

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, Ethernet, I ² C, IrDA, LINbus, Memory Card, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, I ² S, LCD, POR, PWM, WDT
Number of I/O	114
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	132K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 24x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LQFP
Supplier Device Package	144-LQFP (20x20)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f217zet7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	3.20.4	Independent watchdog	. 32
	3.20.5	Window watchdog	. 33
	3.20.6	SysTick timer	. 33
3.21	Inter-in	tegrated circuit interface (I ² C)	33
3.22	Univers (UARTs	sal synchronous/asynchronous receiver transmitters s/USARTs)	33
3.23	Serial p	peripheral interface (SPI)	34
3.24	Inter-in	tegrated sound (I ² S)	34
3.25	SDIO		34
3.26	Etherne	et MAC interface with dedicated DMA and IEEE 1588 support	35
3.27	Contro	ller area network (CAN)	35
3.28	Univers	sal serial bus on-the-go full-speed (OTG_FS)	36
3.29	Univers	sal serial bus on-the-go high-speed (OTG_HS)	36
3.30	Audio F	PLL (PLLI2S)	37
3.31	Digital	camera interface (DCMI)	37
	3.31.1	Cryptographic acceleration	. 38
3.32	True ra	andom number generator (RNG)	38
3.33	GPIOs	(general-purpose inputs/outputs)	38
3.34	ADCs ((analog-to-digital converters)	38
3.35	DAC (c	digital-to-analog converter)	39
3.36	Tempe	rature sensor	39
3.37	Serial v	wire JTAG debug port (SWJ-DP)	39
3.38	Embed	lded Trace Macrocell™	40
Pino	uts and	pin description	41
Mem	ory ma	pping	66
Elect	rical ch	aracteristics	68
6.1	Parame	eter conditions	68
	6.1.1	Minimum and maximum values	. 68
	6.1.2	Typical values	. 68
	6.1.3	Typical curves	. 68
	6.1.4	Loading capacitor	. 68
	6.1.5	Pin input voltage	. 68

4

5

6

2.1 Full compatibility throughout the family

The STM32F215xx and STM32F217xx constitute the STM32F21x family whose members are fully pin-to-pin, software and feature compatible, allowing the user to try different memory densities and peripherals for a greater degree of freedom during the development cycle.

The STM32F215xx and STM32F217xx devices maintain a close compatibility with the whole STM32F10xxx family. All functional pins are pin-to-pin compatible. The STM32F215xx and STM32F217xx, however, are not drop-in replacements for the STM32F10xxx devices: the two families do not have the same power scheme, and so their power pins are different. Nonetheless, transition from the STM32F10xxx to the STM32F21x family remains simple as only a few pins are impacted.

Figure 1, *Figure 2* and *Figure 3* provide compatible board designs between the STM32F21x and the STM32F10xxx family.

Figure 1. Compatible board design between STM32F10x and STM32F2xx for LQFP64 package

3.14 **Power supply schemes**

- V_{DD} = 1.8 to 3.6 V: external power supply for I/Os and the internal regulator (when enabled), provided externally through V_{DD} pins.
- V_{SSA}, V_{DDA} = 1.8 to 3.6 V: external analog power supplies for ADC, DAC, Reset blocks, RCs and PLL. V_{DDA} and V_{SSA} must be connected to V_{DD} and V_{SS}, respectively.
- V_{BAT} = 1.65 to 3.6 V: power supply for RTC, external clock, 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

Refer to Figure 17: Power supply scheme for more details.

3.15 Power supply supervisor

The devices have an integrated power-on reset (POR) / power-down reset (PDR) circuitry coupled with a Brownout reset (BOR) circuitry.

At power-on, POR/PDR is always active and ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is reached, the option byte loading process starts, either to confirm or modify default BOR threshold levels, or to disable BOR permanently. Three BOR thresholds are available through option bytes.

The device remains in reset mode when V_{DD} is below a specified threshold, $V_{POR/PDR}$ or V_{BOR} , without the need for an external reset circuit.

