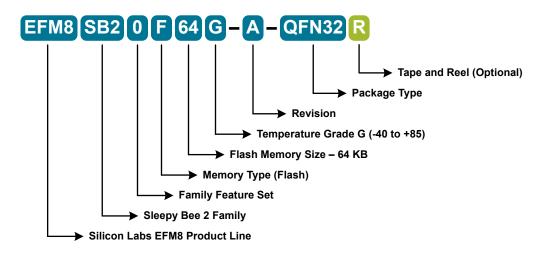


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Discontinued at Digi-Key
Core Processor	CIP-51 8051
Core Size	8-Bit
Speed	25MHz
Connectivity	EBI/EMI, I ² C, SMBus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4.25K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 15x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-WFQFN Exposed Pad
Supplier Device Package	24-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/efm8sb20f16g-a-qfn24

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2. Ordering Information

Figure 2.1. EFM8SB2 Part Numbering

All EFM8SB2 family members have the following features:

- · CIP-51 Core running up to 25 MHz
- Three Internal Oscillators (24.5 MHz, 20 MHz, and 16 kHz)
- SMBus / I2C
- 2 x SPI
- UART
- · 6-Channel Programmable Counter Array (PWM, Clock Generation, Capture/Compare)
- 4 16-bit Timers
- 2 Analog Comparators
- 6-bit programmable current reference
- · 10-bit Analog-to-Digital Converter with integrated multiplexer, voltage reference, and temperature sensor
- Low-current 32 kHz oscillator and Real Time Clock
- 16-bit CRC Unit
- Pre-loaded UART bootloader

In addition to these features, each part number in the EFM8SB2 family has a set of features that vary across the product line. The product selection guide shows the features available on each family member.

Table 2.1. Product Selection Guide

Ordering Part Number	Flash Memory (kB)	RAM (Bytes)	Digital Port I/Os (Total)	ADC Channels	Comparator Inputs	Pb-free (RoHS Compliant)	Temperature Range	Package
EFM8SB20F64G-A-QFN32	64	4352	24	23	12	Yes	-40 to +85 C	QFN32
EFM8SB20F64G-A-QFP32	64	4352	24	23	12	Yes	-40 to +85 C	QFP32
EFM8SB20F64G-A-QFN24	64	4352	16	15	8	Yes	-40 to +85 C	QFN24
EFM8SB20F32G-A-QFN32	32	4352	24	23	12	Yes	-40 to +85 C	QFN32
EFM8SB20F32G-A-QFP32	32	4352	24	23	12	Yes	-40 to +85 C	QFP32
EFM8SB20F32G-A-QFN24	32	4352	16	15	8	Yes	-40 to +85 C	QFN24

EFM8SB2 Data Sheet Ordering Information

Ordering Part Number	Flash Memory (kB)	RAM (Bytes)	Digital Port I/Os (Total)	ADC Channels	Comparator Inputs	Pb-free (RoHS Compliant)	Temperature Range	Package
EFM8SB20F16G-A-QFN24	16	4352	16	15	8	Yes	-40 to +85 C	QFN24

3. System Overview

3.1 Introduction

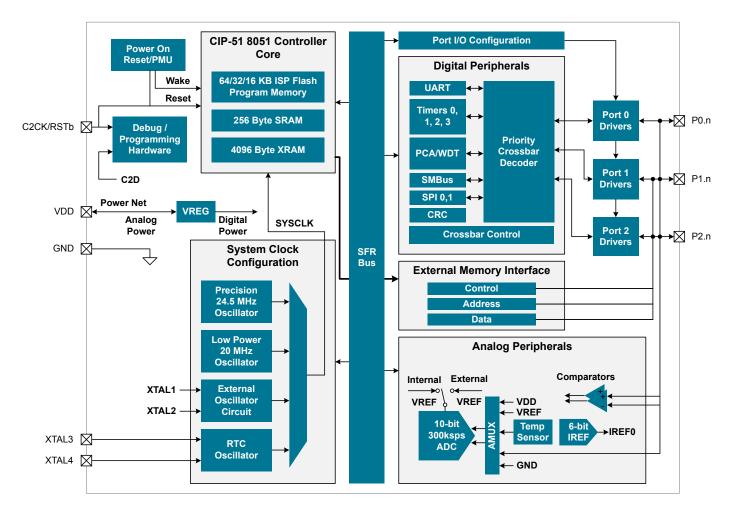


Figure 3.1. Detailed EFM8SB2 Block Diagram

Watchdog Timer (WDT0)

The device includes a programmable watchdog timer (WDT) integrated within the PCA0 peripheral. A WDT overflow forces the MCU into the reset state. To prevent the reset, the WDT must be restarted by application software before overflow. If the system experiences a software or hardware malfunction preventing the software from restarting the WDT, the WDT overflows and causes a reset. Following a reset, the WDT is automatically enabled and running with the default maximum time interval. If needed, the WDT can be disabled by system software. The state of the RSTb pin is unaffected by this reset.

