

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

-XF

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, IrDA, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	53
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.98V ~ 3.8V
Data Converters	A/D 8x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm32gg940f512g-e-qfn64r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Ordering Information

Table 1.1 (p. 2) shows the available EFM32GG940 devices.

Table 1.1. Ordering Information

Ordering Code	Flash (kB)	RAM (kB)	Max Speed (MHz)	Supply Voltage (V)	Temperature (ºC)	Package
EFM32GG940F512G-E-QFN64	512	128	48	1.98 - 3.8	-40 - 85	QFN64
EFM32GG940F1024G-E-QFN64	1024	128	48	1.98 - 3.8	-40 - 85	QFN64

Adding the suffix 'R' to the part number (e.g. EFM32GG940F512G-E-QFN64R) denotes tape and reel.

Visit www.silabs.com for information on global distributors and representatives.

2.1.3 Memory System Controller (MSC)

The Memory System Controller (MSC) is the program memory unit of the EFM32GG microcontroller. The flash memory is readable and writable from both the Cortex-M3 and DMA. The flash memory is divided into two blocks; the main block and the information block. Program code is normally written to the main block. Additionally, the information block is available for special user data and flash lock bits. There is also a read-only page in the information block containing system and device calibration data. Read and write operations are supported in the energy modes EM0 and EM1.

2.1.4 Direct Memory Access Controller (DMA)

The Direct Memory Access (DMA) controller performs memory operations independently of the CPU. This has the benefit of reducing the energy consumption and the workload of the CPU, and enables the system to stay in low energy modes when moving for instance data from the USART to RAM or from the External Bus Interface to a PWM-generating timer. The DMA controller uses the PL230 μ DMA controller licensed from ARM.

2.1.5 Reset Management Unit (RMU)

The RMU is responsible for handling the reset functionality of the EFM32GG.

2.1.6 Energy Management Unit (EMU)

The Energy Management Unit (EMU) manage all the low energy modes (EM) in EFM32GG microcontrollers. Each energy mode manages if the CPU and the various peripherals are available. The EMU can also be used to turn off the power to unused SRAM blocks.

2.1.7 Clock Management Unit (CMU)

The Clock Management Unit (CMU) is responsible for controlling the oscillators and clocks on-board the EFM32GG. The CMU provides the capability to turn on and off the clock on an individual basis to all peripheral modules in addition to enable/disable and configure the available oscillators. The high degree of flexibility enables software to minimize energy consumption in any specific application by not wasting power on peripherals and oscillators that are inactive.

2.1.8 Watchdog (WDOG)

The purpose of the watchdog timer is to generate a reset in case of a system failure, to increase application reliability. The failure may e.g. be caused by an external event, such as an ESD pulse, or by a software failure.

2.1.9 Peripheral Reflex System (PRS)

The Peripheral Reflex System (PRS) system is a network which lets the different peripheral module communicate directly with each other without involving the CPU. Peripheral modules which send out Reflex signals are called producers. The PRS routes these reflex signals to consumer peripherals which apply actions depending on the data received. The format for the Reflex signals is not given, but edge triggers and other functionality can be applied by the PRS.

2.1.10 Universal Serial Bus Controller (USB)

The USB is a full-speed USB 2.0 compliant OTG host/device controller. The USB can be used in Device, On-the-go (OTG) Dual Role Device or Host-only configuration. In OTG mode the USB supports both Host Negotiation Protocol (HNP) and Session Request Protocol (SRP). The device supports both full-speed (12MBit/s) and low speed (1.5MBit/s) operation. The USB device includes an internal dedicated

Descriptor-Based Scatter/Gather DMA and supports up to 6 OUT endpoints and 6 IN endpoints, in addition to endpoint 0. The on-chip PHY includes all OTG features, except for the voltage booster for supplying 5V to VBUS when operating as host.

2.1.11 Inter-Integrated Circuit Interface (I2C)

The I²C module provides an interface between the MCU and a serial I²C-bus. It is capable of acting as both a master and a slave, and supports multi-master buses. Both standard-mode, fast-mode and fast-mode plus speeds are supported, allowing transmission rates all the way from 10 kbit/s up to 1 Mbit/s. Slave arbitration and timeouts are also provided to allow implementation of an SMBus compliant system. The interface provided to software by the I²C module, allows both fine-grained control of the transmission process and close to automatic transfers. Automatic recognition of slave addresses is provided in all energy modes.

2.1.12 Universal Synchronous/Asynchronous Receiver/Transmitter (US-ART)

The Universal Synchronous Asynchronous serial Receiver and Transmitter (USART) is a very flexible serial I/O module. It supports full duplex asynchronous UART communication as well as RS-485, SPI, MicroWire and 3-wire. It can also interface with ISO7816 SmartCards, IrDA and I2S devices.

