

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf77t-i-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

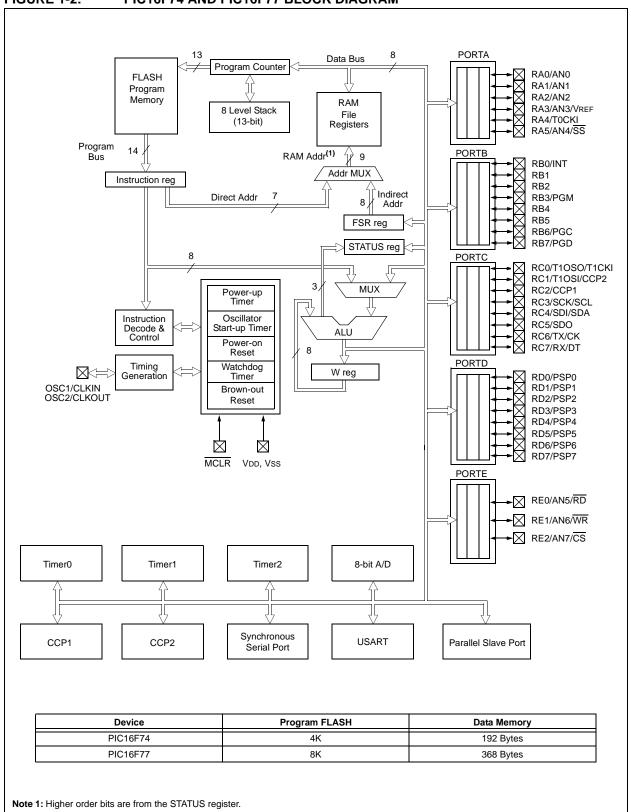


FIGURE 1-2: PIC16F74 AND PIC16F77 BLOCK DIAGRAM

PIC16F77/76 REGISTER FILE MAP FIGURE 2-2:

A	File ddress	A	File ddress		File Address		File Addres
Indirect addr.(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	180h
TMR0	01h	OPTION_REG	81h	TMR0	101h	OPTION_REG	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h		105h		185h
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h
PORTC	07h	TRISC	87h		107h		187h
PORTD ⁽¹⁾	08h	TRISD ⁽¹⁾	88h		108h		188h
PORTE ⁽¹⁾	09h	TRISE ⁽¹⁾	89h		109h		189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch	PMDATA	10Ch	PMCON1	18Ch
PIR2	0Dh	PIE2	8Dh	PMADR	10Dh		18Dh
TMR1L	0Eh	PCON	8Eh	PMDATH	10Eh		18Eh
TMR1H	0Fh		8Fh	PMADRH	10Fh		18Fh
T1CON	10h		90h		110h		190h
TMR2	11h		91h		111h		191h
T2CON	12h	PR2	92h		112h		192h
SSPBUF	13h	SSPADD	93h		113h		193h
SSPCON	14h	SSPSTAT	94h		114h		194h
CCPR1L	15h		95h		115h		195h
CCPR1H	16h		96h		116h		196h
CCP1CON	17h		97h	General	117h	General	197h
RCSTA	18h	TXSTA	98h	Purpose Register	118h	Purpose Register	198h
TXREG	19h	SPBRG	99h	16 Bytes	119h	16 Bytes	199h
RCREG	1Ah	OF BITO	9Ah		11Ah	,	19Ah
CCPR2L	1Bh		9Bh		11Bh		19Bh
CCPR2H	1Ch		9Ch		11Ch		19Ch
CCP2CON	1Dh		9Dh		11Dh		19Dh
ADRES	1Eh		9Eh		11Eh		19Eh
ADCON0	1Fh	ADCON1	9Fh		11Fh		19Fh
71200110	20h	7.000111			120h		
	2011		A0h		12011		1A0h
General Purpose Register		General Purpose Register 80 Bytes		General Purpose Register 80 Bytes		General Purpose Register 80 Bytes	
96 Bytes		accesses	EFh F0h	accesses	16Fh 170h	accesses	1EFh 1F0h
	7Fh	70h-7Fh	FFh	70h-7Fh	17Fh	70h - 7Fh	1FFh
Bank 0		Bank 1		Bank 2		Bank 3	

Unimplemented data memory locations, read as '0'. * Not a physical register.

Note 1: These registers are not implemented on 28-pin devices.