The Watchdog Timer integrated in the PCA0 peripheral has the following features:

- Programmable timeout interval
- Runs from the selected PCA clock source
- Automatically enabled after any system reset

3.6 Communications and Other Digital Peripherals

Universal Asynchronous Receiver/Transmitter (UART0)

UART0 is an asynchronous, full duplex serial port offering modes 1 and 3 of the standard 8051 UART. Enhanced baud rate support allows a wide range of clock sources to generate standard baud rates. Received data buffering allows UART0 to start reception of a second incoming data byte before software has finished reading the previous data byte.

The UART module provides the following features:

- · Asynchronous transmissions and receptions
- Baud rates up to SYSCLK/2 (transmit) or SYSCLK/8 (receive)
- 8- or 9-bit data
- Automatic start and stop generation

Serial Peripheral Interface (SPI0 and SPI1)

The serial peripheral interface (SPI) module provides access to a flexible, full-duplex synchronous serial bus. The SPI can operate as a master or slave device in both 3-wire or 4-wire modes, and supports multiple masters and slaves on a single SPI bus. The slave-select (NSS) signal can be configured as an input to select the SPI in slave mode, or to disable master mode operation in a multi-master environment, avoiding contention on the SPI bus when more than one master attempts simultaneous data transfers. NSS can also be configured as a firmware-controlled chip-select output in master mode, or disable to reduce the number of pins required. Additional general purpose port I/O pins can be used to select multiple slave devices in master mode.

The SPI module includes the following features:

- Supports 3- or 4-wire operation in master or slave modes.
- Supports external clock frequencies up to SYSCLK / 2 in master mode and SYSCLK / 10 in slave mode.
- Support for four clock phase and polarity options.
- 8-bit dedicated clock clock rate generator.
- Support for multiple masters on the same data lines.

System Management Bus / I2C (SMB0)

The SMBus I/O interface is a two-wire, bi-directional serial bus. The SMBus is compliant with the System Management Bus Specification, version 1.1, and compatible with the I²C serial bus.

The SMBus module includes the following features:

- Standard (up to 100 kbps) and Fast (400 kbps) transfer speeds.
- · Support for master, slave, and multi-master modes.
- Hardware synchronization and arbitration for multi-master mode.
- · Clock low extending (clock stretching) to interface with faster masters.
- Hardware support for 7-bit slave and general call address recognition.
- Firmware support for 10-bit slave address decoding.
- · Ability to inhibit all slave states.
- Programmable data setup/hold times.

10-Bit Analog-to-Digital Converter (ADC0)

The ADC is a successive-approximation-register (SAR) ADC with 10- and 8-bit modes, integrated track-and hold and a programmable window detector. The ADC is fully configurable under software control via several registers. The ADC may be configured to measure different signals using the analog multiplexer. The voltage reference for the ADC is selectable between internal and external reference sources.

- Up to 22 external inputs.
- Single-ended 10-bit mode.
- · Supports an output update rate of 300 ksps samples per second.
- · Operation in low power modes at lower conversion speeds.
- Asynchronous hardware conversion trigger, selectable between software, external I/O and internal timer sources.
- Output data window comparator allows automatic range checking.
- Support for burst mode, which produces one set of accumulated data per conversion-start trigger with programmable power-on settling and tracking time.
- · Conversion complete and window compare interrupts supported.
- Flexible output data formatting.
- · Includes an internal 1.65 V fast-settling reference and support for external reference.
- Integrated temperature sensor.

Low Current Comparators (CMP0, CMP1)

Analog comparators are used to compare the voltage of two analog inputs, with a digital output indicating which input voltage is higher. External input connections to device I/O pins and internal connections are available through separate multiplexers on the positive and negative inputs. Hysteresis, response time, and current consumption may be programmed to suit the specific needs of the application.

The comparator module includes the following features:

- Up to 12 external positive inputs.
- · Up to 11 external negative inputs.
- · Additional input options:
 - Capacitive Sense Comparator output.
 - VDD.
 - VDD divided by 2.
 - Internal connection to LDO output.
 - Direct connection to GND.
- · Synchronous and asynchronous outputs can be routed to pins via crossbar.
- Programmable hysteresis between 0 and +/-20 mV.
- · Programmable response time.
- · Interrupts generated on rising, falling, or both edges.

4. Electrical Specifications

4.1 Electrical Characteristics

All electrical parameters in all tables are specified under the conditions listed in Table 4.1 Recommended Operating Conditions on page 11, unless stated otherwise.