2.1.13 Pre-Programmed USB/UART Bootloader

The bootloader presented in application note AN0042 is pre-programmed in the device at factory. The bootloader enables users to program the EFM32 through a UART or a USB CDC class virtual UART without the need for a debugger. The autobaud feature, interface and commands are described further in the application note.

2.1.14 Low Energy Universal Asynchronous Receiver/Transmitter (LEUART)

The unique LEUARTTM, the Low Energy UART, is a UART that allows two-way UART communication on a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud/s. The LEUART includes all necessary hardware support to make asynchronous serial communication possible with minimum of software intervention and energy consumption.

2.1.15 Timer/Counter (TIMER)

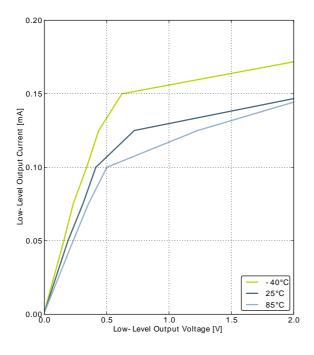
The 16-bit general purpose Timer has 3 compare/capture channels for input capture and compare/Pulse-Width Modulation (PWM) output. TIMER0 also includes a Dead-Time Insertion module suitable for motor control applications.

2.1.16 Real Time Counter (RTC)

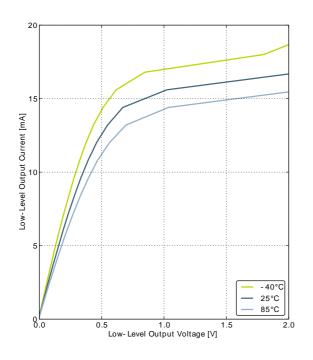
The Real Time Counter (RTC) contains a 24-bit counter and is clocked either by a 32.768 kHz crystal oscillator, or a 32.768 kHz RC oscillator. In addition to energy modes EM0 and EM1, the RTC is also available in EM2. This makes it ideal for keeping track of time since the RTC is enabled in EM2 where most of the device is powered down.

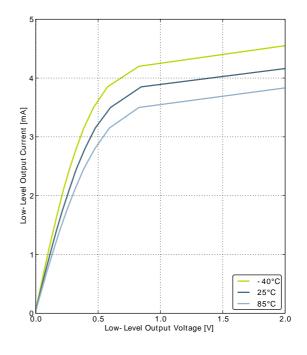
2.1.17 Backup Real Time Counter (BURTC)

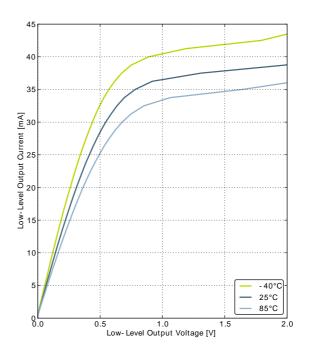
The Backup Real Time Counter (BURTC) contains a 32-bit counter and is clocked either by a 32.768 kHz crystal oscillator, a 32.768 kHz RC oscillator or a 1 kHz ULFRCO. The BURTC is available in all Energy Modes and it can also run in backup mode, making it operational even if the main power should drain out.


Module	Configuration	Pin Connections	
СМU	Full configuration	CMU_OUT0, CMU_OUT1	
WDOG	Full configuration	NA	
PRS	Full configuration	NA	
USB	Full configuration	USB_VBUS, USB_VBUSEN, USB_VREGI, USB_VREGO, USB_DM, USB_DMPU, USB_DP, USB_ID	
12C0	Full configuration	I2C0_SDA, I2C0_SCL	
I2C1	Full configuration	I2C1_SDA, I2C1_SCL	
USART0	Full configuration with IrDA	US0_TX, US0_RX. US0_CLK, US0_CS	
USART1	Full configuration with I2S	US1_TX, US1_RX, US1_CLK, US1_CS	
USART2	Full configuration with I2S	US2_TX, US2_RX, US2_CLK, US2_CS	
LEUART0	Full configuration	LEU0_TX, LEU0_RX	
LEUART1	Full configuration	LEU1_TX, LEU1_RX	
TIMER0	Full configuration with DTI	TIM0_CC[2:0], TIM0_CDTI[2:0]	
TIMER1	Full configuration	TIM1_CC[2:0]	
TIMER2	Full configuration	TIM2_CC[2:0]	
TIMER3	Full configuration	TIM3_CC[2:0]	
RTC	Full configuration	NA	
BURTC	Full configuration	NA	
LETIMER0	Full configuration	LET0_O[1:0]	
PCNT0	Full configuration, 16-bit count register	PCNT0_S[1:0]	
PCNT1	Full configuration, 8-bit count register	PCNT1_S[1:0]	
PCNT2	Full configuration, 8-bit count register	PCNT2_S[1:0]	
ACMP0	Full configuration	ACMP0_CH[7:0], ACMP0_O	
ACMP1	Full configuration	ACMP1_CH[7:0], ACMP1_O	
VCMP	Full configuration	NA	
ADC0	Full configuration	ADC0_CH[7:0]	
DAC0	Full configuration	DAC0_OUT[1:0], DAC0_OUTxALT	
OPAMP	Full configuration	Outputs: OPAMP_OUTx, OPAMP_OUTxALT, Inputs: OPAMP_Px, OPAMP_Nx	
AES	Full configuration	NA	
GPIO	52 pins	Available pins are shown in Table 4.3 (p. 59)	
LCD	Full configuration	LCD_SEG[17:0], LCD_COM[7:0], LCD_BCAP_P, LCD_BCAP_N, LCD_BEXT	

