bit) 21, 33, 100 TRISB Register 33 PORTB Register 33 PORTC 9, 11 Associated Registers 35 PORTC Register 35 RC0/T10S0/T1CKI Pin 9, 11 RC1/T10SI/CCP2 Pin 9, 11 RC2/CCP1 Pin 9, 11 RC3/SCK/SCL Pin 9, 11 RC5/SDO Pin 9, 11 RC6/TX/CK Pin 9, 11, 70 RC7/RX/DT Pin 9, 11, 70, 71 TRSC Register 35
RB7:RB4 Interrupt-on-Change Flag (RBIF bit) 21, 33, 100 TRISB Register 33 PORTB Register 33 PORTC 9, 11 Associated Registers 35 PORTC Register 35 RC0/T1OSO/T1CKI Pin 9, 11 RC1/T1OSI/CCP2 Pin 9, 11 RC3/SCK/SCL Pin 9, 11 RC4/SDI/SDA Pin 9, 11 RC5/SDO Pin 9, 11 RC6/TX/CK Pin 9, 11, 70 RC7/RX/DT Pin 9, 11, 70, 71 TRCS Register 35 PORTC Register 35
RB7:RB4 Interrupt-on-Change Flag (RBIF bit) 21, 33, 100 TRISB Register 33 PORTB Register 33 PORTC 9, 11 Associated Registers 35 PORTC Register 35 PORTC Register 35 RC0/T1OSO/T1CKI Pin 9, 11 RC1/T1OSI/CCP2 Pin 9, 11 RC3/SCK/SCL Pin 9, 11 RC4/SDI/SDA Pin 9, 11 RC5/SDO Pin 9, 11, 70 RC7/RX/DT Pin 9, 11, 70, 71 TRISC Register 35 PORTC Register 35 PORTZ/CK Pin 9, 11, 70, 71 TRC3/SCK/SCL Pin 9, 11, 70, 71 RC5/SDO Pin 9, 11, 70, 71 RC6/TX/CK Pin 9, 11, 70, 71 TRISC Register 35 PORTC Register 35 PORTC Register 35 PORTC Register 35 PORTC Register 35 PORTZ Register 35 PORTZ Register 35 PORTD 12 Associated Registers 36
RB7:RB4 Interrupt-on-Change Flag (RBIF bit) 21, 33, 100 TRISB Register 33 PORTB Register 33 PORTC 9, 11 Associated Registers 35 PORTC Register 35 PORTC Register 35 RC0/T10S0/T1CKI Pin 9, 11 RC1/T10SI/CCP2 Pin 9, 11 RC3/SCK/SCL Pin 9, 11 RC5/SDO Pin 9, 11 RC6/TX/CK Pin 9, 11, 70 RC7/RX/DT Pin 9, 11, 70, 71 TRISC Register 35 PORTC Register 36 PORTC Register 36
RB7:RB4 Interrupt-on-Change Flag (RBIF bit) 21, 33, 100 TRISB Register 33 PORTB Register 33 PORTC 9, 11 Associated Registers 35 PORTC Register 35 RC0/T10SO/T1CKI Pin 9, 11 RC2/CCP1 Pin 9, 11 RC3/SCK/SCL Pin 9, 11 RC5/SDO Pin 9, 11 RC6/TX/CK Pin 9, 11, 70, 71 TRISC Register 35 PORTC Register 35 PORTC Register 9, 11 RC3/SCK/SCL Pin 9, 11 RC6/TX/CK Pin 9, 11, 70 RC7/RX/DT Pin 9, 11, 70, 71 TRISC Register 35 PORTC Register 35 PORTC Register 35 PORTD Lassociated Registers 36 Parallel Slave Port (PSP) Function 36 PORTD Register 36 PORTD Register 36
RB7:RB4 Interrupt-on-Change Flag (RBIF bit) 21, 33, 100 TRISB Register 33 PORTB Register 33 PORTC 9, 11 Associated Registers 35 PORTC Register 35 PORTC Register 35 RC0/T10SO/T1CKI Pin 9, 11 RC2/CCP1 Pin 9, 11 RC3/SCK/SCL Pin 9, 11 RC5/SDO Pin 9, 11 RC6/TX/CK Pin 9, 11, 70 RC7/RX/DT Pin 9, 11, 70, 71 TRISC Register 35 PORTC Register 35 PORTC Register 36 PORTC Register 35