The devices also feature an embedded programmable voltage detector (PVD) that monitors the V_{DD}/V_{DDA} power supply and compares it to the V_{PVD} threshold. An interrupt can be generated when V_{DD}/V_{DDA} drops below the V_{PVD} threshold and/or when V_{DD}/V_{DDA} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.16 Voltage regulator

The regulator has four operating modes:

- Regulator ON
 - Main regulator mode (MR)
 - Low-power regulator (LPR)
 - Power-down
 - Regulator OFF
 - Regulator OFF/internal reset ON

3.16.1 Regulator ON

The regulator ON modes are activated by default on LQFP packages. On UFBGA176 package, they are activated by connecting REGOFF to V_{SS} .

V_{DD} minimum value is 1.8 V.

Figure 6. Regulator OFF/internal reset ON

The following conditions must be respected:

- V_{DD} should always be higher than V_{CAP_1} and V_{CAP_2} to avoid current injection between power domains.
- If the time for V_{CAP_1} and V_{CAP_2} to reach 1.08 V is faster than the time for V_{DD} to reach 1.8 V, then PA0 should be kept low to cover both conditions: until V_{CAP_1} and V_{CAP_2} reach 1.08 V and until V_{DD} reaches 1.8 V (see *Figure 7*).
- Otherwise, If the time for V_{CAP_1} and V_{CAP_2} to reach 1.08 V is slower than the time for V_{DD} to reach 1.8 V, then PA0 should be asserted low externally (see *Figure 8*).
- If V_{CAP_1} and V_{CAP_2} go below 1.08 V and V_{DD} is higher than 1.8 V, then a reset must be asserted on PA0 pin.

integrated power-on reset (POR)/ power-down reset (PDR) circuitry is disabled.

An external power supply supervisor should monitor both the external 1.2 V and the external V_{DD} supply voltage, and should maintain the device in reset mode as long as they remain below a specified threshold. The V_{DD} specified threshold, below which the device must be maintained under reset, is 1.8 V. This supply voltage can drop to 1.7 V when the device operates in the 0 to 70 °C temperature range. A comprehensive set of power-saving modes allows the design of low-power applications.

		AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF12	AF13		
	Port	SYS	TIM1/2	TIM3/4/5	TIM8/9/10/11	12C1/12C2/12C3	SPI1/SPI2/I2S2	SPI3/I2S3	USART1/2/3	UART4/5/ USART6	CAN1/CAN2/ TIM12/13/14	OTG_FS/ OTG_HS	ETH	FSMC/SDIO/ OTG_HS	DCMI	AF014	AF15
	PB0	-	TIM1_CH2N	TIM3_CH3	TIM8_CH2N	-	-	-	-	-	-	OTG_HS_ULPI_D1	ETH_MII_RXD2	-	-	-	EVENTOUT
	PB1	-	TIM1_CH3N	TIM3_CH4	TIM8_CH3N	-	-	-	-	-	-	OTG_HS_ULPI_D2	ETH_MII_RXD3	-	-	-	EVENTOUT
	PB2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	EVENTOUT
	PB3	JTDO/ TRACESWO	TIM2_CH2	-	-	-	SPI1_SCK	SPI3_SCK I2S3_SCK	-	-	-	-	-	-	-	-	EVENTOUT
	PB4	JTRST	-	TIM3_CH1	-	-	SPI1_MISO	SPI3_MISO	-	-	-	-	-	-	-	-	EVENTOUT
	PB5	-	-	TIM3_CH2	-	I2C1_SMBA	SPI1_MOSI	SPI3_MOSI I2S3_SD	-	-	CAN2_RX	OTG_HS_ULPI_D7	ETH_PPS_OUT	-	DCMI_D10	-	EVENTOUT
	PB6	-	-	TIM4_CH1	-	I2C1_SCL	-	-	USART1_TX	-	CAN2_TX	-	-	-	DCMI_D5	-	EVENTOUT
	PB7	-	-	TIM4_CH2	-	I2C1_SDA	-	-	USART1_RX	-	-	-	-	FSMC_NL	DCMI_VSYNC	-	EVENTOUT
Port B	PB8	-	-	TIM4_CH3	TIM10_CH1	I2C1_SCL	-	-	-	-	CAN1_RX	-	ETH _MII_TXD3	SDIO_D4	DCMI_D6	-	EVENTOUT
	PB9	-	-	TIM4_CH4	TIM11_CH1	I2C1_SDA	SPI2_NSS I2S2_WS	-	-	-	CAN1_TX	-	-	SDIO_D5	DCMI_D7	-	EVENTOUT
	PB10	-	TIM2_CH3	-	-	I2C2_SCL	SPI2_SCK I2S2_SCK	-	USART3_TX	-	-	OTG_HS_ULPI_D3	ETH_MII_RX_ER	-	-	-	EVENTOUT
	PB11	-	TIM2_CH4	-	-	I2C2_SDA	-	-	USART3_RX	-	-	OTG_HS_ULPI_D4	ETH _MII_TX_EN ETH _RMII_TX_EN	-	-	-	EVENTOUT
	PB12	-	TIM1_BKIN	-	-	I2C2_SMBA	SPI2_NSS I2S2_WS	-	USART3_CK	-	CAN2_RX	OTG_HS_ULPI_D5	ETH_MII_TXD0 ETH_RMII_TXD0	OTG_HS_ID	-	-	EVENTOUT
	PB13	-	TIM1_CH1N	-	-	-	SPI2_SCK I2S2_SCK	-	USART3_CTS	-	CAN2_TX	OTG_HS_ULPI_D6	ETH_MII_TXD1 ETH_RMII_TXD1	-	-	-	EVENTOUT
	PB14	-	TIM1_CH2N	-	TIM8_CH2N	-	SPI2_MISO	-	USART3_RTS	-	TIM12_CH1	-	-	OTG_HS_DM	-	-	EVENTOUT
	PB15	RTC_50Hz	TIM1_CH3N	-	TIM8_CH3N	-	SPI2_MOSI I2S2_SD	-	-	-	TIM12_CH2	-	-	OTG_HS_DP	-	-	EVENTOUT

Table 9. Alternate function mapping (continued)

DocID17050 Rev 13

577

61/10

6.3.5 Embedded reset and power control block characteristics

The parameters given in *Table 18* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 13*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
		PLS[2:0]=000 (rising edge)	2.09	2.14	2.19	V
		PLS[2:0]=000 (falling edge)	1.98	2.04	2.08	V
		PLS[2:0]=001 (rising edge)	2.23	2.30	2.37	V
		PLS[2:0]=001 (falling edge)	2.13	2.19	2.25	V
		PLS[2:0]=010 (rising edge)	2.39	2.45	2.51	V
		PLS[2:0]=010 (falling edge)	2.29	2.35	2.39	V
		PLS[2:0]=011 (rising edge)	2.54	2.60	2.65	V
V _{PVD}	Programmable voltage detector level selection	PLS[2:0]=011 (falling edge)	2.44	2.51	2.56	V
		PLS[2:0]=100 (rising edge)	2.70	2.76	2.82	V
		PLS[2:0]=100 (falling edge)	2.59	2.66	2.71	V
		PLS[2:0]=101 (rising edge)	2.86	2.93	2.99	V
		PLS[2:0]=101 (falling edge)	2.65	2.84	3.02	V
		PLS[2:0]=110 (rising edge)	2.96	3.03	3.10	V
		PLS[2:0]=110 (falling edge)	2.85	2.93	2.99	V
		PLS[2:0]=111 (rising edge)	3.07	3.14	3.21	V
		PLS[2:0]=111 (falling edge)	2.95	3.03	3.09	V
V _{PVDhyst} ⁽¹⁾	PVD hysteresis	-	-	100	-	mV
	Power-on/power-down	Falling edge	1.60	1.68	1.76	V
POR/PDR	reset threshold	Rising edge	1.64	1.72	1.80	V
V _{PDRhyst} ⁽¹⁾	PDR hysteresis	-	-	40	-	mV
Vecer	Brownout level 1	Falling edge	2.13	2.19	2.24	V
• BOR1	threshold	Rising edge	2.23	2.29	2.33	V