2.3 Memory Map


The *EFM32GG940* memory map is shown in Figure 2.2 (p. 9), with RAM and Flash sizes for the largest memory configuration.


Figure 3.4. Typical Low-Level Output Current, 2V Supply Voltage


GPIO_Px_CTRL DRIVEMODE = LOWEST

GPIO_Px_CTRL DRIVEMODE = STANDARD

GPIO_Px_CTRL DRIVEMODE = LOW

GPIO_Px_CTRL DRIVEMODE = HIGH

3.9 Oscillators

3.9.1 LFXO

Table 3.8. LFXO

Symbol	Parameter	Condition	Min	Тур	Max	Unit
f _{LFXO}	Supported nominal crystal frequency			32.768		kHz
ESR _{LFXO}	Supported crystal equivalent series re- sistance (ESR)			30	120	kOhm
C _{LFXOL}	Supported crystal external load range		X ¹		25	pF
DC _{LFXO}	Duty cycle		48	50	53.5	%
I _{LFXO}	Current consump- tion for core and buffer after startup.	ESR=30 kOhm, C _L =10 pF, LFXOBOOST in CMU_CTRL is 1		190		nA
t _{LFXO}	Start- up time.	ESR=30 kOhm, C _L =10 pF, 40% - 60% duty cycle has been reached, LFXOBOOST in CMU_CTRL is 1		400		ms

¹See Minimum Load Capacitance (C_{LFXOL}) Requirement For Safe Crystal Startup in energyAware Designer in Simplicity Studio

For safe startup of a given crystal, the Configurator tool in Simplicity Studio contains a tool to help users configure both load capacitance and software settings for using the LFXO. For details regarding the crystal configuration, the reader is referred to application note "AN0016 EFM32 Oscillator Design Consideration".

3.9.2 HFXO

Table 3.9. HFXO

Symbol	Parameter	Condition	Min	Тур	Max	Unit
f _{HFXO}	Supported nominal crystal Frequency		4		48	MHz
	Supported crystal	Crystal frequency 48 MHz			50	Ohm
ESR _{HFXO}	equivalent series re-	Crystal frequency 32 MHz		30	60	Ohm
	sistance (ESR)	Crystal frequency 4 MHz		400	1500	Ohm
g _{mHFXO}	The transconduc- tance of the HFXO input transistor at crystal startup	HFXOBOOST in CMU_CTRL equals 0b11	20			mS
C _{HFXOL}	Supported crystal external load range		5		25	pF
1 .	Current consump-	4 MHz: ESR=400 Ohm, C _L =20 pF, HFXOBOOST in CMU_CTRL equals 0b11		85		μA
IHFXO	startup	32 MHz: ESR=30 Ohm, C _L =10 pF, HFXOBOOST in CMU_CTRL equals $0b11$		165		μA
t _{HFXO}	Startup time	32 MHz: ESR=30 Ohm, C _L =10 pF, HFXOBOOST in CMU_CTRL equals 0b11		400		μs

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		f _{HFRCO} = 28 MHz		165	190	μA
		f _{HFRCO} = 21 MHz		134	155	μA
1	Current consump-	f _{HFRCO} = 14 MHz		106	120	μA
IHFRCO	tion (Production test condition = 14MHz)	f _{HFRCO} = 11 MHz		94	110	μA
		f _{HFRCO} = 6.6 MHz		77	90	μA
		f _{HFRCO} = 1.2 MHz		25	32	μA
TUNESTEP _{H-} FRCO	Frequency step for LSB change in TUNING value			0.3 ³		%

¹For devices with prod. rev. < 19, Typ = 7MHz and Min/Max values not applicable.

