

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, Ethernet, I ² C, IrDA, LINbus, Memory Card, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	140
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	132K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	176-LQFP
Supplier Device Package	176-LQFP (24x24)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f217igt6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. RFU = reserved for future use.

1. RFU = reserved for future use.

		Pins	5	_						
LQFP64	LQFP100	LQFP144	LQFP176	UFBGA176	Pin name (function after reset) ⁽¹⁾	Pin type	I / O structure Note		Alternate functions	Additional functions
63	-	-	-	-	V _{SS}	S	-	-	-	-
-	99	143	171	C6	RFU	-	-	(7)	-	-
64	100	144	172	C5	V _{DD}	S	-	-	-	-
-	-	-	173	D4	Pl4	I/O	FT	-	TIM8_BKIN, DCMI_D5, EVENTOUT	-
-	-	-	174	C4	PI5	I/O	FT	-	TIM8_CH1, DCMI_VSYNC, EVENTOUT	-
-	-	-	175	C3	Pl6	I/O	FT	-	TIM8_CH2, DCMI_D6, EVENTOUT	-
-	-	-	176	C2	PI7	I/O	FT	-	TIM8_CH3, DCMI_D7, EVENTOUT	-

Table 7. STM32F21x pin and ball definitions (continued)

1. Function availability depends on the chosen device.

 PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited: the speed should not exceed 2 MHz with a maximum load of 30 pF and these I/Os must not be used as a current source (e.g. to drive an LED).

- Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC register description sections in the STM32F20x and STM32F21x reference manual, available from the STMicroelectronics website www.st.com.
- 4. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).
- 5. If the device is delivered in an UFBGA176 package and if the REGOFF pin is set to V_{DD} (Regulator OFF), then PA0 is used as an internal Reset (active low).
- 6. FSMC_NL pin is also named FSMC_NADV on memory devices.
- 7. RFU means "reserved for future use". This pin can be tied to V_{DD} , V_{SS} or left unconnected.

Table 8. FSMC pin definition

Dine					
FIIIS	CF	NOR/PSRAM/SRAM	NOR/PSRAM Mux	NAND 16 bit	LQFF100
PE2	-	A23	A23	-	Yes
PE3	-	A19	A19	-	Yes
PE4	-	A20	A20	-	Yes
PE5	-	A21	A21	-	Yes
PE6	-	A22	A22	-	Yes
PF0	A0	A0	-	-	-
PF1	A1	A1	-	-	-

Table 8.	FSMC	pin	definition	(continued)
		P · · · ·		(

	FSMC									
Pins	CF	NOR/PSRAM/SRAM	NOR/PSRAM Mux	NAND 16 bit	LQFP100					
PF2	A2	A2	-	-	-					
PF3	A3	A3	-	-	-					
PF4	A4	A4	-	-	-					
PF5	A5	A5	-	-	-					
PF6	NIORD	-	-	-	-					
PF7	NREG	-	-	-	-					
PF8	NIOWR	-	-	-	-					
PF9	CD	-	-	-	-					
PF10	INTR	-	-	-	-					
PF12	A6	A6	-	-	-					
PF13	A7	A7	-	-	-					
PF14	A8	A8	-	-	-					
PF15	A9	A9	-	-	-					
PG0	A10	A10	-	-	-					
PG1	-	A11	-	-	-					
PE7	D4	D4	DA4	D4	Yes					
PE8	D5	D5	DA5	D5	Yes					
PE9	D6	D6	DA6	D6	Yes					
PE10	D7	D7	DA7	D7	Yes					
PE11	D8	D8	DA8	D8	Yes					
PE12	D9	D9	DA9	D9	Yes					
PE13	D10	D10	DA10	D10	Yes					
PE14	D11	D11	DA11	D11	Yes					
PE15	D12	D12	DA12	D12	Yes					
PD8	D13	D13	DA13	D13	Yes					
PD9	D14	D14	DA14	D14	Yes					
PD10	D15	D15	DA15	D15	Yes					
PD11	-	A16	A16	CLE	Yes					
PD12	-	A17	A17	ALE	Yes					
PD13	-	A18	A18	-	Yes					
PD14	D0	D0	DA0	D0	Yes					
PD15	D1	D1	DA1	D1	Yes					
PG2	-	A12	-	-	-					