TABLE 2-1:	SPECIAL FUNCTION REGISTER SUMMARY	(CONTINUED)
-------------------	-----------------------------------	-------------

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Details on page	
Bank 2												
100h ⁽⁴⁾	INDF	Addressin	g this locatio	n uses conte	ents of FSR to	address data	a memory (r	not a physica	al register)	0000 0000	27, 96	
101h	TMR0	Timer0 Mo	dule Registe	er						xxxx xxxx	45, 96	
102h ⁽⁴⁾	PCL	Program C	Counter (PC)	Least Signif	icant Byte					0000 0000	26, 96	
103h ⁽⁴⁾	STATUS	IRP	RP1	RP0	ТО	PD	Z	DC	С	0001 1xxx	19, 96	
104h ⁽⁴⁾	FSR	Indirect Da	ata Memory /		xxxx xxxx	27, 96						
105h	—	Unimplem	ented							_	—	
106h	PORTB	PORTB D	ata Latch wh	en written: F	ORTB pins w	hen read				xxxx xxxx	34, 96	
107h	_	Unimplem	ented							—	—	
108h	—	Unimplem	ented		—	—						
109h	—	Unimplem	ented		_	—						
10Ah ^(1,4)	PCLATH	—	_	ounter	0 0000	21, 96						
10Bh ⁽⁴⁾	INTCON	GIE	PEIE	PEIE TMROIE INTE RBIE TMROIF INTF RBIF								
10Ch	PMDATA	Data Regi	ster Low Byte	e		•	•		-	XXXX XXXX	29, 97	
10Dh	PMADR	Address R	egister Low	Byte						xxxx xxxx	29, 97	
10Eh	PMDATH	—	_	Data Regist	ter High Byte					xxxx xxxx	29, 97	
10Fh	PMADRH		_	_	Address Reg	gister High By	/te			XXXX XXXX	29, 97	
Bank 3												
180h ⁽⁴⁾	INDF	Addressin	g this locatio	n uses conte	ents of FSR to	address data	a memory (r	not a physica	al register)	0000 0000	27, 96	
181h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	20, 44, 96	
182h ⁽⁴⁾	PCL	Program C	Counter (PC)	Least Signif	icant Byte					0000 0000	26, 96	
183h ⁽⁴⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	19, 96	
184h ⁽⁴⁾	FSR	Indirect Da	ata Memory /	Address Poir	nter					xxxx xxxx	27, 96	
185h	—	Unimplem	ented							_	_	
186h	TRISB	PORTB D	ata Direction	Register						1111 1111	34, 96	
187h	—	Unimplem	ented							_	_	
188h	—	Unimplem	ented							_	_	
189h	—	Unimplem	ented		_	_						
18Ah ^(1,4)	PCLATH	_		_	Write Buffer	for the upper	5 bits of the	Program C	ounter	0 0000	21, 96	
18Bh ⁽⁴⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	23, 96	
18Ch	PMCON1	(6)	_	—	—	_	_	—	RD	10	29, 97	
18Dh	—	Unimplem	ented		_							
18Eh	_	Reserved	maintain clea		0000 0000							
18Fh	_	Reserved	maintain clea	ar						0000 0000		

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter during branches (CALL or GOTO).

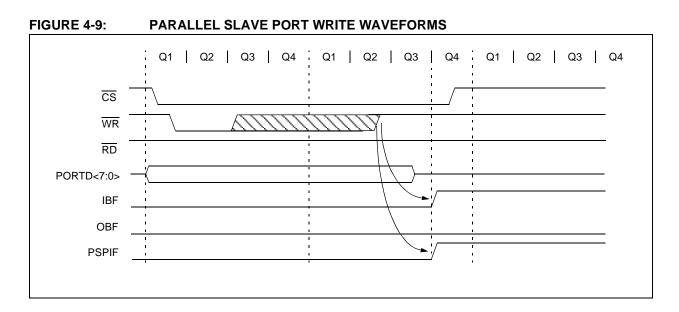
2: Other (non power-up) RESETS include external RESET through MCLR and Watchdog Timer Reset.

3: Bits PSPIE and PSPIF are reserved on the 28-pin devices; always maintain these bits clear.

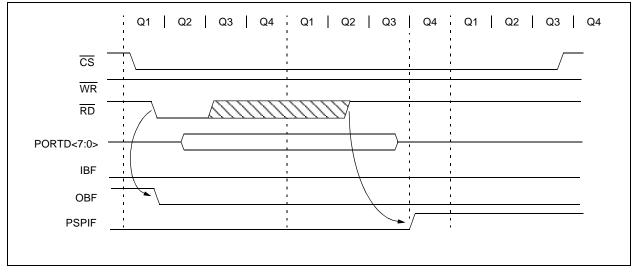
4: These registers can be addressed from any bank.

5: PORTD, PORTE, TRISD, and TRISE are not physically implemented on the 28-pin devices, read as '0'.

6: This bit always reads as a '1'.


2.2.2.2 OPTION_REG Register

The OPTION_REG register is a readable and writable register, which contains various control bits to configure the TMR0 prescaler/WDT postscaler (single assignable register known also as the prescaler), the External INT Interrupt, TMR0 and the weak pull-ups on PORTB.


Note: To achieve a 1:1 prescaler assignment for the TMR0 register, assign the prescaler to the Watchdog Timer.

