

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	14KB (8K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x8b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf77t-i-ptg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 **DEVICE OVERVIEW**

This document contains device specific information about the following devices:

- PIC16F73
- PIC16F74
- PIC16F76
- PIC16F77

PIC16F73/76 devices are available only in 28-pin packages, while PIC16F74/77 devices are available in 40-pin and 44-pin packages. All devices in the PIC16F7X family share common architecture, with the following differences:

- The PIC16F73 and PIC16F76 have one-half of the total on-chip memory of the PIC16F74 and **PIC16F77**
- The 28-pin devices have 3 I/O ports, while the 40/44-pin devices have 5
- · The 28-pin devices have 11 interrupts, while the 40/44-pin devices have 12
- The 28-pin devices have 5 A/D input channels, while the 40/44-pin devices have 8
- The Parallel Slave Port is implemented only on the 40/44-pin devices

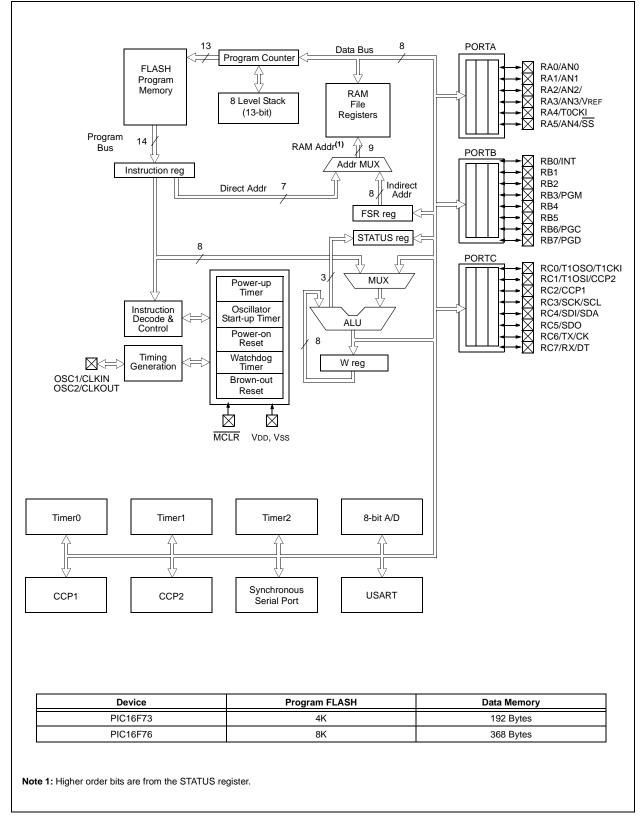

PIC16F7X DEVICE FEATURES **PIC16F74 PIC16F76 Key Features PIC16F73 PIC16F77 Operating Frequency** DC - 20 MHz DC - 20 MHz DC - 20 MHz DC - 20 MHz **RESETS** (and Delays) POR, BOR POR. BOR POR. BOR POR, BOR (PWRT, OST) (PWRT, OST) (PWRT, OST) (PWRT, OST) FLASH Program Memory 4K 4K 8K 8K (14-bit words) Data Memory (bytes) 368 192 192 368 Interrupts 11 12 11 12 I/O Ports Ports A,B,C Ports A,B,C Ports A,B,C,D,E Ports A,B,C,D,E Timers 3 3 3 3 Capture/Compare/PWM Modules 2 2 2 2 SSP, USART Serial Communications SSP, USART SSP. USART SSP, USART Parallel Communications PSP PSP 8-bit Analog-to-Digital Module **5 Input Channels** 8 Input Channels 5 Input Channels 8 Input Channels Instruction Set **35 Instructions 35 Instructions** 35 Instructions **35 Instructions** Packaging 28-pin DIP 40-pin PDIP 28-pin DIP 40-pin PDIP 28-pin SOIC 44-pin PLCC 28-pin SOIC 44-pin PLCC 28-pin SSOP 44-pin TQFP 28-pin SSOP 44-pin TQFP 28-pin MLF 28-pin MLF

TABLE 1-1:

The available features are summarized in Table 1-1. Block diagrams of the PIC16F73/76 and PIC16F74/77 devices are provided in Figure 1-1 and Figure 1-2, respectively. The pinouts for these device families are listed in Table 1-2 and Table 1-3.

Additional information may be found in the PICmicro™ Mid-Range Reference Manual (DS33023), which may be obtained from your local Microchip Sales Representative or downloaded from the Microchip website. The Reference Manual should be considered a complementary document to this data sheet, and is highly recommended reading for a better understanding of the device architecture and operation of the peripheral modules.