പ	
Ň	
32F	
21	
X	
~	

DocID17050 Rev 13

577

63/10

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13		
	Port	SYS	TIM1/2	TIM3/4/5	TIM8/9/10/11	12C1/12C2/12C3	SPI1/SPI2/I2S2	SPI3/I2S3	USART1/2/3	UART4/5/ USART6	CAN1/CAN2/ TIM12/13/14	OTG_FS/ OTG_HS	ЕТН	FSMC/SDIO/ OTG_HS	DCMI	AF014	AF15
	PD0	-	-	-	-	-	-	-	-	-	CAN1_RX	-	-	FSMC_D2	-	-	EVENTOUT
	PD1	-	-	-	-	-	-	-	-	-	CAN1_TX	-	-	FSMC_D3	-	-	EVENTOUT
	PD2	-	-	TIM3_ETR	-	-	-	-	-	UART5_RX	-	-	-	SDIO_CMD	DCMI_D11	-	EVENTOUT
	PD3	-	-	-	-	-	-	-	USART2_CTS	-	-	-	-	FSMC_CLK	-	-	EVENTOUT
	PD4	-	-	-	-	-	-	-	USART2_RTS	-	-	-	-	FSMC_NOE	-	-	EVENTOUT
	PD5	-	-	-	-	-	-	-	USART2_TX	-	-	-	-	FSMC_NWE	-	-	EVENTOUT
	PD6	-	-	-	-	-	-	-	USART2_RX	-	-	-	-	FSMC_NWAIT	-	-	EVENTOUT
	PD7	-	-	-	-	-	-	-	USART2_CK	-	-	-	-	FSMC_NE1/ FSMC_NCE2	-	-	EVENTOUT
Port D	PD8	-	-	-	-	-	-	-	USART3_TX	-	-	-	-	FSMC_D13	-	-	EVENTOUT
	PD9	-	-	-	-	-	-	-	USART3_RX	-	-	-	-	FSMC_D14	-	-	EVENTOUT
	PD10	-	-	-	-	-	-	-	USART3_CK	-	-	-	-	FSMC_D15	-	-	EVENTOUT
	PD11	-	-	-	-	-	-	-	USART3_CTS	-	-	-	-	FSMC_A16	-	-	EVENTOUT
	PD12	-	-	TIM4_CH1	-	-	-	-	USART3_RTS	-	-	-	-	FSMC_A17	-	-	EVENTOUT
	PD13	-	-	TIM4_CH2	-	-	-	-	-	-	-	-	-	FSMC_A18	-	-	EVENTOUT
	PD14	-	-	TIM4_CH3	-	-	-	-	-	-	-	-	-	FSMC_D0	-	-	EVENTOUT
	PD15	-	-	TIM4_CH4	-	-	-	-	-	-	-	-	-	FSMC_D1	-	-	EVENTOUT
	PE0	-	-	TIM4_ETR	-	-	-	-	-	-	-	-	-	FSMC_NBL0	DCMI_D2	-	EVENTOUT
	PE1	-	-	-	-	-	-	-	-	-	-	-	-	FSMC_NBL1	DCMI_D3	-	EVENTOUT
	PE2	TRACECLK	-	-	-	-	-	-	-	-	-	-	ETH_MII_TXD3	FSMC_A23	-	-	EVENTOUT
	PE3	TRACED0	-	-	-	-	-	-	-	-	-	-	-	FSMC_A19	-	-	EVENTOUT
	PE4	TRACED1	-	-	-	-	-	-	-	-	-	-	-	FSMC_A20	DCMI_D4	-	EVENTOUT
	PE5	TRACED2	-	-	TIM9_CH1	-	-	-	-	-	-	-	-	FSMC_A21	DCMI_D6	-	EVENTOUT
	PE6	TRACED3	-	-	TIM9_CH2	-	-	-	-	-	-	-	-	FSMC_A22	DCMI_D7	-	EVENTOUT
Dest F	PE7	-	TIM1_ETR	-	-	-	-	-	-	-	-	-	-	FSMC_D4	-	-	EVENTOUT
Port E	PE8	-	TIM1_CH1N	-	-	-	-	-	-	-	-	-	-	FSMC_D5	-	-	EVENTOUT
	PE9	-	TIM1_CH1	-	-	-	-	-	-	-	-	-	-	FSMC_D6	-	-	EVENTOUT
	PE10	-	TIM1_CH2N	-	-	-	-	-	-	-	-	-	-	FSMC_D7	-	-	EVENTOUT
	PE11	-	TIM1_CH2	-	-	-	-	-	-	-	-	-	-	FSMC_D8	-	-	EVENTOUT
	PE12	-	TIM1_CH3N	-	-	-	-	-	-	-	-	-	-	FSMC_D9	-	-	EVENTOUT
	PE13	-	TIM1_CH3	-	-	-	-	-	-	-	-	-	-	FSMC_D10	-	-	EVENTOUT
	PE14	-	TIM1_CH4	-	-	-	-	-	-	-	-	-	-	FSMC_D11	-	-	EVENTOUT
	PE15	-	TIM1_BKIN	-	-	-	-	-	-	-	-	-	-	FSMC_D12	-	-	EVENTOUT