REGISTER 2-2: OPTION_REG REGISTER (ADDRESS 81h, 181h)

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1						
	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0						
	bit 7							bit 0						
bit 7		DRTB Pull-up I												
		B pull-ups are		مرامينا ماريما م										
h it C		B pull-ups are	•	individual p	ort latch valu	les								
bit 6		INTEDG: Interrupt Edge Select bit 1 = Interrupt on rising edge of RB0/INT pin												
		 Interrupt on rising edge of RB0/INT pin Interrupt on falling edge of RB0/INT pin 												
bit 5	TOCS: TM	TOCS: TMR0 Clock Source Select bit												
		 = Transition on RA4/T0CKI pin = Internal instruction cycle clock (CLKOUT) 												
bit 4		R0 Source Ed	•											
		nent on high-to nent on low-to-			•									
bit 3		scaler Assignm	-											
	1 = Presca	aler is assigne	d to the WE											
h it 0 0		aler is assigne												
bit 2-0		Prescaler Rat		-										
	Bit V	alue TMR0 I	Rate WDT	Rate										
	00	1.4	1:1											
	00 01		1:2											
	01	1.0												
	10	1.0												
	10 11	1.0												
	11	1.14												
	Legend:													
	R = Reada	able bit	W = W	ritable bit	U = Unimp	olemented	bit, read as	'0'						
	- n = Value	e at POR rese	t '1' = Bi	t is set	'0' = Bit is	cleared	x = Bit is ι	unknown						
	L													

FIGURE 4-10: PARALLEL SLAVE PORT READ WAVEFORMS

TABLE 4-11: REGISTERS ASSOCIATED WITH PARALLEL SLAVE PORT

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
08h	PORTD	Port data I	atch wh	nen writte	en: Port pins	when rea	d			xxxx xxxx	uuuu uuuu
09h	PORTE	—		—		—	RE2	RE1	RE0	xxx	uuu
89h	TRISE	IBF	OBF	IBOV	PSPMODE	_	PORTE D	Data Direct	ion Bits	0000 -111	0000 -111
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
9Fh	ADCON1	_	_	_	_	_	PCFG2	PCFG1	PCFG0	000	000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Parallel Slave Port.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76; always maintain these bits clear.

6.4 Timer1 Operation in Asynchronous Counter Mode

If control bit T1SYNC (T1CON<2>) is set, the external clock input is not synchronized. The timer continues to increment asynchronous to the internal phase clocks. The timer will continue to run during SLEEP and can generate an interrupt on overflow, which will wake-up the processor. However, special precautions in software are needed to read/write the timer (Section 6.4.1).

In Asynchronous Counter mode, Timer1 cannot be used as a time-base for capture or compare operations.

6.4.1 READING AND WRITING TIMER1 IN ASYNCHRONOUS COUNTER MODE

Reading TMR1H or TMR1L, while the timer is running from an external asynchronous clock, will ensure a valid read (taken care of in hardware). However, the user should keep in mind that reading the 16-bit timer in two 8-bit values itself, poses certain problems, since the timer may overflow between the reads.

For writes, it is recommended that the user simply stop the timer and write the desired values. A write contention may occur by writing to the timer registers, while the register is incrementing. This may produce an unpredictable value in the timer register.

Reading the 16-bit value requires some care. The example code provided in Example 6-1 and Example 6-2 demonstrates how to write to and read Timer1 while it is running in Asynchronous mode.

EXAMPLE 6-1: WRITING A 16-BIT FREE-RUNNING TIMER

; All	interrupts	are disabled	
CLRF	TMR1L	; Clear Low byte, Ensures no rollover into TMR1H	
MOVLW	HI_BYTE	; Value to load into TMR1H	
MOVWF	TMR1H, F	; Write High byte	
MOVLW	LO_BYTE	; Value to load into TMR1L	
MOVWF	TMR1H, F	; Write Low byte	
; Re-0	enable the	Interrupt (if required)	
CONTI	NUE	; Continue with your code	
1			

EXAMPLE 6-2: READING A 16-BIT FREE-RUNNING TIMER

; All	interrupts an	ce	disabled
MOVF	TMR1H, W	;	Read high byte
MOVWF	TMPH		
MOVF	TMR1L, W	;	Read low byte
MOVWF	TMPL		
MOVF	TMR1H, W	;	Read high byte
SUBWF	TMPH, W	;	Sub 1st read with 2nd read
BTFSC	STATUS,Z	;	Is result = 0
GOTO	CONTINUE	;	Good 16-bit read
; TMR1	L may have ro	51	led over between the read of the high and low bytes.
; Read	ing the high	a	nd low bytes now will read a good value.
MOVF	TMR1H, W	;	Read high byte
MOVWF	TMPH		
MOVF	TMR1L, W	;	Read low byte
MOVWF	TMPL	;	Re-enable the Interrupt (if required)
CONTIN	UE	;	Continue with your code
			-

