

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, Ethernet, I ² C, IrDA, LINbus, Memory Card, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	140
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	132K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	201-UFBGA
Supplier Device Package	176+25UFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f217ieh6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

9	Revi	sion history
8	Orde	ering information
	7.6	Thermal characteristics
	7.5	UFBGA176+25 package information
	7.4	LQFP176 package information 160

Р	Peripherals	STM32	F215Rx	STM32	2F215Vx	STM32	F215Zx	STM32	2F217Vx	STM32F217Zx		STM3	2F217lx
Flash memory in Kb		512	1024	512	1024	512	1024	512	1024	512	1024	512	1024
System		512	1024	512	1024	512		8(112+16)	1024	512	1024	512	1024
SRAM in Kbytes Backup			1	1	4		1		4		4		4
FSMC memory cont	-	N			+	•	•		4 Yes ⁽¹⁾		+		+
Ethernet ⁽²⁾			0	l	No			1	162.		Yes		
Ellemet					INU			10			Tes		
	General-purpose							10					
	Advanced-control							2					
Timers	Basic		2										
	IWDG		Yes										
	WWDG							Yes					
RTC			Yes										
Random number ge	nerator							Yes					
	SPI / (I ² S)							3/(2) ⁽³⁾					
	I ² C	3											
Communication	USART UART	4 2											
menaces	USB OTG FS	Yes											
	USB OTG HS	Yes											
	CAN	2											
Camera interface ⁽²⁾	·				No						Yes		
Encryption								Yes					
GPIOs		5	1	8	82	11	14	8	32	1	14	1	40
SDIO								Yes					
12-bit ADC Number of channels								3					
		1	6		16	2	4		16	2	24	:	24
12-bit DAC Number of channels		Yes 2											
Maximum CPU frequ	uency	120 MHz											
Operating voltage							1.8	V to 3.6 V					

Table 2. STM32F215xx and STM32F217xx: features and peripheral counts

577

15/10

STM32F21xxx

3.4 Embedded Flash memory

The STM32F21x devices embed a 128-bit wide Flash memory of 128 Kbytes, 256 Kbytes, 512 Kbytes, 768 Kbytes or 1 Mbyte available for storing programs and data.

The devices also feature 512 bytes of OTP memory that can be used to store critical user data such as Ethernet MAC addresses or cryptographic keys.

3.5 CRC (cyclic redundancy check) calculation unit

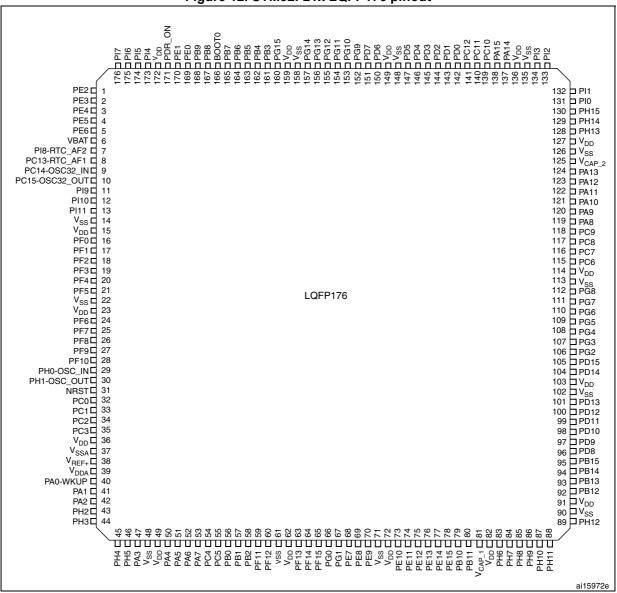
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a software signature during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

3.6 Embedded SRAM

All STM32F21x products embed:

- Up to 128 Kbytes of system SRAM accessed (read/write) at CPU clock speed with 0 wait states
- 4 Kbytes of backup SRAM.


The content of this area is protected against possible unwanted write accesses, and is retained in Standby or VBAT mode.

3.7 Multi-AHB bus matrix

The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, Ethernet, USB HS) and the slaves (Flash memory, RAM, FSMC, AHB and APB peripherals) and ensures a seamless and efficient operation even when several high-speed peripherals work simultaneously.