Table 18. Embedded reset and	power control block characteristics
------------------------------	-------------------------------------

DocID17050 Rev 13

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
M	Brownout level 2	Falling edge	2.44	2.50	2.56	V
VBOR2	threshold	Rising edge	2.53	2.59	2.63	V
M	Brownout level 3	Falling edge	2.75	2.83	2.88	V
VBOR3	threshold	Rising edge	2.85	2.92	2.97	V
V _{BORhyst} ⁽¹⁾	BOR hysteresis	-	-	100	-	mV
T _{RSTTEMPO} ⁽¹⁾⁽²⁾	Reset temporization	-	0.5	1.5	3.0	ms
I _{RUSH} ⁽¹⁾	InRush current on voltage regulator power-on (POR or wakeup from Standby)	-	-	160	200	mA
E _{RUSH} ⁽¹⁾	InRush energy on voltage regulator power-on (POR or wakeup from Standby)	V _{DD} = 1.8 V, T _A = 105 °C, I _{RUSH} = 171 mA for 31 μs	-	-	5.4	μC

Table 18. Embedded reset and	power control block characteristics	(continued)
		(

1. Guaranteed by design, not tested in production.

2. The reset temporization is measured from the power-on (POR reset or wakeup from V_{BAT}) to the instant when first instruction is read by the user application code.

6.3.6 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Figure 18: Current consumption measurement scheme*.

All Run mode current consumption measurements given in this section are performed using ${\sf CoreMark}^{\textcircled{R}}$ code.

6.3.8 External clock source characteristics

High-speed external user clock generated from an external source

The characteristics given in *Table 27* result from tests performed using an high-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 13*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE_ext}	External user clock source frequency ⁽¹⁾		1	-	26	MHz
V _{HSEH}	OSC_IN input pin high level voltage		0.7V _{DD}	-	V _{DD}	V
V _{HSEL}	OSC_IN input pin low level voltage	-	V_{SS}	-	$0.3V_{\text{DD}}$	v
t _{w(HSE)} t _{w(HSE)}	OSC_IN high or low time ⁽¹⁾		5	-	-	ne
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time ⁽¹⁾		-	-	20	115
C _{in(HSE)}	OSC_IN input capacitance ⁽¹⁾	-	-	5	-	pF
DuCy _(HSE)	Duty cycle	-	45	-	55	%
١	OSC_IN Input leakage current	V _{SS} ≤V _{IN} ≤V _{DD}	-	-	±1	μA

 Table 27. High-speed external user clock characteristics

1. Guaranteed by design, not tested in production.

Low-speed external user clock generated from an external source

The characteristics given in *Table 28* result from tests performed using an low-speed external clock source, and under ambient temperature and supply voltage conditions summarized in *Table 13*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSE_ext}	User External clock source frequency ⁽¹⁾		-	32.768	1000	kHz
V _{LSEH}	OSC32_IN input pin high level voltage		$0.7 V_{\text{DD}}$	-	V_{DD}	V
V _{LSEL}	OSC32_IN input pin low level voltage		V_{SS}	-	$0.3V_{\text{DD}}$	v
t _{w(LSE)} t _{f(LSE)}	OSC32_IN high or low time ⁽¹⁾	-	450	-	-	ne
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time ⁽¹⁾		-	-	50	115
C _{in(LSE)}	OSC32_IN input capacitance ⁽¹⁾	-	-	5	-	pF
DuCy _(LSE)	Duty cycle	-	30	-	70	%
ΙL	OSC32_IN Input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$	-	-	±1	μA