 2 For devices with prod. rev. < 19, Typ = 1MHz and Min/Max values not applicable.

³The TUNING field in the CMU_HFRCOCTRL register may be used to adjust the HFRCO frequency. There is enough adjustment range to ensure that the frequency bands above 7 MHz will always have some overlap across supply voltage and temperature. By using a stable frequency reference such as the LFXO or HFXO, a firmware calibration routine can vary the TUNING bits and the frequency band to maintain the HFRCO frequency at any arbitrary value between 7 MHz and 28 MHz across operating conditions.

Figure 3.11. Calibrated HFRCO 1 MHz Band Frequency vs Supply Voltage and Temperature

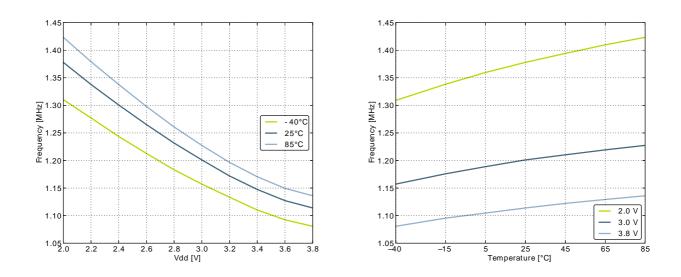
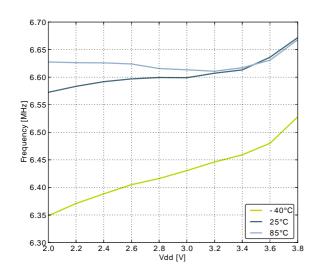



Figure 3.12. Calibrated HFRCO 7 MHz Band Frequency vs Supply Voltage and Temperature

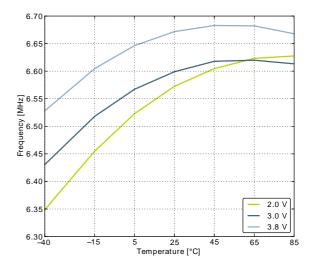


Figure 3.13. Calibrated HFRCO 11 MHz Band Frequency vs Supply Voltage and Temperature

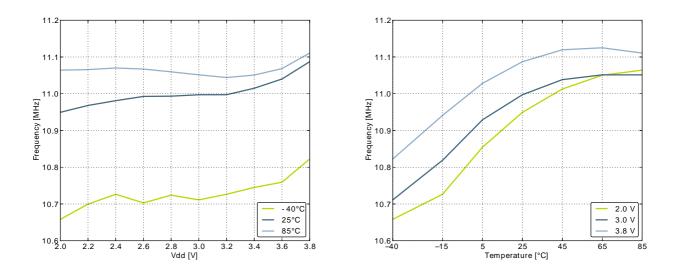


Figure 3.14. Calibrated HFRCO 14 MHz Band Frequency vs Supply Voltage and Temperature

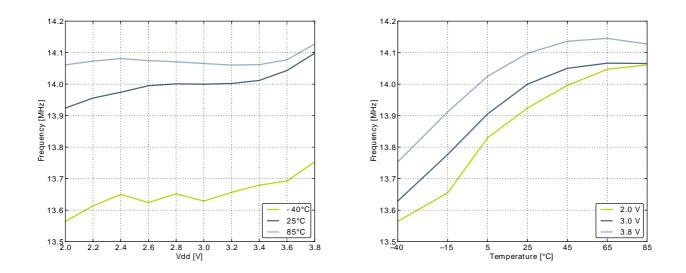
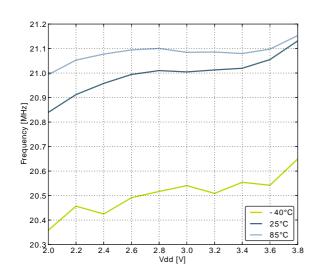
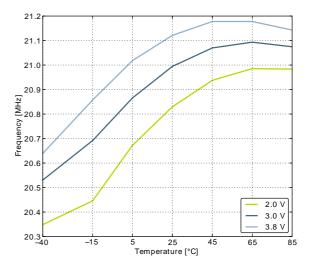




Figure 3.15. Calibrated HFRCO 21 MHz Band Frequency vs Supply Voltage and Temperature