Pinouts and pin description

Figure 12. STM32F21x LQFP176 pinout

1. RFU means "reserved for future use". This pin can be tied to $V_{\text{DD}}, V_{\text{SS}}$ or left unconnected.

2. The above figure shows the package top view.

LQFP100

1

2

3

LQFP64

-

-

-

					•			
Pins	5							
LQFP144	LQFP176	UFBGA176	Pin name (function after reset) ⁽¹⁾	function after		Additional functions		
1	1	A2	PE2	I/O	FT	-	TRACECLK, FSMC_A23, ETH_MII_TXD3, EVENTOUT	-
2	2	A1	PE3	I/O	FT	-	TRACED0, FSMC_A19, EVENTOUT	-
3	3	B1	PE4	I/O	FT	-	TRACED1, FSMC_A20, DCMI_D4/ EVENTOUT	-
4	4	B2	PE5	I/O	FT	-	TRACED2, FSMC_A21, TIM9_CH1, DCMI_D6, EVENTOLIT	-

Table 7. STM32F21x pin and ball definitions

-	4	4	4	B2	PE5	I/O	FT	-	TIM9_CH1, DCMI_D6, EVENTOUT	-
-	5	5	5	B3	PE6	I/O	FT	-	TRACED3, FSMC_A22, TIM9_CH2, DCMI_D7, EVENTOUT	-
1	6	6	6	C1	V _{BAT}	S	-	-	-	-
-	-	-	7	D2	PI8	I/O	FT	(2)(3)	EVENTOUT	RTC_AF2
2	7	7	8	D1	PC13	I/O	FT	(2)(3)	EVENTOUT	RTC_AF1
3	8	8	9	E1	PC14/OSC32_IN (PC14)	I/O	FT	(2)(3)	EVENTOUT	OSC32_IN ⁽⁴⁾
4	9	9	10	F1	PC15/ OSC32_OUT (PC15)	I/O	FT	(2)(3)	EVENTOUT	OSC32_OUT ⁽⁴⁾
-	-	-	11	D3	PI9	I/O	FT	-	CAN1_RX, EVENTOUT	-
-	-	-	12	E3	PI10	I/O	FT	-	ETH_MII_RX_ER, EVENTOUT	-
-	-	-	13	E4	PI11	I/O	FT	-	OTG_HS_ULPI_DIR, EVENTOUT	-
-	-	-	14	F2	V _{SS}	S		-	-	-
-	-	-	15	F3	V _{DD}	S		-	-	-
-	-	10	16	E2	PF0	I/O	FT	-	FSMC_A0, I2C2_SDA, EVENTOUT	-
-	-	11	17	H3	PF1	I/O	FT	-	FSMC_A1, I2C2_SCL, EVENTOUT	-
-	-	12	18	H2	PF2	I/O	FT	-	FSMC_A2, I2C2_SMBA, EVENTOUT	-
-	-	13	19	J2	PF3	I/O	FT	(4)	FSMC_A3, EVENTOUT	ADC3_IN9

		Pins	;							
LQFP64	LQFP100	LQFP144	LQFP176	UFBGA176	Pin name (function after reset) ⁽¹⁾	Pin type	I / O structure	Note	Alternate functions	Additional functions
38	64	97	116	G15	PC7	I/O	FT	-	I2S3_MCK, TIM8_CH2,SDIO_D7, USART6_RX, DCMI_D1,TIM3_CH2, EVENTOUT	-
39	65	98	117	G14	PC8	I/O	FT	-	TIM8_CH3,SDIO_D0, TIM3_CH3, USART6_CK, DCMI_D2, EVENTOUT	-
40	66	99	118	F14	PC9	I/O	FT	-	I2S2_CKIN, I2S3_CKIN, MCO2, TIM8_CH4,SDIO_D1, I2C3_SDA, DCMI_D3, TIM3_CH4, EVENTOUT	-
41	67	100	119	F15	PA8	I/O	FT	-	MCO1, USART1_CK, TIM1_CH1, I2C3_SCL, OTG_FS_SOF, EVENTOUT	-
42	68	101	120	E15	PA9	I/O	FT	-	USART1_TX, TIM1_CH2, I2C3_SMBA, DCMI_D0, EVENTOUT	OTG_FS_ VBUS
43	69	102	121	D15	PA10	I/O	FT	-	USART1_RX, TIM1_CH3, OTG_FS_ID,DCMI_D1, EVENTOUT	-
44	70	103	122	C15	PA11	I/O	FT	-	USART1_CTS, CAN1_RX, TIM1_CH4, OTG_FS_DM, EVENTOUT	-
45	71	104	123	B15	PA12	I/O	FT	-	USART1_RTS, CAN1_TX, TIM1_ETR, OTG_FS_DP, EVENTOUT	-
46	72	105	124	A15	PA13 (JTMS-SWDIO)	I/O	FT	-	JTMS-SWDIO, EVENTOUT	-
47	73	106	125	F13	V _{CAP_2}	S	-	-	-	-
-	74	107	126	F12	V _{SS}	S	-	-	-	
48	75	108	127	G13	V _{DD}	S	-	-	-	-
-	-	-	128	E12	PH13	I/O	FT	-	TIM8_CH1N, CAN1_TX, EVENTOUT	-
-	-	-	129	E13	PH14	I/O	FT	-	TIM8_CH2N, DCMI_D4, EVENTOUT	-