REGISTER 7-1:	T2CON:	TIMER2 C		EGISTER (ADDRESS	12h)		
	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0
	bit 7							bit 0
bit 7	Unimplo	mented: Rea	nd as '0'					
	-				0.1			
bit 6-3			Timer2 Out	put Postscale	e Select Dits			
		:1 Postscale :2 Postscale						
		:3 Postscale						
	•	.01000000						
	•							
	•							
	1111 = 1	:16 Postscale	Э					
bit 2	TMR2ON	I: Timer2 On	bit					
	1 = Timei							
	0 = Timei							
bit 1-0	T2CKPS	1:T2CKPS0:	Timer2 Cloc	k Prescale S	elect bits			
		scaler is 1						
		scaler is 4						
	1x = Pres	scaler is 16						
	Legend:							
	R = Reada	ahle hit	M - M	/ritable bit	II – Unim	olemented I	oit, read as '	0'
	1. – 1.caua		vv — v		0 - 01111	siomonicui	51, 1000 05	·

TABLE 7-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

- n = Value at POR reset

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value PC BC	R,	all othe RESETS	
0Bh,8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
11h	TMR2	Timer2 M	odule Regis	ster						0000	0000	0000	0000
12h	T2CON		TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000	0000	-000	0000
92h	PR2	Timer2 Pe	eriod Regist	ter						1111	1111	1111	1111

'1' = Bit is set

'0' = Bit is cleared

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer2 module.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76; always maintain these bits clear.

x = Bit is unknown

8.5.3 SETUP FOR PWM OPERATION

The following steps should be taken when configuring the CCP module for PWM operation:

- 1. Set the PWM period by writing to the PR2 register.
- 2. Set the PWM duty cycle by writing to the CCPR1L register and CCP1CON<5:4> bits.
- 3. Make the CCP1 pin an output by clearing the TRISC<2> bit.
- 4. Set the TMR2 prescale value and enable Timer2 by writing to T2CON.
- 5. Configure the CCP1 module for PWM operation.

TABLE 8-4: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale (1, 4, 16)	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	5.5

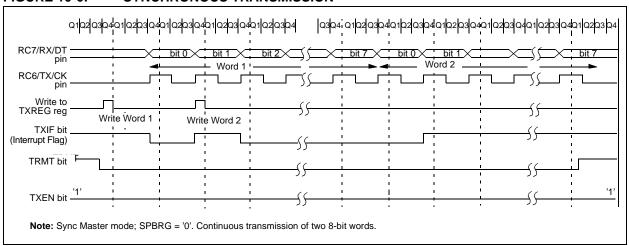
TABLE 8-5: REGISTERS ASSOCIATED WITH PWM AND TIMER2

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	PC	e on: DR, DR	all o	e on other SETS
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
0Dh	PIR2	_	—	—		_	—		CCP2IF		0		0
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
8Dh	PIE2	—	_	_	_	—	—	_	CCP2IE		0		0
87h	TRISC	PORTC D	Data Directi	on Register						1111	1111	1111	1111
11h	TMR2	Timer2 M	odule Regi	ster						0000	0000	0000	0000
92h	PR2	Timer2 M	odule Peric	d Register						1111	1111	1111	1111
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000	0000	-000	0000
15h	CCPR1L	Capture/C	Compare/P	WM Registe	er1 (LSB)					xxxx	xxxx	uuuu	uuuu
16h	CCPR1H	Capture/C	Compare/P	VM Registe	er1 (MSB)					xxxx	xxxx	uuuu	uuuu
17h	CCP1CON	— — CCP1X CCP1Y CCP1M3 CCP1M2 CCP1M1 CCP							CCP1M0	00	0000	00	0000
1Bh	CCPR2L	Capture/C	apture/Compare/PWM Register2 (LSB)									uuuu	uuuu
1Ch	CCPR2H	Capture/C	Compare/P	WM Registe	er2 (MSB)					xxxx	xxxx	uuuu	uuuu
1Dh	CCP2CON	—	—	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00	0000	00	0000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PWM and Timer2.

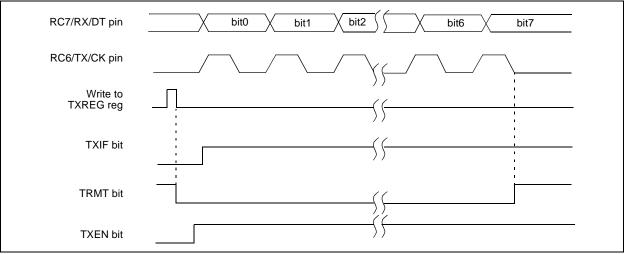
Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76; always maintain these bits clear.