TABLE 1-2:	PIC16F73 AND PIC16F76 PINOUT DESCRIPTION (CONTINUED)
------------	--

Pin Name	DIP SSOP SOIC Pin#	MLF Pin#		Buffer Type	Description		
					PORTB is a bi-directional I/O port. PORTB can be software		
				(o(1)	programmed for internal weak pull-up on all inputs.		
RB0/INT	21	18	1/0	TTL/ST ⁽¹⁾			
RB0			I/O		Digital I/O.		
INT			I		External interrupt.		
RB1	22	19	I/O	TTL	Digital I/O.		
RB2	23	20	I/O	TTL	Digital I/O.		
RB3/PGM	24	21		TTL			
RB3			I/O		Digital I/O.		
PGM			I/O		Low voltage ICSP programming enable pin.		
RB4	25	22	I/O	TTL	Digital I/O.		
RB5	26	23	I/O	TTL	Digital I/O.		
RB6/PGC	27	24	., 0	TTL/ST ⁽²⁾	Digital i/ O.		
RB6	21	24	I/O	112/31.7	Digital I/O.		
PGC			I/O		In-Circuit Debugger and ICSP programming clock.		
	20	25	., O	TTL/ST ⁽²⁾			
RB7/PGD RB7	28	25	I/O	11L/51(-)	Digital I/O.		
PGD			1/O		In-Circuit Debugger and ICSP programming data.		
FGD			1/0				
					PORTC is a bi-directional I/O port.		
RC0/T1OSO/T1CKI	11	8		ST			
RC0			I/O		Digital I/O.		
T1OSO			0		Timer1 oscillator output.		
T1CKI			I		Timer1 external clock input.		
RC1/T1OSI/CCP2	12	9		ST			
RC1			I/O		Digital I/O.		
T1OSI					Timer1 oscillator input.		
CCP2			I/O		Capture2 input, Compare2 output, PWM2 output.		
RC2/CCP1	13	10		ST			
RC2			I/O		Digital I/O.		
CCP1			I/O		Capture1 input/Compare1 output/PWM1 output.		
RC3/SCK/SCL	14	11		ST			
RC3			I/O		Digital I/O.		
SCK			I/O		Synchronous serial clock input/output for SPI mode.		
SCL			I/O		Synchronous serial clock input/output for I ² C mode.		
RC4/SDI/SDA	15	12		ST			
RC4			I/O		Digital I/O.		
SDI			1		SPI data in.		
SDA			I/O		I ² C data I/O.		
RC5/SDO	16	13		ST			
RC5			I/O		Digital I/O.		
SDO			0		SPI data out.		
RC6/TX/CK	17	14		ST			
RC6			I/O		Digital I/O.		
TX			0		USART asynchronous transmit.		
CK			I/O		USART 1 synchronous clock.		
RC7/RX/DT	18	15		ST			
RC7			I/O		Digital I/O.		
RX			I		USART asynchronous receive.		
DT			I/O		USART synchronous data.		
Vss	8, 19	5, 16	Р	—	Ground reference for logic and I/O pins.		
V 55	1	47	Р	1	Desitive events for legic and 1/0 nine		
VDD	20	17	Р	—	Positive supply for logic and I/O pins.		

This buffer is a Schmitt Trigger input when used in Serial Programming mode.
 This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

TABLE 1-3:PIC16F74 AND PIC16F77 PINOUT DESCRIPTION

OSC1/CLKI OSC1 CLKI OSC2/CLKO OSC2 CLKO MCLR/VPP MCLR VPP	13	14 15	30 31	1	ST/CMOS ⁽⁴⁾	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST buffer when configured in RC mode. Otherwise CMOS. External clock source input. Always associated with pin
CLKI OSC2/CLKO OSC2 CLKO <u>MCLR/VPP</u> MCLR	14	15	31	I		Oscillator crystal input or external clock source input. ST buffer when configured in RC mode. Otherwise CMOS. External clock source input. Always associated with pin
OSC2/CLKO OSC2 CLKO MCLR/VPP MCLR	14	15	31			CMOS. External clock source input. Always associated with pin
OSC2/CLKO OSC2 CLKO MCLR/VPP MCLR	14	15	31			External clock source input. Always associated with pin
OSC2 CLKO MCLR/VPP MCLR	14	15	31			
OSC2 CLKO MCLR/VPP MCLR	14	15	31	0		function OSC1 (see OSC1/CLKI, OSC2/CLKO pins).
CLKO MCLR/VPP MCLR				<u> </u>	I —	Oscillator crystal or clock output.
MCLR/Vpp MCLR				0		Oscillator crystal output.
MCLR/Vpp MCLR						Connects to crystal or resonator in Crystal Oscillator
MCLR/Vpp MCLR						mode.
MCLR				0		In RC mode, OSC2 pin outputs CLKO, which has 1/4
MCLR						the frequency of OSC1 and denotes the instruction
MCLR						cycle rate.
	1	2	18		ST	Master Clear (input) or programming voltage (output).
Vpp				I		Master Clear (Reset) input. This pin is an active low
VPP						RESET to the device.
				Р		Programming voltage input.
						PORTA is a bi-directional I/O port.
RA0/AN0	2	3	19		TTL	
RA0				I/O		Digital I/O.
AN0				I		Analog input 0.
RA1/AN1	3	4	20		TTL	
RA1				I/O		Digital I/O.
AN1				I		Analog input 1.
RA2/AN2	4	5	21		TTL	
RA2				I/O		Digital I/O.
AN2				I		Analog input 2.
RA3/AN3/Vref	5	6	22		TTL	
RA3				I/O		Digital I/O.
AN3				I		Analog input 3.
VREF				I		A/D reference voltage input.
RA4/T0CKI	6	7	23		ST	
RA4				I/O		Digital I/O – Open drain when configured as output.
TOCKI				I		Timer0 external clock input.
RA5/SS/AN4	7	8	24		TTL	
RA5		-		I/O		Digital I/O.
SS	1			1		SPI slave select input.
AN4					1	
Legend: I = inpu		1				Analog input 4.