Table 7. STM32F21x pin and ball definitions (continued)

		Pins	;							
LQFP64	LQFP100	LQFP144	LQFP176	UFBGA176	Pin name (function after reset) ⁽¹⁾	Pin type	I / O structure	Note	Alternate functions	Additional functions
54	83	116	144	D12	PD2	I/O	FT	-	TIM3_ETR,UART5_RX SDIO_CMD, DCMI_D11, EVENTOUT	-
-	84	117	145	D11	PD3	I/O	FT	-	FSMC_CLK,USART2_CTS, EVENTOUT	-
-	85	118	146	D10	PD4	I/O	FT	-	FSMC_NOE,USART2_RTS, EVENTOUT	-
-	86	119	147	C11	PD5	I/O	FT	-	FSMC_NWE,USART2_TX, EVENTOUT	-
-	-	120	148	D8	V _{SS}	S		-	-	-
-	-	121	149	C8	V _{DD}	S		-	-	-
-	87	122	150	B11	PD6	I/O	FT	-	FSMC_NWAIT,USART2_RX, EVENTOUT	-
-	88	123	151	A11	PD7	I/O	FT	-	USART2_CK,FSMC_NE1, FSMC_NCE2, EVENTOUT	-
-	-	124	152	C10	PG9	I/O	FT	-	USART6_RX, FSMC_NE2,FSMC_NCE3, EVENTOUT	-
-	-	125	153	B10	PG10	I/O	FT	-	FSMC_NCE4_1, FSMC_NE3, EVENTOUT	-
-	-	126	154	В9	PG11	I/O	FT	-	FSMC_NCE4_2, ETH_MII_TX_EN, ETH_RMII_TX_EN, EVENTOUT	-
-	-	127	155	B8	PG12	I/O	FT	-	FSMC_NE4, USART6_RTS, EVENTOUT	-
-	-	128	156	A8	PG13	I/O	FT	-	FSMC_A24, USART6_CTS, ETH_MII_TXD0, ETH_RMII_TXD0, EVENTOUT	-
-	-	129	157	A7	PG14	I/O	FT	-	FSMC_A25, USART6_TX, ETH_MII_TXD1, ETH_RMII_TXD1, EVENTOUT	-
-	-	130	158	D7	V _{SS}	S	-	-	-	-
-	-	131	159	C7	V _{DD}	S	-	-	-	-

Table 7. STM32F21x pin and ball definitions (continued)

						,
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
M	Brownout level 2	Falling edge	2.44	2.50	2.56	V
V _{BOR2}	threshold	Rising edge	2.53	2.59	2.63	V
M	Brownout level 3	Falling edge	2.75	2.83	2.88	V
V _{BOR3}	threshold	Rising edge	2.85	2.92	2.97	V
V _{BORhyst} ⁽¹⁾	BOR hysteresis	-	-	100	-	mV
T _{RSTTEMPO} ⁽¹⁾⁽²⁾	Reset temporization	-	0.5	1.5	3.0	ms
I _{RUSH} ⁽¹⁾	InRush current on voltage regulator power-on (POR or wakeup from Standby)	-	-	160	200	mA
E _{RUSH} ⁽¹⁾	InRush energy on voltage regulator power-on (POR or wakeup from Standby)	V _{DD} = 1.8 V, T _A = 105 °C, I _{RUSH} = 171 mA for 31 μs	-	-	5.4	μC

Table 18. Embedded reset and	power control block characteristics ((continued)

1. Guaranteed by design, not tested in production.

2. The reset temporization is measured from the power-on (POR reset or wakeup from V_{BAT}) to the instant when first instruction is read by the user application code.