|--|

1. Guaranteed by design, not tested in production.

Figure 28. High-speed external clock source AC timing diagram

Figure 29. Low-speed external clock source AC timing diagram

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 26 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in *Table 29*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
		Cycle to cycle at	RMS	-	90	-	
Jitter ⁽³⁾	Maatas 120. alaak üttas	12.288 MHz on 48KHz period, N=432, R=5	peak to peak	-	±280	-	ps
		Average frequency of 12.288 MHz N=432, R=5 on 1000 samples		-	90	-	ps
	WS I2S clock jitter	Cycle to cycle at 48 KHz on 1000 samples		-	400	-	ps
I _{DD(PLLI2S)} ⁽⁴⁾	PLLI2S power consumption on V _{DD}	VCO freq = 192 MHz VCO freq = 432 MHz		0.15 0.45	-	0.40 0.75	mA
I _{DDA(PLLI2S)} ⁽⁴⁾	PLLI2S power consumption on V _{DDA}	VCO freq = 192 MHz VCO freq = 432 MHz		0.30 0.55	-	0.40 0.85	mA

Table 3	4. PLLI2S	(audio PLL)	characteristics	(continued)
14010 0		(~~~. ==,	0114140101101100	(0011111000)

1. Take care of using the appropriate division factor M to have the specified PLL input clock values.

2. Guaranteed by design, not tested in production.

3. Value given with main PLL running.

4. Guaranteed by characterization results, not tested in production.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
I _{DD}	Supply current	Write / Erase 8-bit mode V _{DD} = 1.8 V	-	5	-		
		Write / Erase 16-bit mode V _{DD} = 2.1 V	-	8	-	mA	
		Write / Erase 32-bit mode V _{DD} = 3.3 V	-	12	-		

Table 36. Flash memory characteristics

Table 37	. Flash	memory	programming
----------	---------	--------	-------------

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit	
t _{prog}	Word programming time	Program/erase parallelism (PSIZE) = x 8/16/32	-	16	100 ⁽²⁾	μs	
		Program/erase parallelism (PSIZE) = x 8	-	400	800		
t _{ERASE16KB}	Sector (16 KB) erase time	Program/erase parallelism (PSIZE) = x 16	-	300	600	ms	
		Program/erase parallelism (PSIZE) = x 32	-	250	500		
terase64kb		Program/erase parallelism (PSIZE) = x 8	-	1200	2400		
	Sector (64 KB) erase time	Program/erase parallelism (PSIZE) = x 16	-	700	1400	ms	
		Program/erase parallelism (PSIZE) = x 32	-	550	1100		
		Program/erase parallelism (PSIZE) = x 8	-	2	4	S	
t _{ERASE128KB}	Sector (128 KB) erase time	Program/erase parallelism (PSIZE) = x 16	-	1.3	2.6		
		Program/erase parallelism (PSIZE) = x 32	-	1	2		
t _{ME}		Program/erase parallelism (PSIZE) = x 8	-	16	32		
	Mass erase time	Program/erase parallelism (PSIZE) = x 16	-	11	22	S	
		Program/erase parallelism (PSIZE) = x 32	-	8	16		
		32-bit program operation	2.7	-	3.6	V	
V _{prog}	Programming voltage	16-bit program operation	2.1	-	3.6	V	
F3		8-bit program operation	1.8	-	3.6	V	

1. Guaranteed by characterization results, not tested in production.

2. The maximum programming time is measured after 100K erase operations.

The test results are given in *Table 40*. They are based on the EMS levels and classes defined in application note AN1709.