ILN 10-2.	NCOTA. I									
	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R-0	R-0	R-x		
	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D		
	bit 7							bit 0		
bit 7	1 = Serial	rial Port Ena port enabled port disabled	(configures	RC7/RX/DT a	and RC6/TX	(/CK pins a	s serial po	rt pins)		
bit 6	1 = Select	Receive Ena s 9-bit recep s 8-bit recep	tion							
bit 5	Asynchron Don't care Synchronc 1 = Enable 0 = Disable This bit is e	ous mode - M es single rece es single rec cleared after ous mode - S	<u>faster:</u> eive eive reception is	complete.						
bit 4	Asynchron 1 = Enable 0 = Disable Synchronc 1 = Enable	ous mode: es continuou es continuou ous mode:	is receive s receive unt	e bit il enable bit C	CREN is clea	ared (CRE	N overrides	SREN)		
bit 3	Unimplem	ented: Rea	d as '0'							
bit 2				by reading R	CREG regis	ster and rec	eive next v	valid byte)		
bit 1				by clearing bit	CREN)					
bit 0		bit of Receir rity bit (parity		lated by firmw	/are)					
	Legend:									
	R = Reada	able bit	W = W	/ritable bit	U = Unim	plemented	bit, read a	s 'O'		


'1' = Bit is set

'0' = Bit is cleared

REGISTER 10-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER (ADDRESS 18h)


- n = Value at POR reset

x = Bit is unknown

FIGURE 10-6: SYNCHRONOUS TRANSMISSION

FIGURE 10-7: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

TABLE 10-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
19h	TXREG	USART Tr	ansmit Re	egister						0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Generat	or Registe	r				0000 0000	0000 0000	

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16F73/76 devices; always maintain these bits clear.

11.0 ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The 8-bit analog-to-digital (A/D) converter module has five inputs for the PIC16F73/76 and eight for the PIC16F74/77.

The A/D allows conversion of an analog input signal to a corresponding 8-bit digital number. The output of the sample and hold is the input into the converter, which generates the result via successive approximation. The analog reference voltage is software selectable to either the device's positive supply voltage (VDD), or the voltage level on the RA3/AN3/VREF pin.

The A/D converter has a unique feature of being able to operate while the device is in SLEEP mode. To operate in SLEEP, the A/D conversion clock must be derived from the A/D's internal RC oscillator. The A/D module has three registers. These registers are:

- A/D Result Register ((ADRES)
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 ((ADCON1)

The ADCON0 register, shown in Register 11-1, controls the operation of the A/D module. The ADCON1 register, shown in Register 11-2, configures the functions of the port pins. The port pins can be configured as analog inputs (RA3 can also be a voltage reference), or as digital I/O.

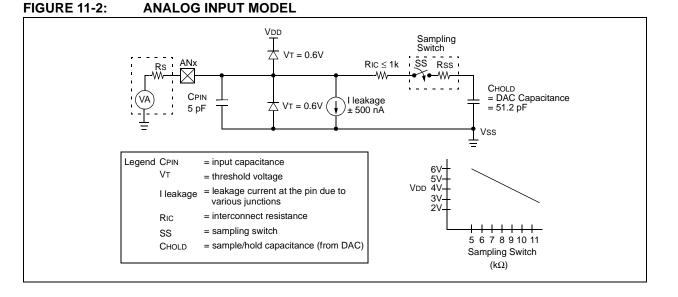
Additional information on using the A/D module can be found in the PICmicro[™] Mid-Range MCU Family Reference Manual (DS33023) and in Application Note, AN546 (DS00546).

	//200110			50 mm,									
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0					
	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE		ADON					
	bit 7							bit 0					
bit 7-6		DCS0: A/D (Conversion (Clock Select	bits								
	00 = Fosc												
	01 = Fosc 10 = Fosc												
		clock derive	d from the ir	nternal Δ/D m	odula RC c	scillator)							
bit 5 2		,				Semator)							
bit 5-3 CHS2:CHS0: Analog Channel Select bits													
		000 = Channel 0 (RA0/AN0) 001 = Channel 1 (RA1/AN1)											
		annel 2 (RA2	,										
		annel 3 (RA3	,										
		annel 4 (RA5											
	101 = Ch a	annel 5 (RE0	(AN5) ⁽¹⁾										
	101 = Channel 6 (RE1/AN6) ⁽¹⁾ 111 = Channel 7 (RE2/AN7) ⁽¹⁾												
			,										
bit 2		: A/D Conve	rsion Status	s bit									
	$\frac{\text{If ADON}}{1} =$					D							
						D conversion)	dware wh	on the					
		inversion is c			utomatically	cleared by hai							
bit 1	Unimplem	nented: Read	d as '0'										
bit 0	ADON: A/	D On bit											
	1 = A/D co	nverter mod	ule is opera	ting									
	0 = A/D cc	onverter mod	ule is shut-c	off and consu	mes no ope	erating current							
	Note 1:	A/D channe	els 5, 6 and	7 are implem	nented on th	e PIC16F74/7	7 only.						
	Legend:												
	R = Reada	ahle hit	M - M	Vritable bit	– Inir	nplemented bit	read as "	O'					
	IN - INEaua		vv = v	VILLADIE DIL	0 - 0111	ubieirierited pit	, icau as i	5					

'1' = Bit is set

'0' = Bit is cleared

REGISTER 11-1: ADCON0 REGISTER (ADDRESS 1Fh)


- n = Value at POR reset

x = Bit is unknown

11.1 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 11-2. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), see Figure 11-2. The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 10 k Ω . After the analog input channel is selected (changed), the acquisition period must pass before the conversion can be started.