— = Not used TTL = TTL input ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Programming mode.

3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel Slave Port mode (for interfacing to a microprocessor bus).

4: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

Name	Bit#	Buffer Type	Function
RE0/RD/AN5	bit0	ST/TTL ⁽¹⁾	Input/output port pin or read control input in Parallel Slave Port mode or analog input. For RD (PSP mode): 1 = IDLE 0 = Read operation. Contents of PORTD register output to PORTD I/O pins (if chip selected).
RE1/WR/AN6	bit1	ST/TTL ⁽¹⁾	Input/output port pin or write control input in Parallel Slave Port mode or analog input. For WR (PSP mode): 1 = IDLE 0 = Write operation. Value of PORTD I/O pins latched into PORTD register (if chip selected).
RE2/CS/AN7	bit2	ST/TTL ⁽¹⁾	Input/output port pin or chip select control input in Parallel Slave Port mode or analog input. For CS (PSP mode): 1 = Device is not selected 0 = Device is selected

Legend: ST = Schmitt Trigger input, TTL = TTL input **Note 1:** Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port mode.

TABLE 4-10: SUMMARY OF REGISTERS ASSOCIATED WITH PORTE	TABLE 4-10 :	SUMMARY OF REGISTERS ASSOCIATED WITH PORTE
--	---------------------	--

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
09h	PORTE	—	—		—	_	RE2	RE1	RE0	xxx	uuu
89h	TRISE	IBF	OBF	IBOV	PSPMODE	_	PORTE Data Direction bits		0000 -111	0000 -111	
9Fh	ADCON1	—	_		_	_	PCFG2	PCFG1	PCFG0	000	000

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by PORTE.

REGISTER 11-2: ADCON1 REGISTER (ADDRESS 9Fh)

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	—		—		PCFG2	PCFG1	PCFG0
bit 7							bit 0

bit 7-3 Unimplemented: Read as '0'

bit 2-0 PCFG2:PCFG0: A/D Port Configuration Control bits

PCFG2:PCFG0	RA0	RA1	RA2	RA5	RA3	RE0 ⁽¹⁾	RE1 ⁽¹⁾	RE2 ⁽¹⁾	VREF
000	Α	Α	Α	Α	Α	Α	А	А	Vdd
001	Α	Α	Α	Α	VREF	Α	А	Α	RA3
010	Α	Α	Α	Α	Α	D	D	D	Vdd
011	Α	Α	Α	Α	VREF	D	D	D	RA3
100	Α	Α	D	D	Α	D	D	D	Vdd
101	Α	Α	D	D	VREF	D	D	D	RA3
11x	D	D	D	D	D	D	D	D	Vdd

A = Analog input

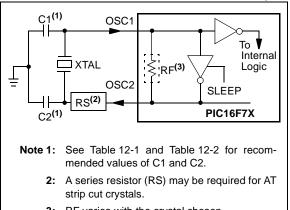
D = Digital I/O

Note 1: RE0, RE1 and RE2 are implemented on the PIC16F74/77 only.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR reset	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

12.2 Oscillator Configurations

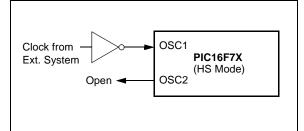
12.2.1 OSCILLATOR TYPES


The PIC16F7X can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1 and FOSC0) to select one of these four modes:

- LP Low Power Crystal
- XT Crystal/Resonator
- HS High Speed Crystal/Resonator
- RC Resistor/Capacitor

12.2.2 CRYSTAL OSCILLATOR/CERAMIC RESONATORS

In XT, LP or HS modes, a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 12-1). The PIC16F7X oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications. When in HS mode, the device can accept an external clock source to drive the OSC1/CLKIN pin (Figure 12-2). See Figure 15-1 or Figure 15-2 (depending on the part number and VDD range) for valid external clock frequencies.


FIGURE 12-1: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)

3: RF varies with the crystal chosen.