Table 9. Alternate function mapping (continued)

Pinouts and pin description

6.1.6 Power supply scheme

Figure 17. Power supply scheme

 Each power supply pair must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device.

2. To connect REGOFF pin, refer to Section 3.16: Voltage regulator.

3. The two 2.2 μF ceramic capacitors should be replaced by two 100 nF decoupling capacitors when the voltage regulator is OFF.

4. The 4.7 μF ceramic capacitor must be connected to one of the V_{DD} pin.

Caution: Each power supply pair (V_{DD}/V_{SS}, V_{DDA}/V_{SSA} ...) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB, to ensure good device operation. It is not recommended to remove filtering capacitors to reduce PCB size or cost. This might cause incorrect device operation.

Operating power supply range	ADC operation	Maximum Flash memory access frequency (f _{Flashmax})	Number of wait states at maximum CPU frequency (f _{CPUmax} = 120 MHz) ⁽¹⁾	I/O operation	FSMC_CLK frequency for synchronous accesses	Possible Flash memory operations
V _{DD} =1.8 to 2.1 V	Conversion time up to 1 Msps	16 MHz with no Flash memory wait state	7 ⁽²⁾	 Degraded speed performance No I/O compensation 	Up to 30 MHz	8-bit erase and program operations only
V _{DD} = 2.1 to 2.4 V	Conversion time up to 1 Msps	18 MHz with no Flash memory wait state	6 ⁽²⁾	 Degraded speed performance No I/O compensation 	Up to 30 MHz	16-bit erase and program operations
V _{DD} = 2.4 to 2.7 V	Conversion time up to 2 Msps	24 MHz with no Flash memory wait state	4 ⁽²⁾	 Degraded speed performance I/O compensation works 	Up to 48 MHz	16-bit erase and program operations
V _{DD} = 2.7 to 3.6 V ⁽³⁾	Conversion time up to 2 Msps	30 MHz with no Flash memory wait state	3(2)	 Full-speed operation I/O compensation works 	$\begin{array}{c} - \mbox{ Up to} \\ 60\mbox{ MHz} \\ \mbox{when } \mbox{V}_{DD} = \\ 3.0\mbox{ to } 3.6\mbox{ V} \\ - \mbox{ Up to} \\ 48\mbox{ MHz} \\ \mbox{when } \mbox{V}_{DD} = \\ 2.7\mbox{ to } 3.0\mbox{ V} \end{array}$	32-bit erase and program operations

Table 14. Limitations depending on the operating power supply range

1. The number of wait states can be reduced by reducing the CPU frequency (see *Figure 19*).

2. Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does not impact the execution speed from Flash memory since the ART accelerator allows to achieve a performance equivalent to 0 wait state program execution.