To calculate the minimum acquisition time, TACQ, see the PICmicroTM Mid-Range MCU Family Reference Manual (DS33023). In general, however, given a maximum source impedance of 10 k Ω and at a temperature of 100°C, TACQ will be no more than 16 µsec.

TABLE 11-1: TAD vs. MAXIMUM DEVICE OPERATING FREQUENCIES (STANDARD DEVICES (C))

AD Cloc	k Source (Tad)	Maximum Device Frequency
Operation	ADCS1:ADCS0	Max.
2Tosc	0.0	1.25 MHz
8Tosc	01	5 MHz
32Tosc	10	20 MHz
RC ^(1, 2, 3)	11	(Note 1)

Note 1: The RC source has a typical TAD time of 4 µs but can vary between 2-6 µs.

2: When the device frequencies are greater than 1 MHz, the RC A/D conversion clock source is only recommended for SLEEP operation.

3: For extended voltage devices (LC), please refer to the Electrical Specifications section.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/P-1	U-0	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	
_				_			BOREN	_	CP0	PWRTEN	WDTEN	FOSC1	FOSC0	
bit13													bit0	
bit 13-7		Unimp	lemente	d: Read	as '1'									
bit 6		BOREN	: Browr	out Re	set Ena	ble bit								
		1 = BO	R enable	ed										
		0 = BO	= BOR disabled											
bit 5		Unimp	lemente	d: Read	as '1'									
bit 4		CP0: F	0: FLASH Program Memory Code Protection bit											
		1 = Coo	= Code protection off											
		0 = All I	memory	location	s code	protecte	d							
bit 3		PWRTE	EN: Pow	er-up Ti	mer Ena	able bit								
		1 = PW	/RT disa	bled										
		0 = PW	RT enab	oled										
bit 2		WDTE	N: Watch	ndog Tim	er Enal	ole bit								
		1 = WD	T enabl	ed										
		0 = WD)T disabl	ed										
bit 1-0		FOSC1	:FOSCO	: Oscilla	tor Sele	ection bi	ts							
		11 = R0	C oscilla	tor										
			S oscilla											
			T oscillat											
		00 = LF	oscillat	or										
		Note	1. The	erased	lunnroc	iramme	d) value of	the co	onfigura	tion word is	3FFFh			

REGISTER 12-1: CONFIGURATION WORD (ADDRESS 2007h)⁽¹⁾

Note 1: The erased (unprogrammed) value of the configuration word is 3FFFh.

Legend:		
R = Readable bit	P = Programmable bit	U = Unimplemented bit, read as '0'
- n = Value when device is ur	nprogrammed	u = Unchanged from programmed state

12.10 Power Control/Status Register (PCON)

The Power Control/Status Register, PCON, has two bits to indicate the type of RESET that last occurred.

Bit0 is Brown-out Reset Status bit, $\overline{\text{BOR}}$. Bit $\overline{\text{BOR}}$ is unknown on a Power-on Reset. It must then be set by the user and checked on subsequent RESETS to see

TABLE 12-3: TIME-OUT IN VARIOUS SITUATIONS

if bit $\overline{\text{BOR}}$ cleared, indicating a Brown-out Reset occurred. When the Brown-out Reset is disabled, the state of the $\overline{\text{BOR}}$ bit is unpredictable.

Bit1 is POR (Power-on Reset Status bit). It is cleared on a Power-on Reset and unaffected otherwise. The user must set this bit following a Power-on Reset.

Oppillator Configuration	Power	-up	Drown out	Wake-up from
Oscillator Configuration	PWRTE = 0	PWRTE = 1	Brown-out	SLEEP
XT, HS, LP	72 ms + 1024 Tosc	1024 Tosc	72 ms + 1024 Tosc	1024 Tosc
RC	72 ms		72 ms	—

TABLE 12-4: STATUS BITS AND THEIR SIGNIFICANCE

POR (PCON<1>)	BOR (PCON<0>)	TO (STATUS<4>)	PD (STATUS<3>)	Significance
0	х	1	1	Power-on Reset
0	x	0	x	Illegal, TO is set on POR
0	x	x	0	Illegal, PD is set on POR
1	0	1	1	Brown-out Reset
1	1	0	1	WDT Reset
1	1	0	0	WDT Wake-up
1	1	u	u	MCLR Reset during normal operation
1	1	1	0	MCLR Reset during SLEEP or interrupt wake-up from SLEEP

