
Infineon Technologies - MB86613SPFV-G-BND Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor -

Core Size -

Speed -

Connectivity -

Peripherals -

Number of I/O -

Program Memory Size -

Program Memory Type -

EEPROM Size -

RAM Size -

Voltage - Supply (Vcc/Vdd) -

Data Converters -

Oscillator Type -

Operating Temperature -

Mounting Type -

Package / Case -

Supplier Device Package -

Purchase URL https://www.e-xfl.com/product-detail/infineon-technologies/mb86613spfv-g-bnd

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/mb86613spfv-g-bnd-4454967
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Preliminary

1

1. Introduction

Related Documents

This specification document was prepared based on the following documents:

1) IEEE1394- 1995 High Performance Serial Bus and P1394a draft2.0
2) 1394 Open Host Controller Interface (Open HCI) Specification Release1.1
3) PCI Local Bus Specification (Revision 2.2)
4) PCI Bus Power Management Specification (Version 1.1)

1.1. Overview

MB86613S is Fujitsu’s IEEE1394- OHCI (Open Host Controller Interface) Controller LSI that is compliant with
IEEE1394- 1995, P1394a and OHCI (revision 1.1, release) standard drafts. This LSI integrates both 1394
PHY and LINK layers including analog PLL, transceiver, and comparator circuits using Fujitsu’s advanced full
CMOS process for the cost- effective single- chip solution.

In addition to the 1394 block, the MB86613S contains various DMA engines called ContextProgram Control-
lers used for OHCI functions and PCI block. ContextProgram block consists of total 13 channels of indepen-
dent DMA that are each dedicated to asynchronous and isochronous transmit and isochronous- asynchro-
nous common receive operations. On- chip, 5V and 3.3V operable, PCI bus controller is compliant with PCI
local bus standard (revision2.2) incorporating one 32- bit DMA controller and power management functions
as specified in PCI bus power management specification (version 1.1).

For valuable host side design, this chip also incorporates serial Configuration ROM interface.

The device operates by +5V or +3.3V power supply for the PCI and DMA blocks and +3.3V for the whole 1394
block.

To provide with the cost- effective solution, the LSI is housed in a 100- pin plastic small QFP package.

1.2. Features

1) 1394 Serial Bus Controller Block:

- Compliant with IEEE1394- 1995 and P1394a draft2.0
- Integrates PHY and LINK layers into single- chip.
- 1394 port number : 1 port
- Transfer Data Rate : S100, S200, and S400
- On- chip PLL : 400MHz for PHY and 50MHz for Link core.
- Cycle- Master Function
- On- chip Bus Management CSRs
- 6- pin cable supported
- On- chip transceiver and comparator
- On- chip another comparator for detecting the cable power

2) ContextProgram Controller Block :

- Compliant with Open HCI standard draft (revision 1.1)
- Total 13 independent ContextProgram Controllers:

a) Asynchronous Transmit DMA : 2 channels for response and request each
b) Isochronous Transmit DMA : 4 channels
c) Receive DMA : 7 channels for Asynchronous response and request each, 4 isochronous,

and 1 self- ID receive

Preliminary

5

2. Pin Functions

2.2. Pin Assignment

Figure 2.1 shows the MB86613S pin assignment.

C/BE#1
VDD5/3

AD15
AD14
AD13
AD12
AD11

VSS5/3
AD10
AD9
AD8

C/BE0#
AD7

VSS5/3
AD6
AD5
AD4
AD3
AD2

VDD5/3
AD1
AD0

PME#
VSS5/3
DVSS3

D
V

D
D

3
N

.C
V

S
S

5
E

E
C

S
N

.C
E

E
D

O
V

D
D

5
E

E
C

LK
E

E
D

I
TE

S
T

V
S

S
5

N
.C

D
V

D
D

3
X

O
(N

.C
)

X
I(C

LK
)

FI
L

R
F

AV
S

S
3

AV
D

D
3

AV
S

S
3

AV
D

D
3

R
0

C
P

S
AV

S
S

3
AV

D
D

3

AD24
AD25
AD26
VSS5/3
AD27
AD28
AD29
AD30
AD31
VDD5/3
REQ#
GNT#
PCICLK
RST#
INTA#
VSS5/3
DVDD3
DVSS3
AVSS3
AVDD3
TPBIAS
TPA
TPA#
TPB
TPB#