6.3.6 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Figure 18: Current consumption measurement scheme*.

All Run mode current consumption measurements given in this section are performed using ${\sf CoreMark}^{\textcircled{R}}$ code.

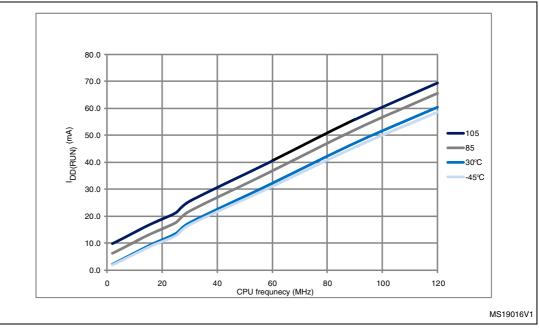
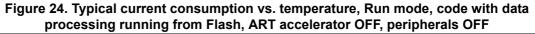
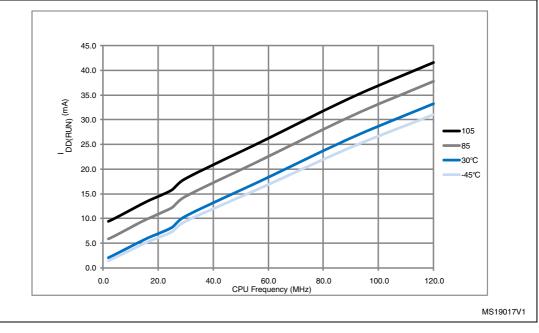
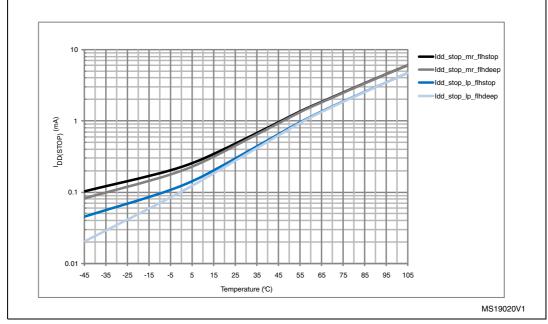




Figure 23. Typical current consumption vs. temperature, Run mode, code with data processing running from Flash, ART accelerator OFF, peripherals ON



			Тур		Max		
Symbol	Parameter	Conditions	T _A = 25 °C	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
	Supply current in Stop mode	Flash in Stop mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	0.55	1.2	11.00	20.00	
	with main regulator in Run mode	Flash in Deep power down mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	0.50	1.2	11.00	20.00	mA
		Flash in Stop mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	0.35	1.1	8.00	15.00	IIIA
	regulator in Low-power mode	Flash in Deep power down mode, low-speed and high-speed internal RC oscillators and high-speed oscillator OFF (no independent watchdog)	0.30	1.1	8.00	15.00	

Table 22. Typical and maximum current consumptions in Stop mode

All typical and maximum values from table 18 and figure 26 will be reduced over time by up to 50% as part
of ST continuous improvement of test procedures. New versions of the datasheet will be released to reflect
these changes

				Тур		Ма		
Symbol	Parameter	Conditions	Т	A = 25 °C	C	T _A = 85 °C T _A = 105 °C		Unit
•			V _{DD} = 1.8 V	V _{DD} = 2.4 V	V _{DD} = 3.3 V	V _{DD} =	= 3.6 V	
		Backup SRAM ON, low-speed oscillator and RTC ON	3.0	3.4	4.0	15.1	25.8	
I _{DD_STBY}		Backup SRAM OFF, low- speed oscillator and RTC ON	2.4	2.7	3.3	12.4	20.5	μA
		Backup SRAM ON, RTC OFF	2.4	2.6	3.0	12.5	24.8	
		Backup SRAM OFF, RTC OFF	1.7	1.9	2.2	9.8	19.2	