FIGURE 12-2:

EXTERNAL CLOCK INPUT OPERATION (HS OSC CONFIGURATION)

TABLE 12-1: CERAMIC RESONATORS (FOR DESIGN GUIDANCE ONLY)

1	Typical Capacitor Values Used:								
Mode	Mode Freq OSC1 OSC2								
XT	455 kHz	56 pF	56 pF						
	2.0 MHz	47 pF	47 pF						
	4.0 MHz	33 pF	33 pF						
HS	8.0 MHz	27 pF	27 pF						
	16.0 MHz	22 pF	22 pF						

Capacitor values are for design guidance only.

These capacitors were tested with the resonators listed below for basic start-up and operation. These values were not optimized.

Different capacitor values may be required to produce acceptable oscillator operation. The user should test the performance of the oscillator over the expected VDD and temperature range for the application.

See the notes at the bottom of page 92 for additional information.

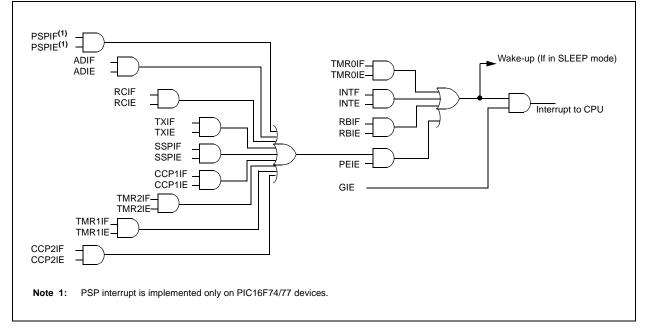
Resonators Used:	
455 kHz	Panasonic EFO-A455K04B
2.0 MHz	Murata Erie CSA2.00MG
4.0 MHz	Murata Erie CSA4.00MG
8.0 MHz	Murata Erie CSA8.00MT
16.0 MHz	Murata Erie CSA16.00MX

12.11 Interrupts

The PIC16F7X family has up to 12 sources of interrupt. The interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

Note:	Individual interrupt flag bits are set, regard-
	less of the status of their corresponding
	mask bit or the GIE bit.

A global interrupt enable bit, GIE (INTCON<7>) enables (if set) all unmasked interrupts, or disables (if cleared) all interrupts. When bit GIE is enabled and an interrupt's flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in various registers. Individual interrupt bits are set, regardless of the status of the GIE bit. The GIE bit is cleared on RESET.


The "return from interrupt" instruction, RETFIE, exits the interrupt routine, as well as sets the GIE bit, which re-enables interrupts.

The RB0/INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.

The peripheral interrupt flags are contained in the Special Function Registers, PIR1 and PIR2. The corresponding interrupt enable bits are contained in Special Function Registers, PIE1 and PIE2, and the peripheral interrupt enable bit is contained in Special Function Register, INTCON.

When an interrupt is responded to, the GIE bit is cleared to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid recursive interrupts.

For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs, relative to the current Q cycle. The latency is the same for one or two-cycle instructions. Individual interrupt flag bits are set, regardless of the status of their corresponding mask bit, PEIE bit, or the GIE bit.

FIGURE 12-10: INTERRUPT LOGIC

12.11.1 INT INTERRUPT

External interrupt on the RB0/INT pin is edge triggered, either rising, if bit INTEDG (OPTION_REG<6>) is set, or falling, if the INTEDG bit is clear. When a valid edge appears on the RB0/INT pin, flag bit INTF (INTCON<1>) is set. This interrupt can be disabled by clearing enable bit INTE (INTCON<4>). Flag bit INTF must be cleared in software in the Interrupt Service Routine before re-enabling this interrupt. The INT interrupt can wake-up the processor from SLEEP, if bit INTE was set prior to going into SLEEP. The status of global interrupt enable bit GIE decides whether or not the processor branches to the interrupt vector following wakeup. See Section 12.14 for details on SLEEP mode.

12.11.2 TMR0 INTERRUPT

An overflow (FFh \rightarrow 00h) in the TMR0 register will set flag bit TMR0IF (INTCON<2>). The interrupt can be enabled/disabled by setting/clearing enable bit TMR0IE (INTCON<5>). (Section 5.0)

12.11.3 PORTB INTCON CHANGE

An input change on PORTB<7:4> sets flag bit RBIF (INTCON<0>). The interrupt can be enabled/disabled by setting/clearing enable bit RBIE (INTCON<4>), see Section 4.2.

12.12 Context Saving During Interrupts

During an interrupt, only the return PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt (i.e., W, PCLATH and STA-TUS registers). This will have to be implemented in software, as shown in Example 12-1.

For the PIC16F73/74 devices, the register W_TEMP must be defined in both banks 0 and 1 and must be defined at the same offset from the bank base address (i.e., If W_TEMP is defined at 20h in bank 0, it must also be defined at A0h in bank 1.). The registers, PCLATH_TEMP and STATUS_TEMP, are only defined in bank 0.