PA
R

S
E

R
R

#
P

E
R

R
#

S
TO

P
#

V
S

S
5/

3
D

E
V

S
E

L#
TR

D
Y

#
IR

D
Y

#
FR

A
M

E
#

C
/B

E
2#

V
S

S
5/

3
A

D
16

A
D

17
A

D
18

A
D

19
D

V
S

S
3

D
V

D
D

3
V

D
D

5/
3

A
D

20
A

D
21

A
D

22
A

D
23

V
S

S
5/

3
ID

S
E

L
C

/B
E

3#

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51

10
0 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76

26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
MB86613S

(100- pin Plastic LQFP)

Topview

VDD5/3 & VSS5/3 : Power Supply pins and Ground pins for PCI I/O buffer (5V or 3.3V).
VDD5 & VSS5 : Power supply pins and Ground for memory interface (5V or 3.3V).
DVDD3 & DVSS3 : Power supply pins and Ground pins for 1394, OHCI, and PCI/DMA blocks. (3.3V)
AVDD3 & AVSS3 : Power supply pins and Ground pins for PLL, 1394 transceiver and comparator. (3.3V)

Fig. 2.1 Pin Assignment

Preliminary

6

2.3. Pin Function

2.3.1. PCI Bus Interface

Notes:

I/O denotes input/output pin.
O denotes output pin.
I denotes input pin.
OD denotes open- drain output pin.

I/O

I

I

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I

I/O

O

I

I/O

OD

OD

O

PCICLK

RST#

AD31 : 0

C/BE3# : 0#

PAR

FRAME#

IRDY#

TRDY#

STOP#

IDSEL

DEVSEL#

REQ#

GNT#

PERR#

SERR#

INTA#

PME#

PCI bus clock input pin (Max. 33MHz)

System reset input pin.

32- bit PCI Address/Data multiplexed pins.

PCI Bus Command / Byte Enable multiplexed pins.

Even Parity pin for AD31:0 and C/BE3#:0#. This pin state becomes valid after 1 PCICLK.

Frame signal pin that indicates the PCI bus is driven by the master.

Data Ready signal pin for bus master device.

Data Ready signal pin for target device.

Stop signal pin for the data transfer from target to master.

Chip select pin to access the configuration register.

Device select pin. While the device is a target, this pin outputs the select signal that indicates
the self device is selected. While the device is a master, this pin functions as an input pin to
indicate that a device on the bus is selected.

Request signal output pin to the bus arbiter to request for the PCI bus use.

Grant signal input pin from the bus arbiter to receive the response to the REQ# signal.

Data Parity Error input/output pin.

Address Parity Error output pin. (Open- drain type output pin.)

Interrupt output pin. (Open- drain type output pin.)

PCI power management enable

Name of pin Function

Preliminary

10

2.4.2. Filter Circuit

Figure 2.3 and 2.4 shows an example of connection diagram on PLL filter circuit. A circuit where the 390Ω and
a 3300pF are connected is required between the FIL pin and GND. RF pin is connected with GND through a
5.1KΩ resister. The CLK pin requires a 24.576MHz of clock module operating at +3.3V. Pin39 must be open
when using a external clock module. When using the crystal oscillator, connect it and capacitors as Figure 2.4.

Those resistor and capacitor are reference values and does not guarantee stable operation on your applica-
tion system.

FIL

RF

3300pF

390Ω

5.1kΩ

24.576MHzCLK

Fig. 2.3 PLL Filter Connection Example A

Preliminary

17

Bit Field Name rwcu reset description
- -
31:24 base_class r 0Ch These bits indicate ”0Ch” for the serial bus controller.
23:16 sub_class r 00h These bits indicate ”00h” for the IEEE1394 compliant.
15:8 prog_if r 10h These bits indicate ”10h” for the Open HCI.

3.1.7. Cache Line Size

This register specifies the cache line size in 32- bit long- word that is guaranteed for the memory write and
invalidate command.