Table 23. Typical and maximum current consumptions in Standby mode

1. Guaranteed by characterization results, not tested in production.

Table	24. Typical and maximum cu	rrent consumptions in	n V _{BAT} mode

			Тур			Ма		
Symbol	Parameter	r Conditions	T _A = 25 °C		T _A = 85 °C	T _A = 105 °C	Unit	
				V _{DD} = 2.4 V	V _{DD} = 3.3 V	V _{DD} =	= 3.6 V	
		Backup SRAM ON, low-speed oscillator and RTC ON	1.29	1.42	1.68	12	19	
I _{DD_VBAT}	Backup domain supply current	Backup SRAM OFF, low-speed oscillator and RTC ON	0.62	0.73	0.96	8	10	μA
		Backup SRAM ON, RTC OFF	0.79	0.81	0.86	9	16	
		Backup SRAM OFF, RTC OFF	0.10	0.10	0.10	5	7	

1. Guaranteed by characterization results, not tested in production.

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in *Table 25*. The MCU is placed under the following conditions:

- At startup, all I/O pins are configured as analog inputs by firmware.
- All peripherals are disabled unless otherwise mentioned
- The given value is calculated by measuring the current consumption
 - with all peripherals clocked off
 - with one peripheral clocked on (with only the clock applied)
- The code is running from Flash memory and the Flash memory access time is equal to 3 wait states at 120 MHz
- Prefetch and Cache ON
- When the peripherals are enabled, HCLK = 120MHz, f_{PCLK1} = $f_{HCLK}/4,$ and f_{PCLK2} = $f_{HCLK}/2$
- The typical values are obtained for V_{DD} = 3.3 V and T_A= 25 $^\circ\text{C},$ unless otherwise specified.

DocID17050 Rev 13

6.3.8 External clock source characteristics

High-speed external user clock generated from an external source

The characteristics given in *Table 27* result from tests performed using an high-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 13*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE_ext}	External user clock source frequency ⁽¹⁾		1	-	26	MHz
V _{HSEH}	OSC_IN input pin high level voltage		$0.7V_{DD}$	-	V_{DD}	V
V _{HSEL}	OSC_IN input pin low level voltage	-	V_{SS}	-	$0.3V_{\text{DD}}$	v
t _{w(HSE)} t _{w(HSE)}	OSC_IN high or low time ⁽¹⁾		5	-	-	ns
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time ⁽¹⁾		-	-	20	115
C _{in(HSE)}	OSC_IN input capacitance ⁽¹⁾	-	-	5	-	pF
DuCy _(HSE)	Duty cycle	-	45	-	55	%
١ _L	OSC_IN Input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	μA

 Table 27. High-speed external user clock characteristics

1. Guaranteed by design, not tested in production.

Low-speed external user clock generated from an external source

The characteristics given in *Table 28* result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 13*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSE_ext}	User External clock source frequency ⁽¹⁾		-	32.768	1000	kHz
V _{LSEH}	OSC32_IN input pin high level voltage		$0.7 V_{\text{DD}}$	-	V_{DD}	v
V _{LSEL}	OSC32_IN input pin low level voltage		V_{SS}	-	$0.3V_{\text{DD}}$	
t _{w(LSE)} t _{f(LSE)}	OSC32_IN high or low time ⁽¹⁾	-	450	-	-	ns
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time ⁽¹⁾		-	-	50	115
C _{in(LSE)}	OSC32_IN input capacitance ⁽¹⁾	-	-	5	-	pF
DuCy _(LSE)	Duty cycle	-	30	-	70	%
١L	OSC32_IN Input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	μA