3. The voltage range for OTG USB FS can drop down to 2.7 V. However it is degraded between 2.7 and 3 V.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
M	Brownout level 2	Falling edge	2.44	2.50	2.56	V
VBOR2	threshold	Rising edge	2.53	2.59	2.63	V
M	Brownout level 3	Falling edge	2.75	2.83	2.88	V
V _{BOR3}	threshold	Rising edge	2.85	2.92	2.97	V
V _{BORhyst} ⁽¹⁾	BOR hysteresis	-	-	100	-	mV
T _{RSTTEMPO} ⁽¹⁾⁽²⁾	Reset temporization	-	0.5	1.5	3.0	ms
I _{RUSH} ⁽¹⁾	InRush current on voltage regulator power-on (POR or wakeup from Standby)	-	-	160	200	mA
E _{RUSH} ⁽¹⁾	InRush energy on voltage regulator power-on (POR or wakeup from Standby)	V _{DD} = 1.8 V, T _A = 105 °C, I _{RUSH} = 171 mA for 31 μs	-	-	5.4	μC

Table 18. Embedded reset and	power control block characteristics	(continued)
		(

1. Guaranteed by design, not tested in production.

2. The reset temporization is measured from the power-on (POR reset or wakeup from V_{BAT}) to the instant when first instruction is read by the user application code.

6.3.6 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Figure 18: Current consumption measurement scheme*.

All Run mode current consumption measurements given in this section are performed using ${\sf CoreMark}^{\textcircled{R}}$ code.

Figure 21. Typical current consumption vs. temperature, Run mode, code with data processing running from RAM, and peripherals ON

Figure 22. Typical current consumption vs. temperature, Run mode, code with data processing running from RAM, and peripherals OFF

Figure 23. Typical current consumption vs. temperature, Run mode, code with data processing running from Flash, ART accelerator OFF, peripherals ON

	Peripheral ⁽¹⁾	Typical consumption at 25 °C	Unit
	SDIO	0.69	
	TIM1	1.06	
	TIM8	1.03	
	TIM9	0.58	
	TIM10	0.37	
4002	TIM11	0.39	
APDZ	ADC1 ⁽⁴⁾	2.13	ШA
	ADC2 ⁽⁴⁾	2.04	
	ADC3 ⁽⁴⁾	2.12	
	SPI1	1.20	
	USART1	0.38	
	USART6	0.37	

1. External clock is 25 MHz (HSE oscillator with 25 MHz crystal) and PLL is on.

2. EN1 bit is set in DAC_CR register.

3. EN2 bit is set in DAC_CR register.

4. $f_{ADC} = f_{PCLK2}/2$, ADON bit set in ADC_CR2 register.

6.3.7 Wakeup time from low-power mode

The wakeup times given in *Table 26* is measured on a wakeup phase with a 16 MHz HSI RC oscillator. The clock source used to wake up the device depends from the current operating mode:

- Stop or Standby mode: the clock source is the RC oscillator
- Sleep mode: the clock source is the clock that was set before entering Sleep mode.

All timings are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 13*.

Symbol	Parameter	Min ⁽¹⁾	Typ ⁽¹⁾	Max ⁽¹⁾	Unit	
t _{WUSLEEP} (2)	Wakeup from Sleep mode	-	1	-	μs	
twustop ⁽²⁾	Wakeup from Stop mode (regulator in Run mode)	-	13	-	us	
	Wakeup from Stop mode (regulator in low-power mode)	-	17	40		
	Wakeup from Stop mode (regulator in low-power mode and Flash memory in Deep power down mode)	-	110	-	F -	
t _{WUSTDBY} ⁽²⁾⁽³⁾	Wakeup from Standby mode	260	375	480	μs	

Table 26.	Low-power	mode	wakeup	timings
-----------	-----------	------	--------	---------

1. Guaranteed by characterization results, not tested in production.

2. The wakeup times are measured from the wakeup event to the point in which the application code reads the first instruction.

3. $t_{WUSTDBY}$ minimum and maximum values are given at 105 °C and -45 °C, respectively.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit		
R _F	Feedback resistor	-	-	18.4	-	MΩ		
I _{DD}	LSE current consumption	-	-	-	1	μA		
9 _m	Oscillator Transconductance	-	2.8	-	-	μA/V		
t _{SU(LSE)} ⁽²⁾	startup time	V _{DD} is stabilized	-	2	-	s		

Table 30. LSE oscillator characteristics (f_{LSE} = 32.768 kHz) ⁽¹⁾

1. Guaranteed by design, not tested in production.

 t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

Note: For information on electing the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website <u>www.st.com</u>.