7 0

line_size

Bit Field Name rwcu reset description
- -
7:0 line_size rw 00h These bits specify the cache line size with the following

setting:

Value Size
- -
00h Unused for memory write & invalidate command

01h - 1- to 255- long word.
FFh

3.1.8. Latency Timer

This register specifies the PCI latency timer value. The latency timer counts the time from the FRAME# as-
serted until the PCI bus occupied.

15 8

latency_clks

Bit Field Name rwcu reset description
- -
15:11 latency_clks rw 00h These bits specify the latency timer. The unit is 8 PCI

clocks.

3.1.9. Header Type

This register indicates the register configuration at addresses 10h to 3Fh in configuration space and the sup-
ported function(s). MB86613S supports the single- function so this register indicates ”00h”.

23 16

header_type

Preliminary

21

23 16

Min_Gnt

Bit Field Name rwcu reset description
- -
23:16 Min_Gnt r 20h These bits indicate ”20h” (8µs).

3.1.19. MAXLAT

This read- only register indicates PCI bus access time required for the device. The time is 1/4 micro seconds
unit.

31 24

Max_Lat

Bit Field Name rwcu reset description
- -
31:24 Max_Lat r 50h These bits indicate ”50h” (20µs).

3.1.20. PCI_HCI Control

This register specifies the byte- swap control defined in the Open HCI specification.

31 24 23 16 15 8 7 0

PCI_Global_Swap

Bit Field Name rwcu reset description
- -
0 PCI_Global_Swap rw 0b Writing 1 at this bit performs the byte- swap for the data

accessed to/from PCI interface.

3.2. Open HCI Register

The addresses for the following listed Open HCI register set must be specified with the MEM Base Address
register in the PCI configuration register.

r denotes the register can be read.
w denotes the register can be written.
s denotes the bit can be written (1b)
c denotes the bit can be cleared (0b)
u denotes the read value undefined depending on the MB86613S device status.

Preliminary

23

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

070h

074h

078h

07Ch

080h

084h

088h

08Ch

090h

094h

098h

09Ch

0A0h

0A4h

0A8h

0ACh

0B0h

0B4h

0B8h

0BCh to 0D8h

0DCh

0E0h

0E4h

0E8h

0ECh

0F0h

IRMultiChanMaskHiClear

IntEventSet

IsoXmitIntEventSet

IsoRecvIntEventSet

: denotes the reserved (unused) area.
(Continued)

FairnessControl

NodeID

IRMultiChanMaskHiSet

IRMultiChanMaskLoClear

IRMultiChanMaskLoSet

IntEventClear

IntMaskSet

IntMaskClear

IsoXmitIntEventClear

IsoXmitIntMaskSet

IsoXmitIntMaskClear

IsoRecvIntEventClear

IsoRecvIntMaskSet

IsoRecvIntMaskClear

LinkControlSet

LinkControlClear

IsochronousCycleTimer

PhyControl

InitialBandwidthAvailable

InitialChannelsAvailableHi

InitialChannelsAvailableLo

Preliminary

51

4. Context Program Controller (CPC)

Basically Context Program Controller’s (CPC) state machine consists of Program Load, Program Analysis,
and Interrupt Handle.

CPC starts the operation after the ContextControl.run bit is set by the software. CPC, however, stops the
operation when ContextControl.active and .dead bits are cleared as a result of ContextControl.run bit cleared
by the software.

In Program Loading Unit (PLU), MB86613S loads the context program from the host memory in which the
CommandPtr.descriptorAddress indicates and stores the program into the on- chip work RAM.

In Program Analysis Unit (PAU), MB86613S analyzes the loaded context program and moves the required
transmit- packet from/to the work RAM/Host memory to/from FIFO.

In Interrupt Handling Unit (IHU), MB86613S handles/controls the event- code and interrupt as a result from
the program analysis. In this case, if Z field in the last descriptor contains ”1” or more, the device stores the
address set in the branchAddress field of the last descriptor in the CommandPtr.descriptorAddress field in
order to store the next context program and returns to the program loading unit.

Figure 4.1 shows the state machine diagram, and Figure 4.2 shows the flag transition of ContextControl Reg-
ister with the explanation as follows:

1) If the wake bit is set by software, clear the wake bit and set the active bit, then go to the program loading unit.
When starting the CPC with the run bit, set the active bit and go to the program loading unit.