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V _{DD} = 3.3 V, LQFP176, T _A = +25 °C, f _{HCLK} = 120 MHz, conforms to IEC 61000-4-2	2B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	V _{DD} = 3.3 V, LQFP176, T _A = +25 °C, f _{HCLK} = 120 MHz, conforms to IEC 61000-4-2	4A

	Table	40.	EMS	charac	teristics
--	-------	-----	-----	--------	-----------

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{OL} ⁽²⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	CMOS ports	-	0.4	V
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin when 8 pins are sourced at same time	$1_{O} - 40 \text{ mA}$ 2.7 V < V _{DD} < 3.6 V	V _{DD} -0.4	-	V
V _{OL} ⁽²⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	TTL ports	-	0.4	V
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin when 8 pins are sourced at same time	$2.7 V < V_{DD} < 3.6 V$	2.4	-	v
V _{OL} ⁽²⁾⁽⁴⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	I _{IO} = +20 mA	-	1.3	V
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin when 8 pins are sourced at same time	2.7 V < V _{DD} < 3.6 V	V _{DD} -1.3	-	v
V _{OL} ⁽²⁾⁽⁴⁾	Output low level voltage for an I/O pin when 8 pins are sunk at same time	I _{IO} = +6 mA	-	0.4	V
V _{OH} ⁽³⁾⁽⁴⁾	Output high level voltage for an I/O pin when 8 pins are sourced at same time	2 V < V _{DD} < 2.7 V	V _{DD} -0.4	-	V

Table 46. Ou	tput voltage	characteristics ⁽¹⁾
--------------	--------------	--------------------------------

 PC13, PC14, PC15 and PI8 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 and PI8 in output mode is limited: the speed should not exceed 2 MHz with a maximum load of 30 pF and these I/Os must not be used as a current source (e.g. to drive an LED).

- 2. The I_{IO} current sunk by the device must always respect the absolute maximum rating specified in Table 11 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VSS}.
- 3. The I_{IO} current sourced by the device must always respect the absolute maximum rating specified in Table 11 and the sum of I_{IO} (I/O ports and control pins) must not exceed I_{VDD}.
- 4. Guaranteed by characterization results, not tested in production.

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 37* and *Table 47*, respectively.

Unless otherwise specified, the parameters given in *Table 47* are derived from tests performed under the ambient temperature and V_{DD} supply voltage conditions summarized in *Table 13*.

OSPEEDRy [1:0] bit value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
00	f _{max(IO)out}	Maximum frequency ⁽²⁾	C _L = 50 pF, V _{DD >} 2.70 V	-	-	4	MHz
			C _L = 50 pF, V _{DD >} 1.8 V	-	-	2	
			C _L = 10 pF, V _{DD >} 2.70 V	-	-	8	
			C _L = 10 pF, V _{DD >} 1.8 V	-	-	4	
	t _{f(IO)out} / t _{r(IO)out}	Output high to low level fall time and output low to high level rise time	C _L = 50 pF, V _{DD} = 1.8 V to 3.6 V	-	-	100	ns

USB OTG FS characteristics

The USB OTG interface is USB-IF certified (Full-Speed). This interface is present in both the USB OTG HS and USB OTG FS controllers.

Symbol Parameter		Мах	Unit			
t _{STARTUP} ⁽¹⁾	USB OTG FS transceiver startup time	1	μs			

Table 55. USB OTG FS startup time

1. Guaranteed by design, not tested in production.

Symbol		Parameter	Conditions	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
	V _{DD}	USB OTG FS operating voltage		3.0 ⁽²⁾	-	3.6	V
Input	V _{DI} ⁽³⁾	Differential input sensitivity	I(USB_FS_DP/DM, USB_HS_DP/DM)	0.2	-	-	
levels	V _{CM} ⁽³⁾	Differential common mode range	Includes V _{DI} range	0.8	-	2.5	V
	$V_{SE}^{(3)}$	Single ended receiver threshold		1.3	-	2.0	
Output levels	V _{OL}	Static output level low	${\sf R}_{\sf L}$ of 1.5 k\Omega to 3.6 V $^{(4)}$	-	-	0.3	V
	V _{OH}	Static output level high	${\sf R}_{\sf L}$ of 15 k Ω to ${\sf V}_{SS}{}^{(4)}$	2.8	-	3.6	v
R _{PD}		PA11, PA12, PB14, PB15 (USB_FS_DP/DM, USB_HS_DP/DM)	V - V	17	21	24	
		PA9, PB13 (OTG_FS_VBUS, OTG_HS_VBUS)	VIN - VDD	0.65	1.1	2.0	kΩ
R _{PU}		PA12, PB15 (USB_FS_DP, USB_HS_DP)	V _{IN} = V _{SS}	1.5	1.8	2.1	
		PA9, PB13 (OTG_FS_VBUS, OTG_HS_VBUS)	V _{IN} = V _{SS}	0.25	0.37	0.55	