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		500 kSamples/s, 12 bit, differ- ential, internal 2.5V reference		58		dB
		500 kSamples/s, 12 bit, differential, V_{DD} reference		59		dB
		500 kSamples/s, 12 bit, sin- gle ended, internal 1.25V refer- ence		57		dB
	Signal to Noise-	500 kSamples/s, 12 bit, single ended, internal 2.5V reference		54		dB
SNDR _{DAC}	pulse Distortion Ra- tio (SNDR)	500 kSamples/s, 12 bit, differ- ential, internal 1.25V reference		56		dB
		500 kSamples/s, 12 bit, differ- ential, internal 2.5V reference		53		dB
		500 kSamples/s, 12 bit, differential, V_{DD} reference		55		dB
		500 kSamples/s, 12 bit, sin- gle ended, internal 1.25V refer- ence		62		dBc
	Spurious-Free	500 kSamples/s, 12 bit, single ended, internal 2.5V reference		56		dBc
SFDR _{DAC}	Dynamic Range(SFDR)	500 kSamples/s, 12 bit, differ- ential, internal 1.25V reference		61		dBc
		500 kSamples/s, 12 bit, differ- ential, internal 2.5V reference		55		dBc
		500 kSamples/s, 12 bit, differential, V_{DD} reference		60		dBc
N/	Offeet veltege	After calibration, single ended		2	12	mV
V _{DACOFFSET}	Offset voltage	After calibration, differential		2		mV
DNL _{DAC}	Differential non-lin- earity			±1		LSB
INL _{DAC}	Integral non-lineari- ty			±5		LSB
MC _{DAC}	No missing codes			12		bits

¹Measured with a static input code and no loading on the output.

3.12 Operational Amplifier (OPAMP)

The electrical characteristics for the Operational Amplifiers are based on simulations.

Table 3.16. OPAMP

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		(OPA2)BIASPROG=0xF, (OPA2)HALFBIAS=0x0, Unity Gain	350	405	μA	
	Active Current	(OPA2)BIASPROG=0x7, (OPA2)HALFBIAS=0x1, Unity Gain		95	115	μA

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		V _{out} =1V, RESSEL=0, 0.1 Hz <f<1 mhz,="" opaxhcmdis="0</td"><td></td><td>196</td><td></td><td>μV_{RMS}</td></f<1>		196		μV _{RMS}
		V _{out} =1V, RESSEL=0, 0.1 Hz <f<1 mhz,="" opaxhcmdis="1</td"><td></td><td>229</td><td></td><td>μV_{RMS}</td></f<1>		229		μV _{RMS}
		RESSEL=7, 0.1 Hz <f<10 khz,<br="">OPAxHCMDIS=0</f<10>		1230		μV _{RMS}
		RESSEL=7, 0.1 Hz <f<10 khz,<br="">OPAxHCMDIS=1</f<10>		2130		μV _{RMS}
		RESSEL=7, 0.1 Hz <f<1 mhz,<br="">OPAxHCMDIS=0</f<1>		1630		μV _{RMS}
		RESSEL=7, 0.1 Hz <f<1 mhz,<br="">OPAxHCMDIS=1</f<1>		2590		μV _{RMS}

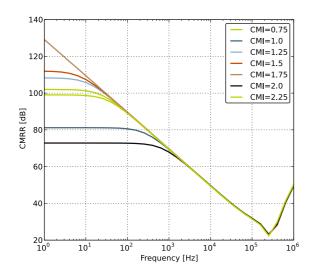
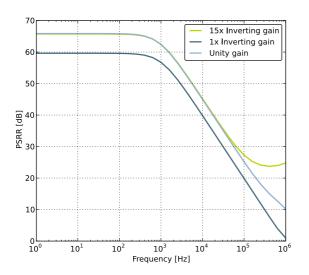



Figure 3.26. OPAMP Positive Power Supply Rejection Ratio

3.14 Voltage Comparator (VCMP)

Table 3.18. VCMP

Symbol	Parameter	Condition	Min	Тур	Мах	Unit
V _{VCMPIN}	Input voltage range			V _{DD}		V
V _{VCMPCM}	VCMP Common Mode voltage range			V _{DD}		V
1	Active current	BIASPROG=0b0000 and HALFBIAS=1 in VCMPn_CTRL register		0.3	0.6	μA
IVCMP		BIASPROG=0b1111 and HALFBIAS=0 in VCMPn_CTRL register. LPREF=0.		22	30	μA
t _{VCMPREF}	Startup time refer- ence generator	NORMAL		10		μs
M	Offect veltage	Single ended	-230	-40	190	mV
V _{VCMPOFFSET}	Offset voltage	Differential		10		mV
V _{VCMPHYST}	VCMP hysteresis			40		mV
t _{VCMPSTART}	Startup time				10	μs

The V_{DD} trigger level can be configured by setting the TRIGLEVEL field of the VCMP_CTRL register in accordance with the following equation:

VCMP Trigger Level as a Function of Level Setting

V_{DD Trigger Level}=1.667V+0.034 ×TRIGLEVEL

(3.2)

4 Pinout and Package

Note

Please refer to the application note "AN0002 EFM32 Hardware Design Considerations" for guidelines on designing Printed Circuit Boards (PCB's) for the EFM32GG940.