TABLE 12-5: RESET CONDITION FOR SPECIAL REGISTERS

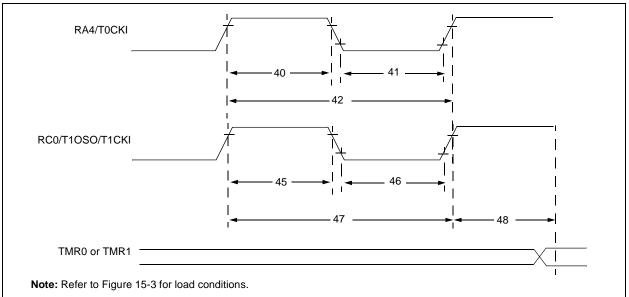
Condition	Program Counter	STATUS Register	PCON Register
Power-on Reset	000h	0001 1xxx	0x
MCLR Reset during normal operation	000h	000u uuuu	uu
MCLR Reset during SLEEP	000h	0001 0uuu	uu
WDT Reset	000h	0000 luuu	uu
WDT Wake-up	PC + 1	uuu0 0uuu	uu
Brown-out Reset	000h	0001 luuu	u0
Interrupt wake-up from SLEEP	PC + 1 ⁽¹⁾	uuul Ouuu	uu

Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0'

Note 1: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

TABLE 13-2: PIC16F7X INSTRUCTION SET

Mnemo	onic,	Description	Cycles		14-Bit	Opcode	•	Status	Notes
Opera	nds	Description	Cycles	MSb			LSb	Affected	Notes
		BYTE-ORIENTED FILE RE	EGISTER OPE	RATIC	NS				
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	-	Clear W	1	00	0001	0xxx	xxxx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	-	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
		BIT-ORIENTED FILE REG		RATION	IS				
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
		LITERAL AND CONT	ROL OPERAT	IONS					
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	-	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	-	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	-	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	-	Go into Standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	
Note 1: V	Vhen an	I/O register is modified as a function of itself (e.g., MOVF POI	RTB, :	1), the v	alue use	ed will b	e that value	present

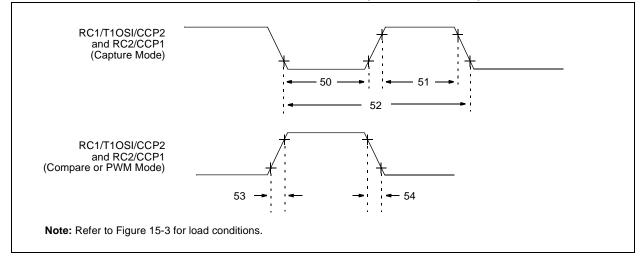

Note 1: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 module.

3: If Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

Note: Additional information on the mid-range instruction set is available in the PICmicro[™] Mid-Range MCU Family Reference Manual (DS33023).

FIGURE 15-8: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS


TABLE 15-4 :	TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS

Param No.	Symbol		Characteristic		Min	Тур†	Max	Units	Conditions	
40*	Tt0H	T0CKI High Pulse	Width	No Prescaler	0.5Tcy + 20	—		ns	Must also meet	
				With Prescaler	10	—	_	ns	parameter 42	
41*	Tt0L	T0CKI Low Pulse	Width	No Prescaler	0.5Tcy + 20	—	_	ns	Must also meet	
				With Prescaler	10	—	_	ns	parameter 42	
42*	Tt0P	T0CKI Period		No Prescaler	Tcy + 40	—	_	ns		
				With Prescaler	Greater of:	—	_	ns	N = prescale value	
					20 or <u>Tcy + 40</u>	<u>)</u> ((2, 4,, 256)			
					N					
45*	Tt1H	T1CKI High Time	Synchronous, Pr		0.5Tcy + 20	—	—	ns	Must also meet	
			Synchronous,	Standard(F)	15	—	—	ns	parameter 47	
			Prescaler = 2,4,8	Extended(LF)	25	—	—	ns	_	
			Asynchronous	Standard(F)	30	—	_	ns		
				Extended(LF)	50	-	—	ns		
46*	Tt1L	L T1CKI Low Time	Synchronous, Pr	escaler = 1	0.5Tcy + 20	—		ns	Must also meet	
			Synchronous,	Standard(F)	15	—	_	ns	parameter 47	
			Prescaler = 2,4,8	Extended(LF)	25	—		ns		
			Asynchronous	Standard(F)	30	-	—	ns		
				Extended(LF)	50	—		ns		
47*	Tt1P	T1CKI Input Period	Synchronous	Standard(F)	Greater of: 30 or <u>Tcy + 40</u> N			ns	N = prescale value (1, 2, 4, 8)	
				Extended(LF)	Greater of: 50 or <u>Tcy + 40</u> N				N = prescale value (1, 2, 4, 8)	
			Asynchronous	Standard(F)	60	—	—	ns		
				Extended(LF)	100	—	_	ns		
	Ft1	Timer1 Oscillator I (oscillator enabled			DC	—	200	kHz		
48	TCKEZtmr1	Delay from Extern	al Clock Edge to T	Timer Increment	2 Tosc	—	7 Tosc	—		

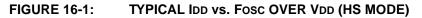
These parameters are characterized but not tested.