Figure 31. Typical application with a 32.768 kHz crystal

6.3.9 Internal clock source characteristics

The parameters given in *Table 31* and *Table 32* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 13*.

High-speed internal (HSI) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI}	Frequency	-	-	16	-	MHz
	HSI user-trimming step ⁽²⁾	-	-	-	1	%
ACC _{HSI}	Accuracy of the HSI oscillator	$T_A = -40$ to 105 °C ⁽³⁾	- 8	-	4.5	%
		$T_A = -10$ to 85 °C ⁽³⁾	- 4	-	4	%
		$T_A = 25 \ ^{\circ}C^{(4)}$	– 1	-	1	%
t _{su(HSI)} ⁽²⁾	HSI oscillator startup time	-	-	2.2	4.0	μs
DD(HSI) ⁽²⁾	HSI oscillator power consumption	-	-	60	80	μA

 Table 31. HSI oscillator characteristics ⁽¹⁾

1. V_{DD} = 3.3 V, T_A = -40 to 105 °C unless otherwise specified.

2. Guaranteed by design, not tested in production.

- 3. Guaranteed by characterization results.
- 4. Factory calibrated, parts not soldered.

6.3.11 PLL spread spectrum clock generation (SSCG) characteristics

The spread spectrum clock generation (SSCG) feature allows to reduce electromagnetic interferences (see *Table 41: EMI characteristics*). It is available only on the main PLL.

Symbol	Parameter	Min	Тур	Max ⁽¹⁾	Unit
f _{Mod}	Modulation frequency	-	-	10	KHz
md	Peak modulation depth	0.25	-	2	%
MODEPER * INCSTEP	-	-	-	2 ¹⁵ –1	-

Table 35	SSCG	narameters	constraint
Table 33.	3300	parameters	constraint

1. Guaranteed by design, not tested in production.

Equation 1

The frequency modulation period (MODEPER) is given by the equation below:

 $MODEPER = round[f_{PLL \ IN}/ \ (4 \times f_{Mod})]$

 $f_{\text{PLL}\ \text{IN}}$ and f_{Mod} must be expressed in Hz.

As an example:

If $f_{PLL_IN} = 1$ MHz and $f_{MOD} = 1$ kHz, the modulation depth (MODEPER) is given by equation 1:

MODEPER = round
$$[10^{6}/(4 \times 10^{3})] = 250$$

Equation 2

Equation 2 allows to calculate the increment step (INCSTEP):

INCSTEP = round[
$$((2^{15} - 1) \times md \times PLLN)/(100 \times 5 \times MODEPER)$$
]

f_{VCO OUT} must be expressed in MHz.

With a modulation depth (md) = ± 2 % (4 % peak to peak), and PLLN = 240 (in MHz):

INCSTEP = round[$((2^{15}-1) \times 2 \times 240)/(100 \times 5 \times 250)$] = 126md(quantitazed)%

An amplitude quantization error may be generated because the linear modulation profile is obtained by taking the quantized values (rounded to the nearest integer) of MODPER and INCSTEP. As a result, the achieved modulation depth is quantized. The percentage quantized modulation depth is given by the following formula:

$$md_{quantized}$$
% = (MODEPER × INCSTEP × 100 × 5)/ ((2¹⁵ - 1) × PLLN)

As a result:

$$md_{quantized} \% = (250 \times 126 \times 100 \times 5) / ((2^{15} - 1) \times 240) = 2.0002\%$$
(peak)