RB7:RB4 Interrupt-on-Change Flag (RBIF bit) 21, 33, 100 TRISB Register 33 PORTB Register 33 PORTC 9, 11 Associated Registers 35 PORTC Register 35 PORTC Register 35 RC0/T10SO/T1CKI Pin 9, 11 RC2/CCP1 Pin 9, 11 RC3/SCK/SCL Pin 9, 11 RC5/SDO Pin 9, 11 RC6/TX/CK Pin 9, 11, 70, 71 TRISC Register 35 PORTC Register 35 PORTC Register 36 PORTC Register 36 PORTC Register 36 PORTD Register 36 PORTD Register 36
RB7:RB4 Interrupt-on-Change Flag (RBIF bit) 21, 33, 100 TRISB Register 33 PORTB Register 33 PORTC 9, 11 Associated Registers 35 PORTC Register 35 PORTC Register 35 RC0/T10SO/T1CKI Pin 9, 11 RC2/CCP1 Pin 9, 11 RC3/SCK/SCL Pin 9, 11 RC6/TX/CK Pin 9, 11 RC6/TX/CK Pin 9, 11, 70, 71 TRISC Register 35 PORTC Register 35 PORTO Register 35 PORTO Register 36 PORTD Register 35 PORTD Register 36 PORTE 36
RB7:RB4 Interrupt-on-Change Flag (RBIF bit) 21, 33, 100 TRISB Register 33 PORTB Register 33 PORTC 9, 11 Associated Registers 35 PORTC Register 35 PORTC Register 35 PORTC Register 35 RC0/T10SO/T1CKI Pin 9, 11 RC2/CCP1 Pin 9, 11 RC3/SCK/SCL Pin 9, 11 RC6/TX/CK Pin 9, 11 RC6/TX/CK Pin 9, 11, 70, 71 TRISC Register 35 PORTC Register 35 PORTZ/RX/DT Pin 9, 11, 70, 71 TRISC Register 35 PORTD 12 Associated Registers 36 Parallel Slave Port (PSP) Function 36 PORTD Register 36 PORTE 12
RB7:RB4 Interrupt-on-Change Flag (RBIF bit) 21, 33, 100 TRISB Register 33 PORTB Register 33 PORTC 9, 11 Associated Registers 35 PORTC Register 35 PORTC Register 35 PORTC Register 35 RC0/T10SO/T1CKI Pin 9, 11 RC2/CCP1 Pin 9, 11 RC3/SCK/SCL Pin 9, 11 RC4/SDI/SDA Pin 9, 11 RC6/TX/CK Pin 9, 11, 70, 71 RC6/TX/CK Pin 9, 11, 70, 71 TRISC Register 35 PORTC Register 35 PORTD Megister 35 PORTD Register 36 PORTE 12 Analog Port Pins 32, 39
RB7:RB4 Interrupt-on-Change Flag (RBIF bit) 21, 33, 100 TRISB Register 33 PORTB Register 33 PORTC 9, 11 Associated Registers 35 PORTC Register 35 PORTC Register 35 PORTC Register 35 RC0/T10SO/T1CKI Pin 9, 11 RC2/CCP1 Pin 9, 11 RC3/SCK/SCL Pin 9, 11 RC4/SDI/SDA Pin 9, 11 RC6/TX/CK Pin 9, 11, 70, 71 RC6/TX/CK Pin 9, 11, 70, 71 RC7/RX/DT Pin 9, 11, 70, 71 RISC Register 35 PORTD Register 36 Parallel Slave Port (PSP) Function 36 PORTD Register 36 PORTE <td< td=""></td<>
RB7:RB4 Interrupt-on-Change Flag (RBIF bit) 21, 33, 100 TRISB Register 33 PORTB Register 33 PORTC 9, 11 Associated Registers 35 PORTC Register 35 PORTC Register 35 PORTC Register 35 PORTC Register 35 RC0/T10SO/T1CKI Pin 9, 11 RC1/TOSI/CCP2 Pin 9, 11 RC2/CCP1 Pin 9, 11 RC3/SCK/SCL Pin 9, 11 RC4/SDI/SDA Pin 9, 11 RC6/TX/CK Pin 9, 11, 70 RC7/RX/DT Pin 9, 11, 70, 71 TRISC Register 35 PORTD Register 35 PORTD Register 36 Parallel Slave Port (PSP) Function 36 PORTD Register 36 PORTE 12 Analog Port Pins 12,