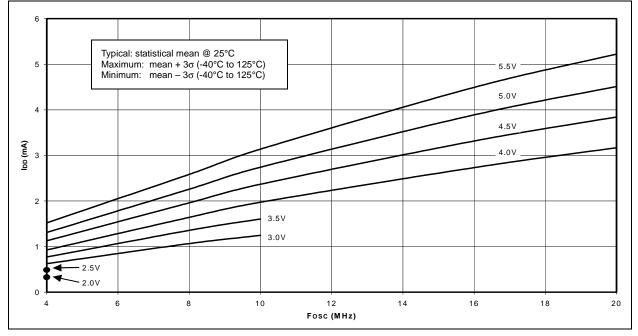
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

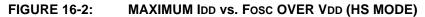
FIGURE 15-9: CAPTURE/COMPARE/PWM TIMINGS (CCP1 AND CCP2)

TABLE 15-5: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP1 AND CCP2)

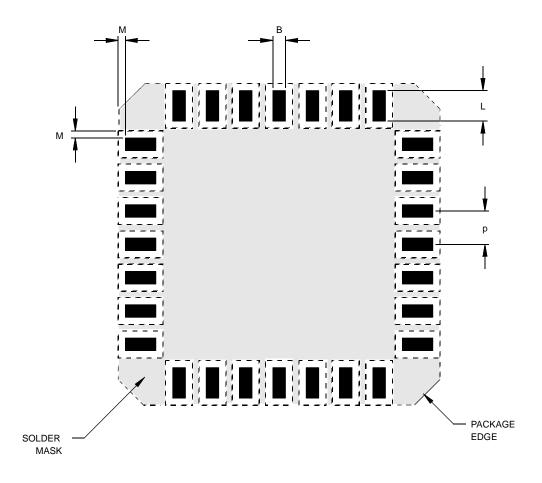
Param No.	Symbol			Min	Тур†	Max	Units	Conditions	
50*	TccL	CCP1 and CCP2 input low time	No Prescaler		0.5Tcy + 20			ns	
			With Prescaler	Standard(F)	10	—		ns	
				Extended(LF)	20	—		ns	
51*	ТссН	CCP1 and CCP2 input high time	No Prescaler		0.5Tcy + 20	—		ns	
			With Prescaler	Standard(F)	10	—		ns	
				Extended(LF)	20	—		ns	
52*	TccP	CCP1 and CCP2 in	nput period		<u>3Tcy + 40</u> N	-	_	ns	N = prescale value (1,4 or 16)
53*	TccR	CCP1 and CCP2 of	Standard(F)	—	10	25	ns		
			Extended(LF)	—	25	50	ns		
54*	TccF	CCP1 and CCP2 of	output fall time	Standard(F)	—	10	25	ns	
				Extended(LF)	—	25	45	ns	

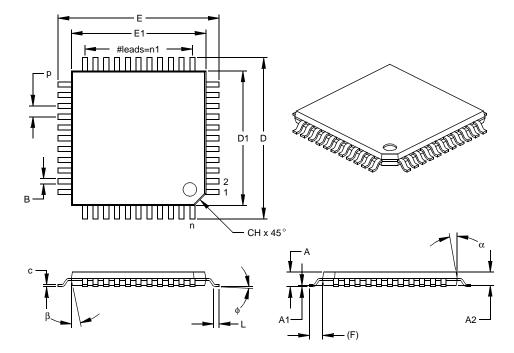

These parameters are characterized but not tested.


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


16.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.


"Typical" represents the mean of the distribution at 25°C. "Maximum" or "minimum" represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over the whole temperature range.


28-Lead Plastic Micro Leadframe Package (MF) 6x6 mm Body (MLF) (Continued)

	ι	Units		INCHES		MILLIMETERS*			
	Dimension Lim	nits	MIN	NOM	MAX	MIN	NOM	MAX	
Pitch		р	.026 BSC 0.65 BSC						
Pad Width		В	.009	.011	.014	0.23	0.28	0.35	
Pad Length		L	.020	.024	.030	0.50	0.60	0.75	
Pad to Solder Mask		М	.005		.006	0.13		0.15	

*Controlling Parameter

Drawing No. C04-2114

44-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)

	Units INCHES			MILLIMETERS*			
Dimensior	n Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		44			44	
Pitch	р		.031			0.80	
Pins per Side	n1		11			11	
Overall Height	А	.039	.043	.047	1.00	1.10	1.20
Molded Package Thickness	A2	.037	.039	.041	0.95	1.00	1.05
Standoff §	A1	.002	.004	.006	0.05	0.10	0.15
Foot Length	L	.018	.024	.030	0.45	0.60	0.75
Footprint (Reference)	(F)		.039		1.00		
Foot Angle	φ	0	3.5	7	0	3.5	7
Overall Width	Е	.463	.472	.482	11.75	12.00	12.25
Overall Length	D	.463	.472	.482	11.75	12.00	12.25
Molded Package Width	E1	.390	.394	.398	9.90	10.00	10.10
Molded Package Length	D1	.390	.394	.398	9.90	10.00	10.10
Lead Thickness	С	.004	.006	.008	0.09	0.15	0.20
Lead Width	В	.012	.015	.017	0.30	0.38	0.44
Pin 1 Corner Chamfer	СН	.025	.035	.045	0.64	0.89	1.14
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-026 Drawing No. C04-076