Symbol	Parameter	Conditions	Min	Max	Unit	
V _{OL} ⁽²⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	CMOS ports	-	0.4	V	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin when 8 pins are sourced at same time	$2.7 V < V_{DD} < 3.6 V$	V _{DD} -0.4	-		
V _{OL} ⁽²⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	TTL ports	-	0.4	V	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin when 8 pins are sourced at same time	$2.7 V < V_{DD} < 3.6 V$	2.4	-	v	
V _{OL} ⁽²⁾⁽⁴⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	I _{IO} = +20 mA	-	1.3	V	
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin when 8 pins are sourced at same time	2.7 V < V _{DD} < 3.6 V	V _{DD} -1.3	-	v	
V _{OL} ⁽²⁾⁽⁴⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	I _{IO} = +6 mA	-	0.4	V	
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin when 8 pins are sourced at same time	2 V < V _{DD} < 2.7 V	V _{DD} -0.4	-		

Table 46. Ou	tput voltage	characteristics ⁽¹⁾
--------------	--------------	--------------------------------

 PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited: the speed should not exceed 2 MHz with a maximum load of 30 pF and these I/Os must not be used as a current source (e.g. to drive an LED).

- 2. The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in Table 11 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.
- 3. The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in Table 11 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD}.
- 4. Guaranteed by characterization results, not tested in production.

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 37* and *Table 47*, respectively.

Unless otherwise specified, the parameters given in *Table 47* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 13*.

OSPEEDRy [1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
	f _{max(IO)out}	(IO)out Maximum frequency ⁽²⁾	C _L = 50 pF, V _{DD >} 2.70 V	-	-	4	
00			C _L = 50 pF, V _{DD >} 1.8 V	-	-	2	MHz
			C _L = 10 pF, V _{DD >} 2.70 V	-	-	8	
			C _L = 10 pF, V _{DD >} 1.8 V	-	-	4	
	t _{f(IO)out} / t _{r(IO)out}	Output high to low level fall time and output low to high level rise time	C _L = 50 pF, V _{DD} = 1.8 V to 3.6 V	-	-	100	ns

I²S - SPI interface characteristics

Unless otherwise specified, the parameters given in *Table 53* for SPI or in *Table 54* for I^2S are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 13*.

Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I²S).

Symbol	Parameter	Conditions	Min	Мах	Unit
f _{SCK}	SDI clock froquency	SPI1 master/slave mode	-	30	M⊔⇒
1/t _{c(SCK)}	SPI Clock frequency	SPI2/SPI3 master/slave mode	-	15	
t _{r(SCL)} t _{f(SCL)}	SPI clock rise and fall time	Capacitive load: C = 30 pF, f _{PCLK} = 30 MHz	-	8	ns
DuCy(SCK)	SPI slave input clock duty cycle Slave mode		30	70	%
t _{su(NSS)} ⁽¹⁾	NSS setup time Slave mode		4t _{PCLK}	-	
t _{h(NSS)} ⁽¹⁾	NSS hold time	Slave mode	2t _{PCLK}	-	
t _{w(SCLH)} (1) t _{w(SCLL)} (1)	SCK high and low time	Master mode, f _{PCLK} = 30 MHz, presc = 2	t _{PCLK} -3	t _{PCLK} +3	
t _{su(MI)} (1)	Data input setup time	Master mode	5	-	
t _{su(SI)} ⁽¹⁾		Slave mode	5	-	
t _{h(MI)} (1)	Data input hold time	Master mode	5	-	
t _{h(SI)} (1)		Slave mode	4	-	ns
t _{a(SO)} ⁽¹⁾⁽²⁾	Data output access time	Slave mode, f _{PCLK} = 30 MHz	0	3t _{PCLK}	
t _{dis(SO)} ⁽¹⁾⁽³⁾	Data output disable time	Slave mode	2	10	
t _{v(SO)} ⁽¹⁾	Data output valid time	Slave mode (after enable edge)	-	25	
t _{v(MO)} ⁽¹⁾	Data output valid time	Master mode (after enable edge)	-	5	
t _{h(SO)} ⁽¹⁾	Data output hold time	Slave mode (after enable edge)	15	-	
t _{h(MO)} ⁽¹⁾		Master mode (after enable edge)	2	-	

Table \$	53. SPI	characteris	stics
----------	---------	-------------	-------

1. Guaranteed by characterization results, not tested in production.

2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.