2) When the program analysis is completed, go to the interrupt handling unit. If an error occurred in the IHU,
set the dead flag and clear the active bit, then wait until the dead flag is cleared by software.

3) If the next context program to be processed is not prepared yet, clear the active bit and wait until the wake bit
is set by software; i.e. until the next context program to be processed is prepared.

Start Load Analyze

INT

INTerror INTerror

end

z>0

z=0

run=0

run=1

”run” : ’0’

Fig. 4.1 Block Diagram of CPC State Machine

Preliminary

55

2) response packet Transmit:

Time specified in the timeStamp section in the OUTPUT_MORE_Immediate or OUTPUT_LAST_Immediate
command is compared with the cycle- timer value to validate the evt_timeout.

3) ping packet Transmit:

When the ’ p’ flag in the OUTPUT_LAST or OUTPUT_LAST_Immediate command is set, time after the packet
is transmitted until the acknowledge or self- ID packet is received is stored in the timeStamp section by the
cycle- timer value.

I1 I2

I3 LOAD

START

(1), (2), (3),
(4), (7)

(5), (6), (8)- (15)

z=0

z>0

Fig. 4.4 State Machine of Interrupt Handle for Asynchronous Packet Transmit

4.1.3. Packet Format

Figures 4- 5 to 4- 15 show various packets’ format when stored in the FIFO from the host memory or work
RAM. Link- Tx block converts format of these packets shown from Open HCI to 1394 and transmits the pack-
ets onto the 1394 bus.

31 16 15 0

srcBusID

spd tLabel rt tCode4

destination ID destinationOffsetHi

destinationOffsetLo

Fig. 4.5 Quadlet Read Request Transmit Packet

Preliminary

58

31 16 15 0

spd tCode6

srcBusID

tLabel rt

rCodedestinationID

quadlet data

Fig. 4.12 Quadlet Read Response Transmit Packet

31 16 15 0

spd tCode7

srcBusID

tLabel rt

rCodedestinationID

dataLength

block data

Fig. 4.13 Block Read Response Transmit Packet

31 16 15 0

spd tCodeB

srcBusID

tLabel rt

rCodedestinationID

dataLength

block data

extendedTcode

Fig. 4.14 Lock Response Transmit Packet

Preliminary

61

(7) ack_type_error : 1Eh

when the block- write- request packet that exceeds the maximum payload count is received. or, when the
tcode in the received packet is undefined.

(8) ack_pending : 12h

when a packet is received normally and the response packet needs to be transmitted.

(9) ack_complete : 11h

when a packet is completely received.

The following describes and shows the state machine of interrupt handling:

I1 Set the interrupt event code in the ContextControl.eventcode field and then further set the interrupt. . . .
code and remained byte count of the host memory in the xferStatus and resCount fields in the last
descriptor. After completing these processes, go to the procedure I3 if the context program has been
processed correctly. If it could not be processed correctly then go to the procedure I2.

I2 Set the IntEvent.unrecoverableError bit if the ’ i ’ flag in the last descriptor indicates ’11b’. Then store. . . .
the start address of host memory where the error descriptor is contained in the
CommandPtr.descriptorAddress field, and return to Start.

I3 If the ’ i ’ flag in the last descriptor indicates ’11b’, set the IntEvent.ARRQ or ARRS bit. After that, if ”0” is. . . .
indicated in the Z field in the last descriptor, return to the START. If ”1” is indicated, then store the
address set in the branchAddress field in the CommandPtr.descriptorAddress of the last descriptor.
After the process completed, go to the program loading process.

The MB86613S device has a function that automatically processes for error when it occurs. This is called
”back- out” process. Back- out process removes packets from the host memory when an error is found on the
packet such as data length error and data CRC error. This function allows the device to store only the correct
packets in the memory, that results in having the proper acknowledge such as ack_complete and ack_pend-
ing The following describes some cases where this back- out process is taken:

1) FIFO was full while receiving packets.
2) data_length_error or data_CRC_error occurred on receive packets.
3) Bus reset occurred while receiving packets.