Table 56. USB OTG FS DC electrical characteristics

1. All the voltages are measured from the local ground potential.

2. The STM32F215xx and STM32F217xx USB OTG FS functionality is ensured down to 2.7 V but not the full USB OTG FS electrical characteristics which are degraded in the 2.7-to-3.0 V V_{DD} voltage range.

3. Guaranteed by design, not tested in production.

4. R_L is the load connected on the USB OTG FS drivers

6.3.20 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 65* are derived from tests performed under the ambient temperature, f_{PCLK2} frequency and V_{DDA} supply voltage conditions summarized in *Table 13*.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DDA}	Power supply	-	1.8	-	3.6	V
V _{REF+}	Positive reference voltage	-	1.8 ⁽¹⁾	-	V _{DDA}	V
f	ADC clock froguopov	V _{DDA} = 1.8 to 2.4 V	0.6	-	15	MHz
'ADC		V _{DDA} = 2.4 to 3.6 V	0.6	-	30	MHz
f _{TRIG} ⁽²⁾	External trigger frequency	f _{ADC} = 30 MHz with 12-bit resolution	-	-	1764	kHz
		-	-	-	17	1/f _{ADC}
V _{AIN}	Conversion voltage range ⁽³⁾	-	0 (V _{SSA} or V _{REF-} tied to ground)	-	V _{REF+}	V
R _{AIN} ⁽²⁾	External input impedance	See <i>Equation 1</i> for details	-	-	50	kΩ
R _{ADC} ⁽²⁾⁽⁴⁾	Sampling switch resistance	-	1.5	-	6	kΩ
C _{ADC} ⁽²⁾	Internal sample and hold capacitor	-	-	4	-	pF
t _{lat} ⁽²⁾	Injection trigger conversion latency	f _{ADC} = 30 MHz	-	-	0.100	μs
		-	-	-	3 ⁽⁵⁾	1/f _{ADC}
t. (2)	Regular trigger conversion latency	f _{ADC} = 30 MHz	-	-	0.067	μs
Jatr		-	-	-	2 ⁽⁵⁾	1/f _{ADC}
$t_{0}^{(2)}$	Sampling time	f _{ADC} = 30 MHz	0.100	-	16	μs
'S'		-	3	-	480	1/f _{ADC}
t _{STAB} ⁽²⁾	Power-up time	-	-	2	3	μs
t _{conv} ⁽²⁾		f _{ADC} = 30 MHz 12-bit resolution	0.5	-	16.40	μs
		f _{ADC} = 30 MHz 10-bit resolution	0.43	-	16.34	μs
	Total conversion time (including sampling time)	f _{ADC} = 30 MHz 8-bit resolution	0.37	-	16.27	μs
		f _{ADC} = 30 MHz 6-bit resolution	0.3	-	16.20	μs
		9 to 492 (t _S for sampling +n-bit resolution for successive approximation)				1/f _{ADC}

7.3 LQFP144 package information

Figure 80. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package outline

1. Drawing is not to scale.

Device marking

Figure 82 gives an example of topside marking orientation versus Pin 1 identifier location.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

7.4 LQFP176 package information

Figure 83. LQFP176 - 176-pin, 24 x 24 mm low profile quad flat package outline

1. Drawing is not to scale.

Table 89. LQFP176 - 176-pin, 24 x 24 mm low profile quad flat package
mechanical data

			Dimer	nsions		
Symbol		millimeters			inches ⁽¹⁾	
	Min	Тур	Мах	Min	Тур	Max
A	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	-	1.450	0.0531	-	0.0571
b	0.170	-	0.270	0.0067	-	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	23.900	-	24.100	0.9409	-	0.9488