4.1 Pinout

The *EFM32GG940* pinout is shown in Figure 4.1 (p. 51) and Table 4.1 (p. 51). Alternate locations are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/"). Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module in question.

Figure 4.1. EFM32GG940 Pinout (top view, not to scale)

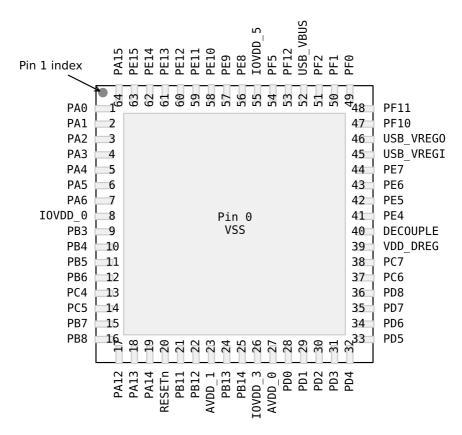


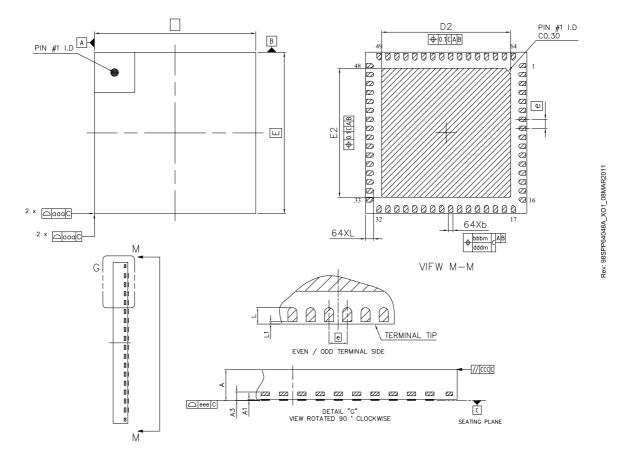
Table 4.1. Device Pinout

	QFN64 Pin# and Name				
Pin #	Pin Name	Analog	Timers	Communication	Other
0	VSS	Ground.			
1	PA0	LCD_SEG13	TIM0_CC0 #0/1/4	I2C0_SDA #0 LEU0_RX #4	PRS_CH0 #0 GPIO_EM4WU0
2	PA1	LCD_SEG14	TIM0_CC1 #0/1	I2C0_SCL #0	CMU_CLK1 #0 PRS_CH1 #0

EFM°32

...the world's most energy friendly microcontrollers

Alternate			LOC	ATION				
Functionality	0	1	2	3	4	5	6	Description
OPAMP_N1	PD7							Operational Amplifier 1 external negative input.
OPAMP_N2	PD3							Operational Amplifier 2 external negative input.
DAC0_OUT0 / OPAMP_OUT0	PB11							Digital to Analog Converter DAC0_OUT0 / OPAMP output channel number 0.
DAC0_OUT0ALT / OPAMP_OUT0ALT					PD0			Digital to Analog Converter DAC0_OUT0ALT / OPAMP alternative output for channel 0.
DAC0_OUT1 / OPAMP_OUT1	PB12							Digital to Analog Converter DAC0_OUT1 / OPAMP output channel number 1.
DAC0_OUT1ALT / OPAMP_OUT1ALT					PD1			Digital to Analog Converter DAC0_OUT1ALT / OPAMP alternative output for channel 1.
OPAMP_OUT2	PD5	PD0						Operational Amplifier 2 output.
OPAMP_P0	PC4							Operational Amplifier 0 external positive input.
OPAMP_P1	PD6							Operational Amplifier 1 external positive input.
OPAMP_P2	PD4							Operational Amplifier 2 external positive input.
								Debug-interface Serial Wire clock input.
DBG_SWCLK	PF0	PF0	PF0	PF0				Note that this function is enabled to pin out of reset, and has a built-in pull down.
								Debug-interface Serial Wire data input / output.
DBG_SWDIO	PF1	PF1	PF1	PF1				Note that this function is enabled to pin out of reset, and has a built-in pull up.
								Debug-interface Serial Wire viewer Output.
DBG_SWO	PF2		PD1	PD2				Note that this function is not enabled after reset, and must be enabled by software to be used.
ETM_TCLK	PD7		PC6	PA6				Embedded Trace Module ETM clock .
ETM_TD0	PD6		PC7	PA2				Embedded Trace Module ETM data 0.
ETM_TD1	PD3		PD3	PA3				Embedded Trace Module ETM data 1.
ETM_TD2	PD4		PD4	PA4				Embedded Trace Module ETM data 2.
ETM_TD3	PD5		PD5	PA5				Embedded Trace Module ETM data 3.
GPIO_EM4WU0	PA0							Pin can be used to wake the system up from EM4
GPIO_EM4WU1	PA6							Pin can be used to wake the system up from EM4
GPIO_EM4WU3	PF1							Pin can be used to wake the system up from EM4
GPIO_EM4WU4	PF2							Pin can be used to wake the system up from EM4
GPIO_EM4WU5	PE13							Pin can be used to wake the system up from EM4
HFXTAL_N	PB14							High Frequency Crystal negative pin. Also used as exter- nal optional clock input pin.
HFXTAL_P	PB13							High Frequency Crystal positive pin.
I2C0_SCL	PA1	PD7	PC7			PF1	PE13	I2C0 Serial Clock Line input / output.
I2C0_SDA	PA0	PD6	PC6			PF0	PE12	I2C0 Serial Data input / output.
I2C1_SCL	PC5	PB12						I2C1 Serial Clock Line input / output.
I2C1_SDA	PC4	PB11						I2C1 Serial Data input / output.
LCD_BCAP_N	PA13							LCD voltage booster (optional), boost capacitor, negative pin. If using the LCD voltage booster, connect a 22 nF ca- pacitor between LCD_BCAP_N and LCD_BCAP_P.
LCD_BCAP_P	PA12							LCD voltage booster (optional), boost capacitor, positive pin. If using the LCD voltage booster, connect a 22 nF ca- pacitor between LCD_BCAP_N and LCD_BCAP_P.
LCD_BEXT	PA14							LCD voltage booster (optional), boost output. If using the LCD voltage booster, connect a 1 uF capacitor between this pin and VSS.