RB7:RB4 Interrupt-on-Change Flag (RBIF bit) 21, 33, 100 TRISB Register 33 PORTB Register 33 PORTC 9, 11 Associated Registers 35 PORTC Register 35 PORTC Register 35 PORTC Register 35 PORTC Register 35 RC0/T10SO/T1CKI Pin 9, 11 RC2/CCP1 Pin 9, 11 RC3/SCK/SCL Pin 9, 11 RC4/SDI/SDA Pin 9, 11 RC6/TX/CK Pin 9, 11, 70 RC7/RX/DT Pin 9, 11, 70, 71 TRISC Register 35 PORTD 12 Associated Registers 36 PORTD 12 Associated Register 36 PORTD Register 36 PORTE 12 Analog Port Pins 12, 39 Associated Registers 39
RB7:RB4 Interrupt-on-Change Flag (RBIF bit) 21, 33, 100 TRISB Register 33 PORTB Register 33 PORTC 9, 11 Associated Registers 35 PORTC Register 35 RC0/T10S0/T1CKI Pin 9, 11 RC2/CCP1 Pin 9, 11 RC3/SCK/SCL Pin 9, 11 RC5/SDO Pin 9, 11 RC6/TX/CK Pin 9, 11, 70 RC7/RX/DT Pin 9, 11, 70, 71 TRISC Register 35 PORTD 12 Associated Registers 36 PORTD 12 Associated Register 36 PORTD Register 36 PORTD Register 36 PORTD Register 36 PORTE 12 Associated Registers 39 Input Buffer Full Status (IBF bit) 38 Input Buffer Overflow (IBOV bit) 38 PORTE Register <td< td=""></td<>
RB7:RB4 Interrupt-on-Change Flag (RBIF bit) 21, 33, 100 TRISB Register 33 PORTB Register 33 PORTC 9, 11 Associated Registers 35 PORTC Register 35 PORTC Register 35 PORTC Register 35 PORTC Register 35 RC0/T10SO/T1CKI Pin 9, 11 RC2/CCP1 Pin 9, 11 RC3/SCK/SCL Pin 9, 11 RC5/SDO Pin 9, 11, 70 RC6/TX/CK Pin 9, 11, 70 RC7/RX/DT Pin 9, 11, 70, 71 TRISC Register 35 PORTD 12 Associated Registers 36 Parallel Slave Port (PSP) Function 36 PORTD Register 36 PORTE 12 Associated Registers 39 Input Buffer Full Status (IBF bit) 38 Input Buffer Full Status (IBF bit) 38 <td< td=""></td<>
RB7:RB4 Interrupt-on-Change Flag (RBIF bit) 21, 33, 100 TRISB Register 33 PORTB Register 33 PORTC 9, 11 Associated Registers 35 PORTC Register 35 RC0/T10SO/T1CKI Pin 9, 11 RC1/T10SI/CCP2 Pin 9, 11 RC2/CCP1 Pin 9, 11 RC3/SCK/SCL Pin 9, 11 RC5/SDO Pin 9, 11, 70 RC7/RX/DT Pin 9, 11, 70, 71 TRISC Register 35 PORTD 12 Associated Registers 36 PARILel Slave Port (PSP) Function 36 PORTD Register 36 PORTD Register 36 PORTE 12 Analog Port Pins 12, 39 Associated Registers 39 Input Buffer Full Status (IBF bit) 38 Input Buffer Full Status (IBF bit) 38 Input Buffer Overflow (IBOV bit) 36, 37
RB7:RB4 Interrupt-on-Change Flag (RBIF bit) 21, 33, 100 TRISB Register 33 PORTB Register 33 PORTC 9, 11 Associated Registers 35 PORTC Register 35 RC0/T10SO/T1CKI Pin 9, 11 RC2/CCP1 Pin 9, 11 RC3/SCK/SCL Pin 9, 11 RC4/SDI/SDA Pin 9, 11, 70 RC5/SDO Pin 9, 11, 70 RC6/TX/CK Pin 9, 11, 70, 71 TRISC Register 35 PORTD 12 Associated Registers 35 PORTD 12 Associated Register 36 Parallel Slave Port (PSP) Function 36 PORTD Register 36 PORTD Register 36 PORTD Register 36 PORTD Register 36 PORTE 12 Analog Port Pins 12, 39 Associated Registers 39