Since the upper 16 bytes of each bank are common in the PIC16F76/77 devices, temporary holding registers W_TEMP, STATUS_TEMP and PCLATH_TEMP should be placed in here. These 16 locations don't require banking and, therefore, make it easier for context save and restore. The same code shown in Example 12-1 can be used.

	LIZ-I. SAVING S	TATUS, W, AND FCEATH REGISTERS IN RAM
MOVWF	W_TEMP	;Copy W to TEMP register
SWAPF	STATUS,W	;Swap status to be saved into W
CLRF	STATUS	;bank 0, regardless of current bank, Clears IRP,RP1,RP0
MOVWF	STATUS_TEMP	;Save status to bank zero STATUS_TEMP register
MOVF	PCLATH, W	;Only required if using pages 1, 2 and/or 3
MOVWF	F PCLATH_TEMP	;Save PCLATH into W
CLRF	PCLATH	;Page zero, regardless of current page
:		
:(ISR	2)	;Insert user code here
:		
MOVF	PCLATH_TEMP, W	;Restore PCLATH
MOVWF	PCLATH	;Move W into PCLATH
SWAPF	<pre>STATUS_TEMP,W</pre>	;Swap STATUS_TEMP register into W
		;(sets bank to original state)
MOVWF	r status	;Move W into STATUS register
SWAPF	F W_TEMP,F	;Swap W_TEMP
SWAPF	F W_TEMP,W	;Swap W_TEMP into W

EXAMPLE 12-1: SAVING STATUS, W, AND PCLATH REGISTERS IN RAM

13.2 Instruction Descriptions

ADDLW	Add Literal and W
Syntax:	[label] ADDLW k
Operands:	$0 \le k \le 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Description:	The contents of the W register are added to the eight-bit literal 'k' and the result is placed in the W register.

ADDWF	Add W and f
Syntax:	[label] ADDWF f,d
Operands:	$0 \le f \le 127$ $d \in [0,1]$
Operation:	(W) + (f) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Add the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

BCF	Bit Clear f
Syntax:	[<i>label</i>] BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

BSF	Bit Set f
Syntax:	[<i>label</i>] BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

ANDLW	AND Literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \le k \le 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of W register are AND'ed with the eight-bit literal 'k'. The result is placed in the W register.

BTFSS	Bit Test f, Skip if Set
Syntax:	[label] BTFSS f,b
Operands:	$0 \le f \le 127$ $0 \le b < 7$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruc- tion is discarded and a NOP is executed instead, making this a 2TcY instruction.

ANDWF	AND W with f
Syntax:	[label] ANDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1 \right] \end{array}$
Operation:	(W) .AND. (f) \rightarrow (destination)
Status Affected:	Z
Description:	AND the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

BTFSC	Bit Test, Skip if Clear
Syntax:	[label] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if $(f < b >) = 0$
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2TCY instruction.

SWAPF	Swap Nibbles in f
Syntax:	[label] SWAPF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$
Operation:	$(f<3:0>) \rightarrow (destination<7:4>), (f<7:4>) \rightarrow (destination<3:0>)$
Status Affected:	None
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed in register 'f'.

XORWF	Exclusive OR W with f
Syntax:	[label] XORWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$
Operation:	(W) .XOR. (f) \rightarrow (destination)
Status Affected:	Z
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

XORLW	Exclusive OR Literal with W		
Syntax:	[<i>label</i>] XORLW k		
Operands:	$0 \le k \le 255$		
Operation:	(W) .XOR. $k \rightarrow (W)$		
Status Affected:	Z		
Description:	The contents of the W register are XOR'ed with the eight-bit literal 'k'. The result is placed in the W register.		

14.0 DEVELOPMENT SUPPORT

The PICmicro[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB® IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C17 and MPLAB C18 C Compilers
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - ICEPIC™ In-Circuit Emulator
- In-Circuit Debugger
 - MPLAB ICD
- Device Programmers
 - PRO MATE[®] II Universal Device Programmer
- PICSTART[®] Plus Entry-Level Development Programmer
- Low Cost Demonstration Boards
 - PICDEM[™]1 Demonstration Board
 - PICDEM 2 Demonstration Board
 - PICDEM 3 Demonstration Board
 - PICDEM 17 Demonstration Board
 - KEELOQ® Demonstration Board

14.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8-bit microcontroller market. The MPLAB IDE is a Windows[®]-based application that contains:

- · An interface to debugging tools
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
 - in-circuit debugger (sold separately)
- · A full-featured editor
- · A project manager
- Customizable toolbar and key mapping
- · A status bar
- On-line help

The MPLAB IDE allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PICmicro emulator and simulator tools (automatically updates all project information)
- Debug using:
 - source files
 - absolute listing file
 - machine code