Also, in case where the above error occurs at the packets that are stored over two host memory(s), like the
packet- 2 shown in Figure 4.18, the descriptor control is returned to the descriptor- 1’s.

Preliminary

64

31 16 15 0

destinationID tLabel rt tCode1

sourceID destinationOffsetHi

destinationOffsetLo

dataLength

xferStatus timeStamp

block data

Fig. 4.22 Block Write Request Receive Packet

31 16 15 0

destinationID tLabel rt tCode9

sourceID destinationOffsetHi

destination Offset Lo

dataLength

xferStatus timeStamp

block data

extendedTcode

Fig. 4.23 Lock Request Receive Packet

31 16 15 0

tCodeE

PHY packet quadlet 2

PHY packet quadlet 1

0h

xferStatus timeStamp

Fig. 4.24 PHY Receive Packet

Preliminary

66

31 16 15 0

destinationID tCodeBtLabel rt

rCodesourceID

xferStatus timeStamp

dataLength

block data

extendedTcode

Fig. 4.28 Lock Response Receive Packet

Bit Field Name description
- -
16- bit destinationID Indicates the bus number in the upper 10- bit field and set the node number of

the destination node in the lower 6- bit field.

6- bit tLabel Indicates the tLabel (transaction label).

2- bit rt Indicates the rt (retry) code as follows:
00b : retry1
01b : retryX
10b : retryA
11b : retryB

4- bit tCode Indicates the tCode (transaction code).

16- bit sourceID Indicates the bus number in the upper 10- bit field and set the node number of
the source node in the lower 6- bit field.

48- bit destinationOffset Indicates the address to transmit the packet.

4- bit rCode Indicates the rcode (response code).

16- bit dataLength Indicates the byte count of block data section for the receive packet.

16- bit extendedTcode Indicates the code that clarifies the lock request/response packet format.

16- bit xferStatus Indicates the result of packet receive with ARcontextControl register format.

16- bit timeStamp Indicates the time when the packet was received with the
IsoCycleTimer.cycleCount value and cycle timer value in the lower 3- bit of
cycleSecond field.

Preliminary

67

4.3. Isochronous Transmit

4.3.1. Program Analysis

Context program is analyzed by the following procedures:

P1 If the first descriptor is STORE_VALUE command, store the 32- bit data adding ”0000h” to the upper. . . .
case of the value specified in the storeDoublet section into the address specified in dataAddress. If
the first descriptor is OUTPUT_MORE_Immediate or _LAST_Immediate command, move the packet
header stored in the lower 16- byte of descriptor from the work RAM to the IT- FIFO as specified in the
reqCount.

After the processes completed, if that descriptor is STORE_VALUE command, go to the next
descriptor process. if it is OUTPUT_LAST_Immediate command, go to the interrupt handling
process, and if it is OUTPUT_MORE_Immediate command, go to the procedure P2.

P2 Move the block data from the host memory where the address is specified in the next descriptor’s. . . .
dataAddress section to IT- FIFO.
After the processes completed, if that descriptor is OUTPUT_LAST command, go to the interrupt
handling process. If it is OUTPUT_MORE command, repeat the P2.

P2P1

INT

MORE

LAST

LAST_immediate

MORE_
Immediate

Fig. 4.29 State Machine of Program Analysis for Isochronous Packet Transmit

4.3.2. Interrupt Handle

There are a number of interrupts possibly occur in the isochronous transmit. The following lists the error
name and the condition:

(1) evt_descriptor_read : 06h

when a PCI bus error occurs while the context program moves from the host memory into the work RAM.

(2) evt_unknown : 0Eh

when a context program has some problem and it cannot be processed. Or when the device stops the context
program process because a long bus reset or cycle lost period is encountered.

(3) evt_data_read : 07h

when a PCI bus error occurs while the packet data moves from the host memory into the IT- FIFO.

Preliminary

75

packet, packet- 3.

IR- CRC stores the result of process in the xferStatus and resCount fields of descriptor in which the context
program has completed the process. This means, the result is stored in the INPUT_LAST command in case of
packet- 1 and in the INPUT_MORE command in case of packet- 2.