RB7:RB4 Interrupt-on-Change Flag (RBIF bit) 21, 33, 100 TRISB Register 33 PORTB Register 33 PORTC 9, 11 Associated Registers 35 PORTC Register 35 RC0/T10SO/T1CKI Pin 9, 11 RC2/CCP1 Pin 9, 11 RC3/SCK/SCL Pin 9, 11 RC5/SDO Pin 9, 11, 70 RC7/RX/DT Pin 9, 11, 70, 71 TRISC Register 35 PORTD Register 35 PORTD Register 36 Parallel Slave Port (PSP) Function 36 PORTD Register 36 PORTE Register 36 PORTE Register 37 PSP Mode Select (PSPMODE bit) 38 Input Buffer Full Status

PIC16F7X

S

•	
S (START) bit	60
SCI. See USART	
SCL	65
Serial Communication Interface. See USART	
SLEEP	89, 93, 102
SMP bit	60
Software Simulator (MPLAB SIM)	
Special Features of the CPU	89
Special Function Registers	16, 16–18
Speed, Operating	1
SPI Mode	
Associated Registers	64
Serial Clock (SCK pin)	
Serial Data In (SDI pin)	
Serial Data Out (SDO pin)	
Slave Select	
SSP	
Overview	
RA5/SS/AN4 Pin	
RC3/SCK/SCL Pin	
RC4/SDI/SDA Pin	9, 11
RC5/SDO Pin	
SSP I ² C Operation	
Slave Mode	
SSPEN bit	
SSPIE bit	23
SSPM<3:0> hits	
SSPOV hit	61
Stack	26
Overflows	
Underflow	
STATUS Register	
DC Bit	10
	10
	10 03
7 Bit	
2 Dil	
Synchronous Serial Port Interrupt bit (SSPEN) .	
Synchronous Serial Port Mede Select hite	23
(SCDM 22:05)	61
(SSFINI <s.u>)</s.u>	
Synchronous Senai Port. See SSP	
т	
T1CKPS0 bit	47
T1CKPS1 bit	

T1CKPS0 bit	
T1CKPS1 bit	
T1OSCEN bit	
T1SYNC bit	
T2CKPS0 bit	
T2CKPS1 bit	
TAD	87
Time-out Sequence	
Timer0	
Associated Registers	
Clock Source Edge Select (T0SE bit)	
Clock Source Select (T0CS bit)	
External Clock	
Interrupt	
Overflow Enable (TMR0IE bit)	
Overflow Flag (TMR0IF bit)	100
Overflow Interrupt	100
Prescaler	
RA4/T0CKI Pin, External Clock	
TOCKI	

	47
Associated Registers	50
Asynchronous Counter Mode	49
Capacitor Selection	50
Counter Operation	48
Operation in Timer Mode	48
Oscillator	50
Prescaler	50
RC0/T1OSO/T1CKI Pin	9, 11
RC1/T1OSI/CCP2 Pin	9, 11
Resetting of Timer1 Registers	50
Resetting Timer1 using a CCP Trigger Output	50
Synchronized Counter Mode	48
TMR1H Register	49
TMR1L Register	49
Timer2	51
Associated Registers	52
Output	51
Postscaler	51
Prescaler	51
Prescaler and Postscaler	51
Timing Diagrams	
A/D Conversion	139
Brown-out Reset	128
Capture/Compare/PWM (CCP1 and CCP2)	130
CLKOUT and I/O	127
External Clock	126
I ² C Bus Data	135
I ² C Bus START/STOP bits	134
I ² C Reception (7-bit Address)	67
I ² C Transmission (7-bit Address)	67
Parallel Slave Port	131
Parallel Slave Port Read Waveforms	41
Parallel Slave Port Write Waveforms	41
Power-up Timer	128
PWM Output	57
RESET	400
	128
Slow Rise Time (MCLR Tied to VDD Through	128
Slow Rise Time (MCLR Tied to VDD Through RC Network)	128 98