3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z

Symbol	Parameter	Conditions	Min	Max	Unit
f _{CK} 1/t _{c(CK)}	I ² S clock frequency	Master, 16-bit data, audio frequency = 48 kHz, main clock disabled	1.23	1.24	MHz
		Slave	0	64F _S ⁽¹⁾	
t _{r(CK)} t _{f(CK)}	I ² S clock rise and fall time	Capacitive load C _L = 50 pF	-	(2)	
t _{v(WS)} ⁽³⁾	WS valid time	Master	0.3	-	
t _{h(WS)} (3)	WS hold time	Master	0	-	
t _{su(WS)} ⁽³⁾	WS setup time	Slave	3	-	
t _{h(WS)} ⁽³⁾	WS hold time	Slave	0	-	
t _{w(CKH)} ⁽³⁾ t _{w(CKL)} ⁽³⁾	CK high and low time	Master f _{PCLK} = 30 MHz	396	-	+
t _{su(SD_MR)} (3) t _{su(SD_SR)} (3)	Data input setup time Master receiver Slave receiver		45 0	-	ns
t _{h(SD_MR)} (3)(4) t _{h(SD_SR)} (3)(4)	Data input hold time	Master receiver: f _{PCLK} = 30 MHz, Slave receiver: f _{PCLK} = 30 MHz	13 0	-	•
t _{v(SD_ST)} (3)(4)	Data output valid time Slave transmitter (after enable edge)		-	30	
t _{h(SD_ST)} ⁽³⁾	Data output hold time	Slave transmitter (after enable edge)	10	-	+
t _{v(SD_MT)} (3)(4)	Data output valid time	Master transmitter (after enable edge)	-	6	1
t _{h(SD_MT)} ⁽³⁾	Data output hold time	Master transmitter (after enable edge)	0	-	1

Table 54. I²S characteristics

F_S is the sampling frequency. Refer to the I2S section of the STM32F20xxx/21xxx reference manual for more details. f_{CK} values reflect only the digital peripheral behavior which leads to a minimum of (I2SDIV/(2*I2SDIV+ODD), a maximum of (I2SDIV+ODD)/(2*I2SDIV+ODD) and F_S maximum values for each mode/condition.

2. Refer to Table 47: I/O AC characteristics.

3. Guaranteed by design, not tested in production.

4. Depends on f_{PCLK} . For example, if f_{PCLK} =8 MHz, then T_{PCLK} = 1/ f_{PLCLK} =125 ns.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _S ⁽²⁾		12-bit resolution Single ADC	-	-	2	Msps
	Sampling rate (f _{ADC} = 30 MHz)	12-bit resolution Interleave Dual ADC mode	-	-	3.75	Msps
		12-bit resolution Interleave Triple ADC mode	-	-	6	Msps
I _{VREF+} ⁽²⁾	ADC V _{REF} DC current consumption in conversion mode	-	-	300	500	μA
I _{VDDA} ⁽²⁾	ADC VDDA DC current consumption in conversion mode	-	-	1.6	1.8	mA

Table 65. ADC characteristics (continued)

1. It is recommended to maintain the voltage difference between V_{REF+} and V_{DDA} below 1.8 V.

2. Guaranteed by characterization results, not tested in production.

3. V_{REF+} is internally connected to V_{DDA} and V_{REF-} is internally connected to V_{SSA}.

4. R_{ADC} maximum value is given for V_{DD}=1.8 V, and minimum value for V_{DD}=3.3 V.

5. For external triggers, a delay of $1/f_{PCLK2}$ must be added to the latency specified in *Table 65*.

Equation 1: R_{AIN} max formula

$$R_{AIN} = \frac{(k - 0.5)}{f_{ADC} \times C_{ADC} \times \ln(2^{N+2})} - R_{ADC}$$

The formula above (*Equation 1*) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of sampling periods defined in the ADC_SMPR1 register.