1. Guaranteed by design, not tested in production.

Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
			RMS	-	25	-	
	Cycle-to-cycle jitter	r t System clock		-	±150	-	
	Period Jitter	120 MHz	RMS	-	15	-	
Jitter ⁽³⁾			peak to peak	-	<u>+200</u>	-	ps
	Main clock output (MCO) for RMII Ethernet	Cycle to cycle at 50 MHz on 1000 samples		-	32	-	
	Main clock output (MCO) for MII Ethernet	Cycle to cycle at 25 MHz on 1000 samples		-	40	-	
	Bit Time CAN jitter	Cycle to cycle at 1 MHz on 1000 samples		-	330	-	
I _{DD(PLL)} ⁽⁴⁾	PLL power consumption on VDD	VCO freq = 192 MHz VCO freq = 432 MHz		0.15 0.45	-	0.40 0.75	mA
I _{DDA(PLL)} ⁽⁴⁾	PLL power consumption on VDDA	VCO freq = 192 MHz VCO freq = 432 MHz		0.30 0.55	-	0.40 0.85	mA

Table 33. Main PLL characteristics (continued)

1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared between PLL and PLLI2S.

2. Guaranteed by design, not tested in production.

3. The use of 2 PLLs in parallel could degraded the Jitter up to +30%.

4. Guaranteed by characterization results, not tested in production.

Table 34. PLLI2S (audio PLL) characteristics

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{PLLI2S_IN}	PLLI2S input clock ⁽¹⁾	-	0.95 ⁽²⁾	1	2.10 ⁽²⁾	MHz
f _{PLLI2S_OUT}	PLLI2S multiplier output clock	-	-	-	216	MHz
f _{VCO_OUT}	PLLI2S VCO output	-	192	-	432	MHz
+	PLLI2S lock time	VCO freq = 192 MHz	75	-	200	
^t LOCK		VCO freq = 432 MHz	100	-	300	μs

Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
	Master I2S clock jitter	Cycle to cycle at 12.288 MHz on 48KHz period, N=432, R=5 Peak	RMS	-	90	-	
			to	-	±280	-	ps
Jitter ⁽³⁾		Average frequency of 12.288 MHz N=432, R=5 on 1000 samples		-	90	-	ps
	WS I2S clock jitter	Cycle to cycle at 48 I on 1000 samples	KHz	-	400	-	ps
I _{DD(PLLI2S)} ⁽⁴⁾	PLLI2S power consumption on V_{DD}	VCO freq = 192 MHz VCO freq = 432 MHz		0.15 0.45	-	0.40 0.75	mA
I _{DDA(PLLI2S)} ⁽⁴⁾	PLLI2S power consumption on V_{DDA}	VCO freq = 192 MHz VCO freq = 432 MHz		0.30 0.55	-	0.40 0.85	mA

 Table 34. PLLI2S (audio PLL) characteristics (continued)

1. Take care of using the appropriate division factor M to have the specified PLL input clock values.

2. Guaranteed by design, not tested in production.

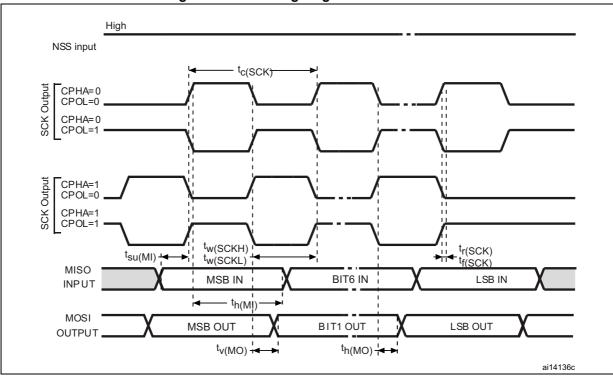
3. Value given with main PLL running.

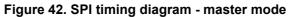
4. Guaranteed by characterization results, not tested in production.

Symbol	Parameter	Parameter Conditions Min		Мах	Unit
		AHB/APB2	1	-	t _{TIMxCLK}
t _{res(TIM)}	Timer resolution time	prescaler distinct from 1, f _{TIMxCLK} = 120 MHz	8.3	-	ns
		AHB/APB2	1	-	t _{TIMxCLK}
		prescaler = 1, f _{TIMxCLK} = 60 MHz	16.7	-	ns
f _{EXT}	Timer external clock		0	f _{TIMxCLK} /2	MHz
'EXT	frequency on CH1 to CH4		0	60	MHz
Res _{TIM}	Timer resolution		-	16	bit
+	16-bit counter clock period	f _{TIMxCLK} = 120 MHz APB2 = 60 MHz	1	65536	t _{TIMxCLK}
^t COUNTER	when internal clock is selected		0.0083	546	μs
tury ocupit	Maximum possible count		-	65536 × 65536	t _{TIMxCLK}
t _{MAX_COUNT}	Maximum possible count		-	35.79	S