Slow Rise Time (MCLR Tied to VDD Through RC Network) SPI Master Mode (CKE = 0, SMP = 0)	128 98 132
Slow Rise Time (MCLR Tied to VDD Through RC Network) SPI Master Mode (CKE = 0, SMP = 0) SPI Master Mode (CKE = 1, SMP = 1)	128 98 132 132
Slow Rise Time (MCLR Tied to VDD Through RC Network) SPI Master Mode (CKE = 0, SMP = 0) SPI Master Mode (CKE = 1, SMP = 1) SPI Mode (Master Mode)	128 98 132 132 63
Slow Rise Time (MCLR Tied to VDD Through RC Network) SPI Master Mode (CKE = 0, SMP = 0) SPI Master Mode (CKE = 1, SMP = 1) SPI Mode (Master Mode) SPI Mode (Slave Mode with CKE = 0)	128 98 132 132 63 63
Slow Rise Time (MCLR Tied to VDD Through RC Network) SPI Master Mode (CKE = 0, SMP = 0) SPI Master Mode (CKE = 1, SMP = 1) SPI Mode (Master Mode) SPI Mode (Slave Mode with CKE = 0) SPI Mode (Slave Mode with CKE = 1)	128 98 132 132 63 63 63
Slow Rise Time (MCLR Tied to VDD Through RC Network) SPI Master Mode (CKE = 0, SMP = 0) SPI Master Mode (CKE = 1, SMP = 1) SPI Mode (Master Mode) SPI Mode (Slave Mode with CKE = 0) SPI Mode (Slave Mode with CKE = 1) SPI Slave Mode (CKE = 0)	128 98 132 132 63 63 63 133
Slow Rise Time (MCLR Tied to VDD Through RC Network) SPI Master Mode (CKE = 0, SMP = 0) SPI Master Mode (CKE = 1, SMP = 1) SPI Mode (Master Mode) SPI Mode (Slave Mode with CKE = 0) SPI Mode (Slave Mode with CKE = 1) SPI Slave Mode (CKE = 0) SPI Slave Mode (CKE = 1)	128 98 132 63 63 63 133 133
Slow Rise Time (MCLR Tied to VDD Through RC Network) SPI Master Mode (CKE = 0, SMP = 0) SPI Master Mode (CKE = 1, SMP = 1) SPI Mode (Master Mode) SPI Mode (Slave Mode with CKE = 0) SPI Mode (Slave Mode with CKE = 1) SPI Slave Mode (CKE = 0) SPI Slave Mode (CKE = 1) SPI Slave Mode (CKE = 1) SPI Slave Mode (CKE = 1)	128 98 132 132 63 63 133 133 128
Slow Rise Time (MCLR Tied to VDD Through RC Network) SPI Master Mode (CKE = 0, SMP = 0) SPI Master Mode (CKE = 1, SMP = 1) SPI Mode (Master Mode) SPI Mode (Slave Mode with CKE = 0) SPI Mode (Slave Mode with CKE = 1) SPI Slave Mode (CKE = 0) SPI Slave Mode (CKE = 1) SPI Slave Mode (CKE = 1) Start-up Timer Time-out Sequence on Power-up (MCLR Not	128 98 132 132 63 63 133 133 128
Slow Rise Time (MCLR Tied to VDD Through RC Network) SPI Master Mode (CKE = 0, SMP = 0) SPI Master Mode (CKE = 1, SMP = 1) SPI Mode (Master Mode) SPI Mode (Slave Mode with CKE = 0) SPI Mode (Slave Mode with CKE = 1) SPI Slave Mode (CKE = 0) SPI Slave Mode (CKE = 1) SPI Slave Mode (CKE = 1) Start-up Timer Time-out Sequence on Power-up (MCLR Not Tied to VDD)	128 98 132 63 63 133 133 128