When a packet size is larger than the size of host memory prepared by one context program, this packet will
not completely be stored in the memory and evt_long_packet is reported.

INPUT_MORE

descriptor block- 1

pack et- 1

memory- 1 memory- 2

INPUT_LAST INPUT_MORE

descriptor block- 2

packet- 2

memory- 3 memory- 4

INPUT_LAST

Fig. 4.36 Packet- Per- Buffer Mode (Example)

4.4.4. Packet Format

Figures 4.37 to 4.40 show the isochronous receive packet format, that is to be received and stored in the host
memory. Link- Rx block converts format of these packets shown from 1394 to Open- HCI and stores it into
IR- FIFO. When storing the received packet into the host memory after removing the packet header and trailer
data (i.e., when IRContextControl.isoHeader bit is cleared), the alignment process is taken as described in
section 7.1.

Also, like Figure 4.39, if both packer header and trailer data are stored in the memory in packet- per- buffer
mode (i.e., IRContextControl.isochHeader bit is set), the alignment process is done only when the packet data
and packet header are stored in different memory locations.

31 16 15 0

dataLength tag ChanNum tCodeA

xferStatus

sy

isochronous data

timeStamp

Fig. 4.37 isochronous receive packet Format (buffer- fill Mode with header/trailer)

Preliminary

96

7.3.1 How to access EEPROM

EEPROM can be accessed by using the address space of Open HCI register space field.
Data storing to EEPROM should be done in the following procedures.

1) Write ”00”b at EEPCMD.EEPCmd and ”11”b at the bit 5- 4 in EEPAddr field. Then change the write- opera-
tion to ”enable”.

2) The following three settings should be done.

a) Set ”01b” into the EEPCMD.EEPDone field.
b) Set the EEPROM address where the data is stored into the bit 5- 0 of the EEPAddr field.
c) Set the data to be written into the EEPDATA register.

3) Wait until the EEPCMD.EEPDone bit is set.

4) Write ”00”b at EEPCMD.EEPCmd field and ”00”b at the bit 5- 4 in EEPAddr field. Then change the write- op-
eration to ”disable”.

In case EEPCMD.EEPDone bit has not set, set EEPCMD.EEPReset bit to write again.
Reading out EEPROM data can be done as follows;

1) Write ”10”b at EEPCMD.EEPCmd field and set EEPROM address where the data is stored to EEPAddr
field.

2) Wait until the EEPCMD.EEPDone bit is set.

3) EEPROM data in the address set at 1) above are displayed on EEPDATA register.

Writing ”AA559966”h and ”669955AA”h continuously to KeyLocation register makes the EEPCMD and EEP-
DATA registers available.

31 24 23 16 15 8 7 0

040h

044h

048h

04Ch

KeyLocation

EEPCMD EEPDATA

Fig. 7.5 EEPROM Register

31 24 23 16 15 8 7 0

Key

Fig. 7.6 KeyLocation Register Map

Bit size Field Name rwcu reset description
- -
31:0 Key w 000000h Writing ”AA559966”h and ”669955AA”h continuously to

KeyLocation register makes EEPCMD and EEPDATA
registers available.

1st : ”AA559966”h
2nd :”669955AA”h

Preliminary

101

Bit size Field Name rwcu reset description
- -
15 PME_status rcu 0b This bit indicates ”1” when the PME# is asserted.

14:13 data_scale rw 00b This bit is used to set the data range indicated in the Data
register.
Refer to the 7.4.6 ”Data Register” for the details.

12:9 data_select rw 0h This bit is used to change the windows in the Data register.
Refer to the 7.4.6 ”Data Register” for the details.

8 PME_en rw undefined Setting ”1” at this bit enables the PME#.
Setting ”0” at this bit does not assert the PME#.

1:0 PowerStatus rw 00b This bit sets the state of the power management to be
performed.

”00b” : D0
”01b” : Prohibit to set.
”10b” : D2
”11b” : D3hot

Preliminary

107

reqCountcmd
=1

key
=2

first quadlet

second quadlet

third quadlet

fourth quadlet

ip b3

timeStamp

branchAddress Z

xferStatus

Fig. 8.6 OUTPUT_LAST_Immediate descriptor Format

Bit size Field Name description
- -
4 cmd ”0h” means ”MORE” command.