 Table 50. Characteristics of TIMx connected to the APB2 domain⁽¹⁾

1. TIMx is used as a general term to refer to the TIM1, TIM8, TIM9, TIM10, and TIM11 timers.


6.3.19 Communications interfaces


I²C interface characteristics

STM32F215xx and STM32F217xx I^2C interface meets the requirements of the standard I^2C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DD} is disabled, but is still present.

The I²C characteristics are described in *Table 51*. Refer also to *Section 6.3.16: I/O port characteristics* for more details on the input/output alternate function characteristics (SDA and SCL).

DocID17050 Rev 13

USB OTG FS characteristics

The USB OTG interface is USB-IF certified (Full-Speed). This interface is present in both the USB OTG HS and USB OTG FS controllers.

Symbol	Parameter	Мах	Unit			
t _{STARTUP} ⁽¹⁾	USB OTG FS transceiver startup time	1	μs			

Table 55. USB OTG FS startup time

1. Guaranteed by design, not tested in production.

Sym	bol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
	V_{DD}	USB OTG FS operating voltage		3.0 ⁽²⁾	-	3.6	۷
Input	V _{DI} ⁽³⁾	Differential input sensitivity	I(USB_FS_DP/DM, USB_HS_DP/DM)	0.2	-	-	
levels	V _{CM} ⁽³⁾	Differential common mode range	Includes V _{DI} range	0.8	-	2.5	V
	$V_{SE}^{(3)}$	Single ended receiver threshold		1.3	-	2.0	
Output	V_{OL}	Static output level low	$\rm R_L$ of 1.5 k\Omega to 3.6 $\rm V^{(4)}$	-	-	0.3	V
levels	V_{OH}	Static output level high	${\sf R}_{\sf L}$ of 15 k Ω to ${\sf V}_{\sf SS}{}^{(4)}$	2.8	-	3.6	v
Б		PA11, PA12, PB14, PB15 (USB_FS_DP/DM, USB_HS_DP/DM)	V _{IN} = V _{DD}	17	21	24	
R _{PD} PA9, PB13 (OTG_FS_VBUS, OTG_HS_VBUS)	(OTG_FS_VBUS,	VIN - VDD	0.65	1.1	2.0	kΩ	
		PA12, PB15 (USB_FS_DP, USB_HS_DP)	V _{IN} = V _{SS}	1.5	1.8	2.1	
R _{PU}		PA9, PB13 (OTG_FS_VBUS, OTG_HS_VBUS)	V _{IN} = V _{SS}	0.25	0.37	0.55	

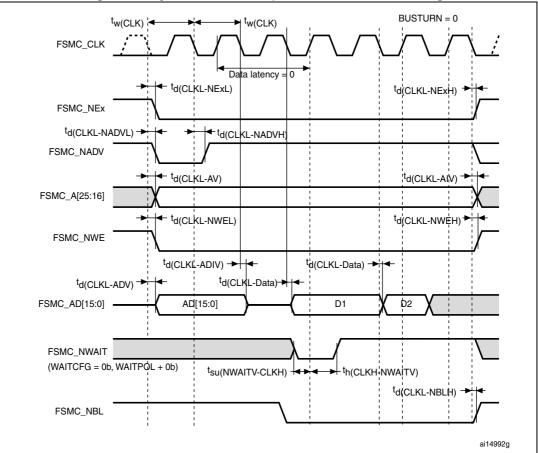
Table 56. USB OTG FS DC electrical characteristics

1. All the voltages are measured from the local ground potential.

2. The STM32F215xx and STM32F217xx USB OTG FS functionality is ensured down to 2.7 V but not the full USB OTG FS electrical characteristics which are degraded in the 2.7-to-3.0 V V_{DD} voltage range.