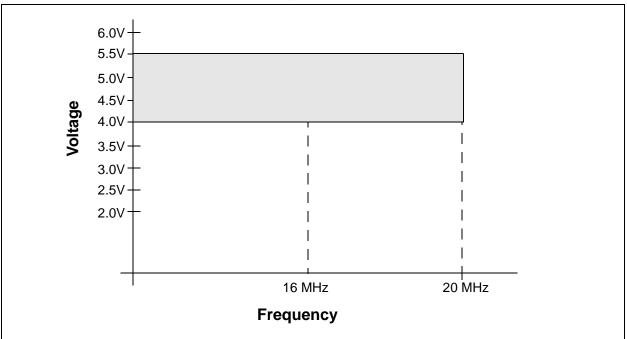
The ability to use MPLAB IDE with multiple debugging tools allows users to easily switch from the costeffective simulator to a full-featured emulator with minimal retraining.

14.2 MPASM Assembler

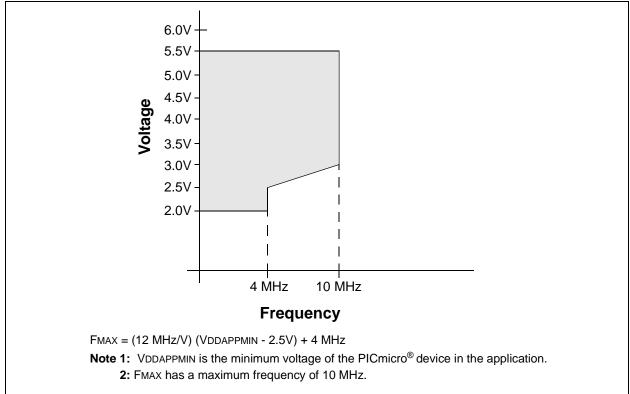
The MPASM assembler is a full-featured universal macro assembler for all PICmicro MCU's.

The MPASM assembler has a command line interface and a Windows shell. It can be used as a stand-alone application on a Windows 3.x or greater system, or it can be used through MPLAB IDE. The MPASM assembler generates relocatable object files for the MPLINK object linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, an absolute LST file that contains source lines and generated machine code, and a COD file for debugging.

The MPASM assembler features include:


- Integration into MPLAB IDE projects.
- User-defined macros to streamline assembly code.
- Conditional assembly for multi-purpose source files.
- Directives that allow complete control over the assembly process.

14.3 MPLAB C17 and MPLAB C18 C Compilers


The MPLAB C17 and MPLAB C18 Code Development Systems are complete ANSI 'C' compilers for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers, respectively. These compilers provide powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compilers provide symbol information that is compatible with the MPLAB IDE memory display.

FIGURE 15-2: PIC16LF7X VOLTAGE-FREQUENCY GRAPH

15.2 DC Characteristics: PIC16F73/74/76/77 (Industrial, Extended) PIC16LF73/74/76/77 (Industrial) (Continued)

DC CHA	ARACT	ERISTICS	Standard Operating			-40°0	s (unless otherwise stated) $C \le TA \le +85^{\circ}C$ for industrial $C \le TA \le +125^{\circ}C$ for extended	
			Operating voltage VDD range as described in DC Specification, Section 15.1.					
Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions	
	Vol	Output Low Voltage						
D080		I/O ports		—	0.6	V	IOL = 8.5 mA, VDD = 4.5V, -40°C to +125°C	
D083		OSC2/CLKOUT (RC osc config)	—	—	0.6	V	Io∟ = 1.6 mA, VDD = 4.5V, -40°C to +125°C	
				—	0.6	V	IOL = 1.2 mA, VDD = 4.5V, -40°C to +125°C	
	Vон	Output High Voltage						
D090		I/O ports (Note 3)	Vdd - 0.7	_	—	V	IOH = -3.0 mA, VDD = 4.5V, -40°С to +125°С	
D092		OSC2/CLKOUT (RC osc config)	Vdd - 0.7	—	—	V	ІОН = -1.3 mA, VDD = 4.5V, -40°С to +125°С	
			Vdd - 0.7	—	—	V	IOH = -1.0 mA, VDD = 4.5V, -40°С to +125°С	
D150*	Vod	Open Drain High Voltage		_	12	V	RA4 pin	
		Capacitive Loading Specs on (Dutput Pir	IS				
D100	Cosc2	OSC2 pin	_	—	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1	
D101	Сю	All I/O pins and OSC2 (in RC mode)	—	—	50	pF		
D102	Св	SCL, SDA in I ² C mode	—	—	400	pF		
		Program FLASH Memory		I I			1	
D130	ЕΡ	Endurance	100	1000	_	E/W	25°C at 5V	
D131	Vpr	VDD for Read	2.0	—	5.5	V		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16F7X be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

NOTES:

FIGURE 16-7: AVERAGE FOSC vs. VDD FOR VARIOUS VALUES OF R (RC MODE, C = 20 pF, 25°C)