Symbol	Parameter	Test conditions	Тур	Max ⁽²⁾	Unit
ET	Total unadjusted error		±2	±5	
EO	Offset error	$f_{PCLK2} = 60 \text{ MHz}.$	±1.5	±2.5	
EG	Gain error	$f_{ADC} = 30 \text{ MHz}, \text{ R}_{AIN} < 10 \text{ k}\Omega$	±1.5	±3	LSB
ED	Differential linearity error	V _{DDA} = 1.8 to 3.6 V	±1	±2	
EL	Integral linearity error		±1.5	±3	

Table 66. ADC accuracy ⁽¹⁾

1. Better performance could be achieved in restricted V_{DD}, frequency and temperature ranges.

2. Guaranteed by characterization results, not tested in production.

Note: ADC accuracy vs. negative injection current: injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in Section 6.3.16 does not affect the ADC accuracy.

6.3.23 V_{BAT} monitoring characteristics

Table 69. V_{BAT} monitoring characteristics

Symbol	Parameter		Тур	Max	Unit
R	Resistor bridge for V _{BAT}		50	-	KΩ
Q	Ratio on V _{BAT} measurement	-	2	-	
Er ⁽¹⁾	Error on Q	–1	-	+1	%
T _{S_vbat} ⁽²⁾⁽²⁾	ADC sampling time when reading the V _{BAT} (1 mV accuracy)	5	-	-	μs

1. Guaranteed by design, not tested in production.

2. Shortest sampling time can be determined in the application by multiple iterations.

6.3.24 Embedded reference voltage

The parameters given in *Table 70* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 13*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{REFINT}	Internal reference voltage	–40 °C < T _A < +105 °C	1.18	1.21	1.24	V
T _{S_vrefint} ⁽¹⁾	ADC sampling time when reading the internal reference voltage	-	10	-	-	μs
V _{RERINT_s}	Internal reference voltage spread over the temperature range	V _{DD} = 3 V	-	3	5	mV
T _{Coeff} ⁽²⁾	Temperature coefficient	-	-	30	50	ppm/°C
t _{START} ⁽²⁾	Startup time	-	_	6	10	μs

Table 70. Embedded internal reference voltage

1. Shortest sampling time can be determined in the application by multiple iterations.

2. Guaranteed by design, not tested in production.

6.3.25 FSMC characteristics

Asynchronous waveforms and timings

Figure 55 through *Figure 58* represent asynchronous waveforms and *Table 71* through *Table 74* provide the corresponding timings. The results shown in these tables are obtained with the following FSMC configuration:

- AddressSetupTime = 1
- AddressHoldTime = 1
- DataSetupTime = 1
- BusTurnAroundDuration = 0x0

In all timing tables, the T_{HCLK} is the HCLK clock period.

Symbol	Parameter	Min	Max	Unit
t _{w(NWE)}	FSMC_NWE low width	4T _{HCLK} - 1	4T _{HCLK} + 3	ns
t _{v(NWE-D)}	FSMC_NWE low to FSMC_D[15-0] valid	-	0	ns
t _{h(NWE-D)}	FSMC_NWE high to FSMC_D[15-0] invalid	3T _{HCLK}	-	ns
t _{d(D-NWE)}	FSMC_D[15-0] valid before FSMC_NWE high	5T _{HCLK}	-	ns
t _{d(ALE-NWE)}	FSMC_ALE valid before FSMC_NWE low	-	3T _{HCLK} + 2	ns
t _{h(NWE-ALE)}	FSMC_NWE high to FSMC_ALE invalid	3T _{HCLK} - 2	_	ns

 Table 82. Switching characteristics for NAND Flash write cycles⁽¹⁾⁽²⁾

1. C_L = 30 pF.

2. Guaranteed by characterization results, not tested in production.

6.3.26 Camera interface (DCMI) timing specifications

	Table	83.	DCMI	characteristics
--	-------	-----	------	-----------------

Symbol	Parameter	Conditions	Min	Мах
-	Frequency ratio DCMI_PIXCLK/f _{HCLK}	DCMI_PIXCLK= 48 MHz	-	0.4

6.3.27 SD/SDIO MMC card host interface (SDIO) characteristics

Unless otherwise specified, the parameters given in *Table 84* are derived from tests performed under ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 13*.

Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (D[7:0], CMD, CK).

Figure 73. SDIO high-speed mode

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

7.1 LQFP64 package information

Figure 75. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline

1. Drawing is not to scale.

Table 86. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flatpackage mechanical data

Symbol		millimeters		inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Max
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