3. Guaranteed by design, not tested in production.

4. R_L is the load connected on the USB OTG FS drivers



		(00110110		
Symbol	Parameter	Min	Мах	Unit
t _{su(ADV-CLKH)}	FSMC_A/D[15:0] valid data before FSMC_CLK high	5	-	ns
t _{h(CLKH-ADV)}	FSMC_A/D[15:0] valid data after FSMC_CLK high	0	-	ns

Table 75. Synchronous multiplexed NOR/PSRAM read timings⁽¹⁾⁽²⁾ (continued)

1. C_L = 30 pF.

2. Guaranteed by characterization results, not tested in production.

Figure 60. Synchronous multiplexed PSRAM write timings

Table 76. Synchronous multiplexed PSRAM write timings⁽¹⁾⁽²⁾

Symbol	nbol Parameter		Max	Unit
t _{w(CLK)}	FSMC_CLK period	2T _{HCLK} - 1	-	ns
t _{d(CLKL-NExL)}	FSMC_CLK low to FSMC_NEx low (x=02)	-	0	ns
t _{d(CLKL-NExH)}	FSMC_CLK low to FSMC_NEx high (x= 02)	2	-	ns
t _{d(CLKL-NADVL)}	FSMC_CLK low to FSMC_NADV low	-	2	ns
t _{d(CLKL-NADVH)}	FSMC_CLK low to FSMC_NADV high	3	-	ns
t _{d(CLKL-AV)}	FSMC_CLK low to FSMC_Ax valid (x=1625)	-	0	ns
t _{d(CLKL-AIV)}	FSMC_CLK low to FSMC_Ax invalid (x=1625)	7	-	ns

DocID17050 Rev 13

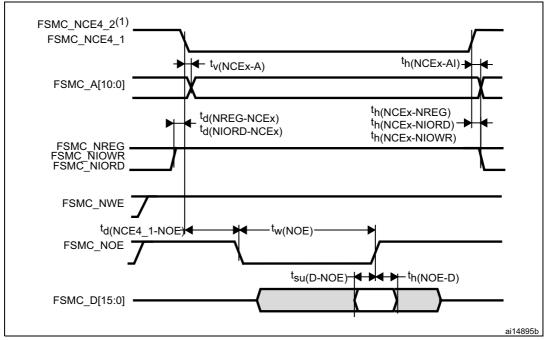
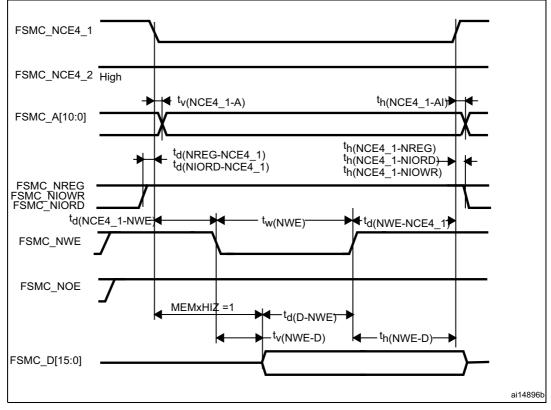



Figure 63. PC Card/CompactFlash controller waveforms for common memory read access

1. FSMC_NCE4_2 remains high (inactive during 8-bit access.

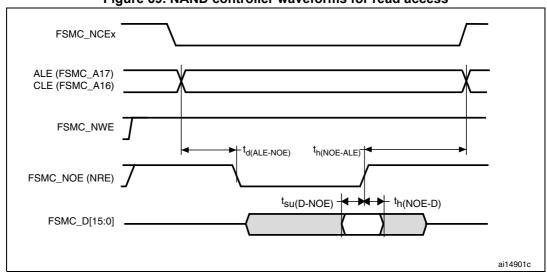
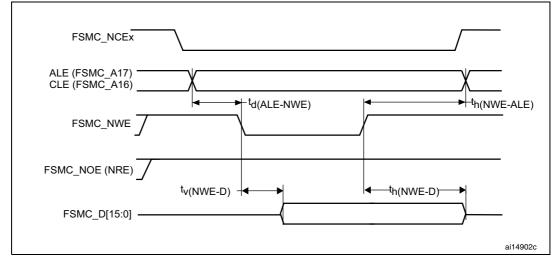



Figure 69. NAND controller waveforms for read access

Figure 70. NAND controller waveforms for write access