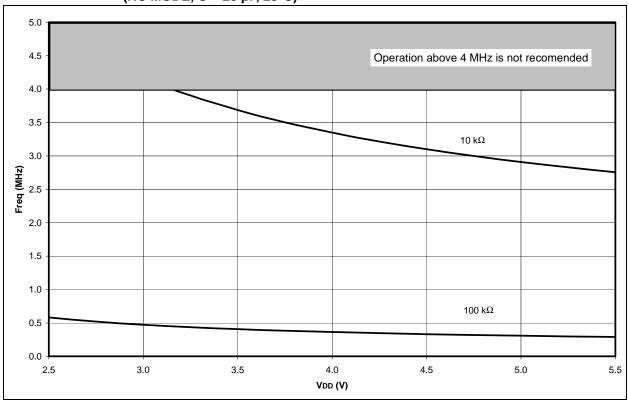
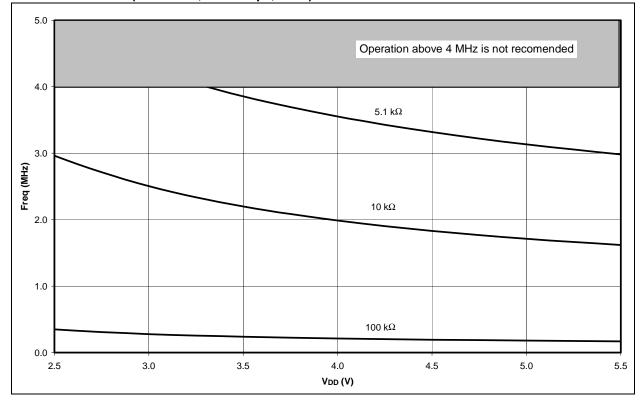



FIGURE 16-8: AVERAGE Fosc vs. VDD FOR VARIOUS VALUES OF R (RC MODE, C = 100 pF, 25°C)

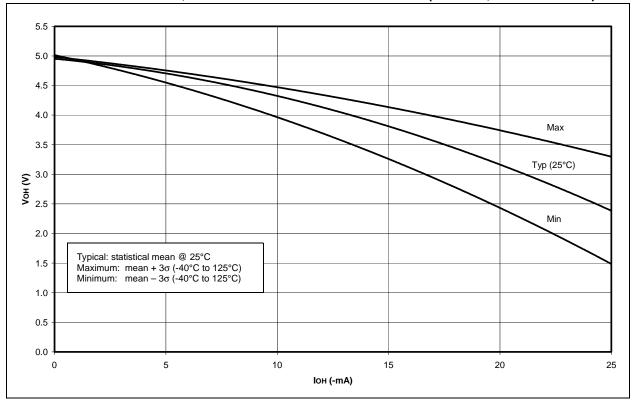
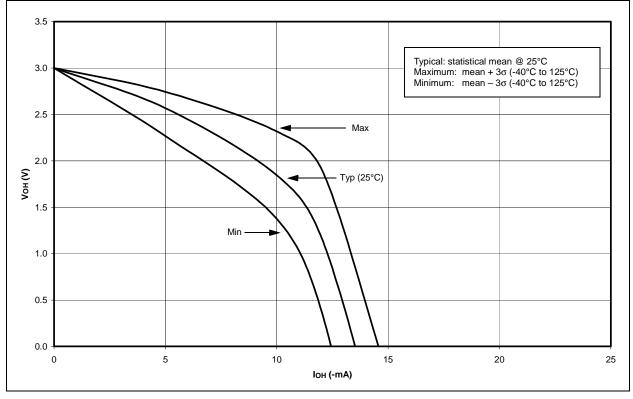
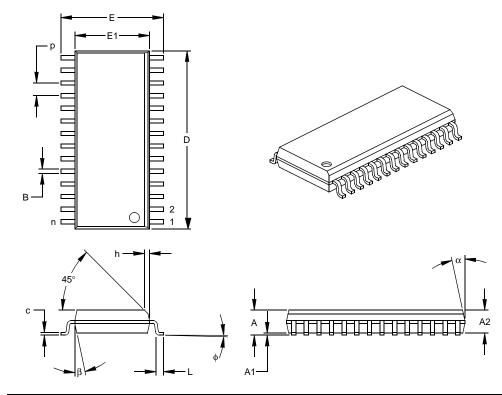




FIGURE 16-15: TYPICAL, MINIMUM AND MAXIMUM VOH vs. IOH (VDD = 5V, -40°C TO 125°C)

28-Lead Plastic Small Outline (SO) - Wide, 300 mil (SOIC)