Slow Rise Time (MCLR Tied to VDD Through RC Network) SPI Master Mode (CKE = 0, SMP = 0) SPI Master Mode (CKE = 1, SMP = 1) SPI Mode (Master Mode) SPI Mode (Slave Mode with CKE = 0) SPI Mode (Slave Mode with CKE = 1) SPI Slave Mode (CKE = 0) SPI Slave Mode (CKE = 1) SPI Slave Mode (CKE = 1) STart-up Timer Time-out Sequence on Power-up (MCLR Not Tied to VDD) Case 1	128 98 132 63 63 63 133 133 128 98
Slow Rise Time (MCLR Tied to VDD Through RC Network) SPI Master Mode (CKE = 0, SMP = 0) SPI Master Mode (CKE = 1, SMP = 1) SPI Mode (Master Mode) SPI Mode (Slave Mode with CKE = 0) SPI Mode (Slave Mode with CKE = 1) SPI Slave Mode (CKE = 0) SPI Slave Mode (CKE = 1) SPI Slave Mode (CKE = 1) STart-up Timer Time-out Sequence on Power-up (MCLR Not Tied to VDD) Case 1 Case 2	128 98 132 63 63 63 133 133 128 98 98
Slow Rise Time (MCLR Tied to VDD Through RC Network)	128 98 132 63 63 63 133 133 128 98 98 to Vdd
Slow Rise Time (MCLR Tied to VDD Through RC Network)	128 98 132 132 63 63 133 133 128 98 98 to Vdd 97
Slow Rise Time (MCLR Tied to VDD Through RC Network)	128 98 132 132 63 63 133 133 128 98 98 to Vdd 97 129
Slow Rise Time (MCLR Tied to VDD Through RC Network)	128 98 132 132 63 133 133 128 98 98 to Vdd 97 129 129
Slow Rise Time (MCLR Tied to VDD Through RC Network)	128 98 132 132 63 133 133 128 98 98 to Vdd 97 129 129 74
Slow Rise Time (MCLR Tied to VDD Through RC Network)	128 98 132 63 63 133 133 128 98 to Vdd 97 129 74
Slow Rise Time (MCLR Tied to VDD Through RC Network)	128 98 132 63 63 133 133 128 98 98 to Vdd 97 129 74
Slow Rise Time (MCLR Tied to VDD Through RC Network)	128 98 132 63 63 133 133 128 98 98 to Vdd 97 129 74 74 74
Slow Rise Time (MCLR Tied to VDD Through RC Network)	128 98 132 63 63 133 133 128 98 98 to Vdd 97 74 74 74 74 74
Slow Rise Time (MCLR Tied to VDD Through RC Network)	128 98 132 63 63 133 133 128 98 to Vdd 97 74 74 74 74 74
Slow Rise Time (MCLR Tied to VDD Through RC Network)	128 98 132 63 63 133 133 128 98 to Vdd 97 74 74 74 74 74 74 75
Slow Rise Time (MCLR Tied to VDD Through RC Network) SPI Master Mode (CKE = 0, SMP = 0) SPI Master Mode (CKE = 1, SMP = 1) SPI Mode (Master Mode) SPI Mode (Slave Mode with CKE = 0) SPI Mode (Slave Mode with CKE = 1) SPI Slave Mode (CKE = 0) SPI Slave Mode (CKE = 0) SPI Slave Mode (CKE = 1) SPI Slave Mode (CKE = 1) Start-up Timer Time-out Sequence on Power-up (MCLR Not Tied to VDD) Case 1 Case 2 Timerout Sequence on Power-up (MCLR Tied Through RC Network) Timer1 USART Asynchronous Master Transmission (Back to Back) USART Asynchronous Reception USART Synchronous Reception	128 98 132 63 63 133 133 128 98 to Vdd 97 74 74 74 74 74 74 75 79 78
Slow Rise Time (MCLR Tied to VDD Through RC Network)	128 98 132 63 63 133 133 128 98 98 to Vdd 97 74 74 74 74 74 78 78