”1h” means ”LAST” command.

3 key ”0h” means ”not immediate” command.
”2h” means ”immediate” command.

1 p ”1b” at this bit means the transmit packet is ping packet.
This bit is used to count the time until the selfID packet or acknowledge, or the
time until the subaction gap is detected after transmitting a packet. The
time is counted in 50MHz and the counted time is indicated in timeStamp
field.

2 i This field is valid only for OUTPUT_LAST and OUTPUT_LAST__Immediate
commands.
It controls the interrupt event (IntEvent.reqTxComplete or .respTxComplete bit)
reported after the descriptor is processed.
”11b” makes to report the interrupt.
”01b” enables the interrupt report only when the acknowledge except for ack_

complete and ack_pending is received.
”00b” does not report the interrupt.
”10b” is an unspecified code.

2 b Set ”00b” for MORE command.
Set ”11b” for LAST command.

16 reqCount For OUTPUT_MORE and OUTPUT_LAST commands:
Set the data byte count to be stored from a host memory into the
AT- FIFO.

For OUTPUT_MORE_Immediate and OUTPUT_LAST_Immediate
commands:

Set the byte count of packet header.

32 dataAddress Set the start address of host memory where data to be stored in AT- FIFO are in.

Preliminary

120

and dataAddress field contains ”10000000h” which is the start address of host memory where the packet is
stored for descriptor- 1 and ”20000000h” for descriptor- 2. Also, the branchAddress field for descriptor- 2 con-
tains ”90000000h” which is the start address of host memory where the context program- 2 to control the host
memory for storing the next packet is stored and the Z field contains ”2h” which is a number of descriptor in
context program- 2.

The ” i ” field of the INPUT_LAST command is being set to ”11b” so that an interrupt event is reported after
completion of isochronous packet receive process.

reqCount=1024cmd
=2

key
=0

b3

descriptorAddress=8000000h Z=2

IRCommandPtr

context program- 1 80000000h

INPUT_MORE
(descriptor- 1)

w0i0

dataAddress=10000000h

reqCount=1024cmd
=3

key
=0

b3

INPUT_LAST
(descriptor- 2)

i3

dataAddress=20000000h

branchAddress=9000000h Z=2

reqCount=1024cmd
=2

key
=0

b3
context program- 2 90000000h

INPUT_MORE
(descriptor- 3)

w0i0

dataAddress=30000000h

reqCount=1024cmd
=3

key
=0

b3

INPUT_LAST
(descriptor- 4)

i3

dataAddress=40000000h

branchAddress=8000000h Z=2

resCount=1024

resCount=1024

resCount=1024

resCount=1024

Fig. 8.18 Example of context program Format for isochronous packet Receive

Preliminary

121

8.4.2. Descriptor

This section describes the format of descriptor processed by IR- CPC. The descriptor(s) that IR- CPC han-
dles are INPUT_MORE command and INPUT_LAST command.

reqCountcmd
=2

key
=0

b

dataAddress

s i w

resCount

branchAddress Z

xferStatus

Fig. 8.19 INPUT_MORE descriptor Format

reqCountcmd
=3

key
=0

b

dataAddress

s i w

resCount

branchAddress Z

xferStatus

Fig. 8.20 INPUT_LAST descriptor Format

Bit size Field Name description
- -
4 cmd ”2h” means ”INPUT_MORE” command.

”3h” means ”INPUT_LAST” command.

1 s This flag is valid only for packet- per- buffer mode.
”1b” stores the result of execution in the xferStatus and resCount fields.
”0b” does not store the result of execution in the xferStatus and resCount fields.

3 key Always set ”0h”.

2 i This field controls the interrupt event (IntEvent.IsochRx bit) reported after the
descriptor is processed.
”11b” makes to report the interrupt.
”00b” does not report the interrupt.
”10b” and ”01b” are unspecified codes.
In packet- per- buffer mode, only the ” i ” field of INPUT_LAST command is valid.

2 b For buffer- fill mode:
Always set ”11b”.

For packet- per- buffer mode :
Set ”00b” for INPUT_MORE command.
Set ”11b” for INPUT_LAST command.