Units			INCHES*		MILLIMETERS		
Dimension	n Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.050			1.27	
Overall Height	А	.093	.099	.104	2.36	2.50	2.64
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39
Standoff §	A1	.004	.008	.012	0.10	0.20	0.30
Overall Width	Е	.394	.407	.420	10.01	10.34	10.67
Molded Package Width	E1	.288	.295	.299	7.32	7.49	7.59
Overall Length	D	.695	.704	.712	17.65	17.87	18.08
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74
Foot Length	L	.016	.033	.050	0.41	0.84	1.27
Foot Angle Top	φ	0	4	8	0	4	8
Lead Thickness	С	.009	.011	.013	0.23	0.28	0.33
Lead Width	В	.014	.017	.020	0.36	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15

* Controlling Parameter

§ Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MS-013 Drawing No. C04-052

5

USART Synchronous Transmission	
(Through TXEN)	
Wake-up from SLEEP via Interrupt1	
Watchdog Timer1	
Timing Parameter Symbology1	25
Timing Requirements	
Capture/Compare/PWM (CCP1 and CCP2)1	
CLKOUT and I/O1	
External Clock1	-
I ² C Bus Data1	36
I2C Bus START/STOP Bits1	35
Parallel Slave Port1	31
RESET, Watchdog Timer, Oscillator	
Start-up Timer, Power-up Timer	
and Brown-out Reset1	28
SPI Mode1	34
Timer0 and Timer1 External Clock1	29
USART Synchronous Receive1	
USART Synchronous Transmission1	
TMR1CS bit	
TMR10N bit	47
TMR2ON bit	
TOUTPS<3:0> bits	-
TRISA Register	-
TRISB Register	
TRISC Register	
TRISD Register	
TRISE Register	
IBF Bit	
IBOV Bit	
PSPMODE bit	
TXSTA Register	01
SYNC bit	69
TRMT bit	
TX9 bit	
TX9 bit	
TXEN bit	
	09
U	

UA6	60
Universal Synchronous Asynchronous	
Receiver Transmitter. See USART	
Update Address bit, UA6	60
USART6	;9
Asynchronous Mode7	'3
Asynchronous Receiver7	'5
Asynchronous Reception7	'6
Associated Registers7	<i>'</i> 6
Asynchronous Transmission	
Associated Registers7	' 4
Asynchronous Transmitter7	'3

Baud Rate Generator (BRG)71
Baud Rate Formula
Baud Rates, Asynchronous Mode
(BRGH = 0)
Baud Rates, Asynchronous Mode
(BRGH = 1)
Sampling71
Mode Select (SYNC Bit) 69
Overrun Error (OERR Bit)
RC6/TX/CK Pin9, 11
RC7/RX/DT Pin9, 11
Serial Port Enable (SPEN Bit)
Single Receive Enable (SREN Bit)70
Synchronous Master Mode77
Synchronous Master Reception
Associated Registers 80
Synchronous Master Transmission
Associated Registers
Synchronous Slave Mode 80
Synchronous Slave Reception
Associated Registers 81
Synchronous Slave Transmission
Associated Registers81
Transmit Data, 9th Bit (TX9D)69
Transmit Enable (TXEN bit)69
Transmit Enable, Nine-bit (TX9 bit)
Transmit Shift Register Status (TRMT bit)

W

Wake-up from SLEEP	
Interrupts	
MCLR Reset	
WDT Reset	
Wake-up Using Interrupts	102
Watchdog Timer (WDT)	
Associated Registers	101
Enable (WDTE Bit)	101
Postscaler. See Postscaler, WDT	
Programming Considerations	101
RC Oscillator	101
Time-out Period	101
WDT Reset, Normal Operation	93, 95, 96
WDT Reset, SLEEP	93, 95, 96
WCOL bit	
Write Collision Detect bit (WCOL)	61
WWW, On-Line Support	

PIC16F7X PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	X /XX XXX Temperature Package Pattern	Examples: a) PIC16F77-I/P 301 = Industrial temp., PDIP
Device	Range PIC16F7X ⁽¹⁾ , PIC16F7XT ⁽¹⁾ ; VDD range 4.0V to 5.5V PIC16LF7X ⁽¹⁾ , PIC16LF7XT ⁽¹⁾ ; VDD range 2.0V to 5.5V	 package, normal VDD limits, QTP pattern #301. b) PIC16LF76-I/SO = Industrial temp., SOIC package, Extended VDD limits. c) PIC16F74-E/P = Extended temp., PDIP package, normal VDD limits.
Temperature Range	$ \begin{array}{rcl} I &=& -40^{\circ}\text{C to} & +85^{\circ}\text{C} & (\text{Industrial}) \\ \text{E} &=& -40^{\circ}\text{C to} & +125^{\circ}\text{C} & (\text{Extended}) \end{array} $	Note 1: F = CMOS FLASH LF = Low Power CMOS FLASH
Package	$\begin{array}{llllllllllllllllllllllllllllllllllll$	2: T = in tape and reel - SOIC, PLCC, SSOP, TQFP packages only.
Pattern	QTP, SQTP, Code or Special Requirements (blank otherwise)	

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

- 1. Your local Microchip sales office
- 2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
- 3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.