EFM°32

...the world's most energy friendly microcontrollers

Alternate			LOC	ATION						
Functionality	0	1	2	3	4	5	6	Description		
LES_ALTEX0	PD6							LESENSE alternate exite output 0.		
LES_ALTEX1	PD7							LESENSE alternate exite output 1.		
LES_ALTEX2	PA3							LESENSE alternate exite output 2.		
LES_ALTEX3	PA4							LESENSE alternate exite output 3.		
LES_ALTEX4	PA5							LESENSE alternate exite output 4.		
LES_ALTEX5	PE11							LESENSE alternate exite output 5.		
LES_ALTEX6	PE12							LESENSE alternate exite output 6.		
LES_ALTEX7	PE13							LESENSE alternate exite output 7.		
LES_CH4	PC4							LESENSE channel 4.		
LES_CH5	PC5							LESENSE channel 5.		
LES_CH6	PC6							LESENSE channel 6.		
LES_CH7	PC7							LESENSE channel 7.		
LETIM0_OUT0	PD6	PB11	PF0	PC4				Low Energy Timer LETIM0, output channel 0.		
LETIM0_OUT1	PD7	PB12	PF1	PC5				Low Energy Timer LETIM0, output channel 1.		
LEU0_RX	PD5	PB14	PE15	PF1	PA0			LEUARTO Receive input.		
LEU0_TX	PD4	PB13	PE14	PF0	PF2			LEUART0 Transmit output. Also used as receive input in half duplex communication.		
LEU1_RX	PC7	PA6						LEUART1 Receive input.		
LEU1_TX	PC6	PA5						LEUART1 Transmit output. Also used as receive input in half duplex communication.		
LFXTAL_N	PB8							Low Frequency Crystal (typically 32.768 kHz) negative pin. Also used as an optional external clock input pin.		
LFXTAL_P	PB7							Low Frequency Crystal (typically 32.768 kHz) positive pin.		
PCNT0_S0IN				PD6				Pulse Counter PCNT0 input number 0.		
PCNT0_S1IN				PD7				Pulse Counter PCNT0 input number 1.		
PCNT1_S0IN	PC4	PB3						Pulse Counter PCNT1 input number 0.		
PCNT1_S1IN	PC5	PB4						Pulse Counter PCNT1 input number 1.		
PCNT2_S0IN	PD0	PE8						Pulse Counter PCNT2 input number 0.		
PCNT2_S1IN	PD1	PE9						Pulse Counter PCNT2 input number 1.		
PRS_CH0	PA0							Peripheral Reflex System PRS, channel 0.		
PRS_CH1	PA1							Peripheral Reflex System PRS, channel 1.		
PRS_CH2		PF5						Peripheral Reflex System PRS, channel 2.		
PRS_CH3		PE8						Peripheral Reflex System PRS, channel 3.		
TIM0_CC0	PA0	PA0	1	PD1	PA0	PF0		Timer 0 Capture Compare input / output channel 0.		
TIM0_CC1	PA1	PA1		PD2		PF1		Timer 0 Capture Compare input / output channel 1.		
TIM0_CC2	PA2	PA2		PD3		PF2		Timer 0 Capture Compare input / output channel 2.		
TIM0_CDTI0	PA3							Timer 0 Complimentary Deat Time Insertion channel 0.		
TIM0_CDTI1	PA4							Timer 0 Complimentary Deat Time Insertion channel 1.		
TIM0_CDTI2	PA5		PF5		PC4	PF5		Timer 0 Complimentary Deat Time Insertion channel 2.		
TIM1_CC0		PE10		PB7	PD6			Timer 1 Capture Compare input / output channel 0.		
TIM1_CC1		PE11	1	PB8	PD7			Timer 1 Capture Compare input / output channel 1.		
TIM1_CC2		PE12		PB11				Timer 1 Capture Compare input / output channel 2.		
TIM2_CC0		PA12						Timer 2 Capture Compare input / output channel 0.		