DocID17050 Rev 13

Date	Revision	Changes
		Updated Typical and maximum current consumption conditions, as well as Table 20: Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator disabled) and Table 19: Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator enabled) or RAM. Added Figure 21, Figure 22, Figure 23, and Figure 24.
		Updated Table 21: Typical and maximum current consumption in Sleep mode, and added Figure 25 and Figure 26.
		Updated Table 23: Typical and maximum current consumptions in Standby mode and Table 24: Typical and maximum current consumptions in VBAT mode.
		Updated Table 22: Typical and maximum current consumptions in Stop mode. Added Figure 27: Typical current consumption vs. temperature in Stop mode.
		Updated Table 23: Typical and maximum current consumptions in Standby mode and Table 24: Typical and maximum current consumptions in VBAT mode.
		Updated On-chip peripheral current consumption conditions and
		Table 25: Peripheral current consumption.
		power mode wakeup timings.
		Maximum f _{HSE_ext} and minimum t _{w(HSE)} values updated in <i>Table 27: High-speed external user clock characteristics</i> .
22-Apr-2011	4 (continued)	Updated C and g_m in <i>Table 29: HSE 4-26 MHz oscillator characteristics</i> . Updated R_F , I_2 , g_m , and $t_{su(LSE)}$ in <i>Table 30: LSE oscillator characteristics (fLSE = 32.768 kHz)</i> .
		Added Note 3 and updated ACC _{HSI} , IDD _(HSI) and t _{su(HSI)} in Table 31: HSI oscillator characteristics. Added Figure 32: ACCHSI versus temperature
		Updated f _{LSI} , t _{su(LSI)} and IDD _(LSI) in <i>Table 32: LSI oscillator characteristics</i> .
		<i>Table 33: Main PLL characteristics</i> : removed note 1, updated t_{LOCK} , jitter, IDD _(PLL) and IDD _{A(PLL)} , added <i>Note 2</i> for f_{PLL_IN} minimum and maximum values.
		Table 34: PLLI2S (audio PLL) characteristics: removed note 1, updated t_{LOCK} , jitter, IDD _(PLLI2S) and IDD _{A(PLLI2S)} , added Note 2 for f _{PLLI2S_IN} minimum and maximum values.
		Added Note 1 in Table 35: SSCG parameters constraint.
		Updated <i>Table 36: Flash memory characteristics</i> . Modified <i>Table 37: Flash memory programming</i> and added <i>Note 1</i> for t _{prog} . Updated t _{prog} and added <i>Note 1</i> in <i>Table 38: Flash memory programming with VPP</i> .
		Modified Figure 38: Recommended NRST pin protection.
		Updated Table 41: EMI characteristics and EMI monitoring conditions in
		Section : Electromagnetic Interference (EMI).
		ratings.
		Added Section 6.3.15: I/O current injection characteristics.
		Updated <i>Table 45: I/O static characteristics</i> . Modified maximum frequency values and conditions in <i>Table 47: I/O AC characteristics</i> .

Table 94	Document	revision	history	(continued)
----------	----------	----------	---------	-------------

Date F	Revision	Changes
20-Dec-2011 (c	6 continued)	Appendix A.2: USB OTG full speed (FS) interface solutions: updated Figure 85: USB OTG FS (full speed) host-only connection and added Note 2, updated Figure 86: OTG FS (full speed) connection dual-role with internal PHY and added Note 3 and Note 4, modified Figure 87: OTG HS (high speed) device connection, host and dual-role in high- speed mode with external PHY and added Note 2. Appendix A.3: USB OTG high speed (HS) interface solutions: removed figures USB OTG HS device-only connection in FS mode and USB OTG HS host-only connection in FS mode, updated Figure 87: OTG HS (high speed) device connection, host and dual-role in high- speed mode with external PHY. Added Appendix A.4: Ethernet interface solutions. Updated disclaimer on last page.

|--|