4.5 QFN64 Package

Figure 4.3. QFN64

Note:

Nom

Max

- 1. Dimensioning & tolerancing confirm to ASME Y14.5M-1994.
- 2. All dimensions are in millimeters. Angles are in degrees.
- 3. Dimension 'b' applies to metallized terminal and is measured between 0.25 mm and 0.30 mm from the terminal tip. Dimension L1 represents terminal full back from package edge up to 0.1 mm is acceptable.
- 4. Coplanarity applies to the exposed heat slug as well as the terminal.
- 5. Radius on terminal is optional

0.85

0.90

Symbol	Α	A1	A3	b	D	E	D2	E2	e	L	L1	aaa	
Min	0.80			0.20			7.10				0.00		
Nom	0.95		0.203	0.25	9.00	9.00	7 20	7 20	0.50	0.45		0 10	

Table 4.4. QFN64 (Dimensions in mm)

0.05

The QFN64 Package uses Nickel-Palladium-Gold preplated leadframe.

BSC

All EFM32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb).

BSC

7.20

7.30

7.20

7.30

BSC

0.45

0.50

0.10

For additional Quality and Environmental information, please see: http://www.silabs.com/support/quality/pages/default.aspx

0.25

0.30

REF

ddd

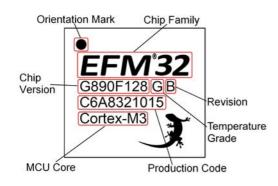
0.05

0.08

bbb

0.10

0.10


0.10

6 Chip Marking, Revision and Errata

6.1 Chip Marking

In the illustration below package fields and position are shown.

Figure 6.1. Example Chip Marking (top view)

6.2 Revision

The revision of a chip can be determined from the "Revision" field in Figure 6.1 (p. 64).

6.3 Errata

Please see the errata document for EFM32GG940 for description and resolution of device erratas. This document is available in Simplicity Studio and online at: http://www.silabs.com/support/pages/document-library.aspx?p=MCUs--32-bit

7.5 Revision 1.10

June 28th, 2013

Updated power requirements in the Power Management section.

Removed minimum load capacitance figure and table. Added reference to application note.

Other minor corrections.

7.6 Revision 1.00

September 11th, 2012

Updated the HFRCO 1 MHz band typical value to 1.2 MHz.

Updated the HFRCO 7 MHz band typical value to 6.6 MHz.

Other minor corrections.

7.7 Revision 0.98

May 25th, 2012

Corrected EM3 current consumption in the Electrical Characteristics section.

7.8 Revision 0.96

February 28th, 2012

Added reference to errata document.

Corrected QFN64 package drawing.

Updated PCB land pattern, solder mask and stencil design.

7.9 Revision 0.95

September 28th, 2011

Flash configuration for Giant Gecko is now 1024KB or 512KB. For flash sizes below 512KB, see the Leopard Gecko Family.

Corrected operating voltage from 1.8 V to 1.85 V.

Added rising POR level to Electrical Characteristics section.

Updated Minimum Load Capacitance (C_{LFXOL}) Requirement For Safe Crystal Startup.

Added Gain error drift and Offset error drift to ADC table.

Added Opamp pinout overview.

Added reference to errata document.

Corrected QFN64 package drawing.

Updated PCB land pattern, solder mask and stencil design.

A Disclaimer and Trademarks

A.1 Disclaimer

Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

A.2 Trademark Information

Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISO-modem®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

B Contact Information

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701

Please visit the Silicon Labs Technical Support web page: http://www.silabs.com/support/pages/contacttechnicalsupport.aspx and register to submit a technical support request.

List of Equations

3.1. Total ACMP Active Current	43
3.2. VCMP Trigger Level as a Function of Level Setting	45
3.3. Total LCD Current Based on Operational Mode and Internal Boost	