Table 4.1. Recommended Operating Conditions

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Operating Supply Voltage on VDD	V _{DD}		1.8	2.4	3.6	V
Minimum RAM Data Retention	V _{RAM}	Not in Sleep Mode	_	1.4	_	V
Voltage on VDD ¹		Sleep Mode	_	0.3	0.5	V
System Clock Frequency	fsysclk		0	_	25	MHz
Operating Ambient Temperature	T _A		-40		85	°C
Note: 1. All voltages with respect to GN	D.			1	1	1

Table 4.2. Power Consumption

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Digital Supply Current						
Normal Mode supply current - Full speed with code executing from	I _{DD}	V _{DD} = 1.8–3.6 V, f _{SYSCLK} = 24.5 MHz	_	4.1	5.0	mA
flash ^{3 , 4 , 5}		V _{DD} = 1.8–3.6 V, f _{SYSCLK} = 20 MHz	_	3.5	_	mA
		V _{DD} = 1.8–3.6 V, f _{SYSCLK} = 32.768 kHz		90		μΑ
Normal Mode supply current fre- quency sensitivity ^{1, 3, 5}	IDDFREQ	V _{DD} = 1.8–3.6 V, T = 25 °C, f _{SYSCLK} < 14 MHz	_	226	_	µA/MHz
		V _{DD} = 1.8–3.6 V, T = 25 °C, f _{SYSCLK} > 14 MHz	_	120		µA/MHz
Idle Mode supply current - Core halted with peripherals running ^{4 , 6}	IDD	V _{DD} = 1.8–3.6 V, f _{SYSCLK} = 24.5 MHz	_	2.5	3.0	mA
		V _{DD} = 1.8–3.6 V, f _{SYSCLK} = 20 MHz	—	1.8	—	mA
		V _{DD} = 1.8–3.6 V, f _{SYSCLK} = 32.768 kHz	_	84		μΑ
Idle Mode Supply Current Frequency Sensitivity ^{1,6}	IDDFREQ	V _{DD} = 1.8–3.6 V, T = 25 °C	—	95	—	µA/MHz
Suspend Mode Supply Current	I _{DD}	V _{DD} = 1.8–3.6 V	—	77	—	μA
Sleep Mode Supply Current with	I _{DD}	1.8 V, T = 25 °C	_	0.60	_	μA
RTC running from 32.768 kHz crystal		3.6 V, T = 25 °C	_	0.85	_	μA
		1.8 V, T = 85 °C	_	1.30	_	μA
		3.6 V, T = 85 °C	_	1.90		μA

EFM8SB2 Data Sheet
Electrical Specifications

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Note:						
1. Based on device character	rization data; Not	production tested.				
2. SYSCLK must be at least	32 kHz to enable	debugging.				
flash memory is read on ea the number of flash addre straddles a 128-byte flash	which is the comp ach cycle. The su ass lines that toge address bound asitions across the om regulator and	piled form of a while(1) loop upply current will vary slightl gle as a result. In the worst ary (e.g., 0x007F to 0x0080 e 128-byte address bounda	in C. One iteration re y based on the physica case, current can inc). Real-world code wi ies.	equires 3 CF al location of rease by up th larger loo	PU clock cyc the sjmp ins to 30% if th ps and long	eles, and the struction ar ne sjmp loo er linear se
5. IDD can be estimated for ber for that range, then ad be the current at 25 MHz r	, frequencies < 10 Iding an offset of ninus the differer	MHz by simply multiplying 90 μ A. When using these r nce in current indicated by th MHz) x 0.120 mA/MHz = 3.5	umbers to estimate I _D e frequency sensitivity	_{PD} for > 10 M / number. Fo	Hz, the estion of example: V	mate shou
6. Idle IDD can be estimated number. For example: V _{DE}		urrent at 25 MHz minus the 1Hz, Idle I _{DD} = 2.5 mA – (25				cy sensitivi
7. ADC0 always-on power ex	cludes internal re	eference supply current.				
8. The internal reference is e	nabled as-neede	d when operating the ADC i	n burst mode to save	oower.		
		e current sourced or sunk fr	m IREE0 output nin			

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
VDD Supply Monitor Threshold	V _{VDDM}	Reset Trigger	1.7	1.75	1.8	V
	V _{WARN}	Early Warning	1.8	1.85	1.9	V
VDD Supply Monitor Turn-On Time	t _{MON}			300	_	ns
Power-On Reset (POR) Monitor Threshold	V _{POR}	Initial Power-On (Rising Voltage on V_{DD})	_	0.75	_	V
		Falling Voltage on V _{DD}	0.7	0.8	0.9	V
		Brownout Recovery (Rising Voltage on $V_{\text{DD}})$	_	0.95	_	V
V _{DD} Ramp Time	t _{RMP}	Time to $V_{DD} \ge 1.8 V$	—	_	3	ms
Reset Delay	t _{RST}	Time between release of reset source and code execution	_	10	_	μs
RST Low Time to Generate Reset	t _{RSTL}		15	_	_	μs
Missing Clock Detector Response Time (final rising edge to reset)	t _{MCD}	F _{SYSCLK} > 1 MHz	100	650	1000	μs
Missing Clock Detector Trigger Frequency	F _{MCD}			7	10	kHz

Table 4.4. Flash Memory

Parameter	Symbol	Test Condition	Min	Тур	Мах	Units
Write Time ¹	t _{WRITE}	One Byte	57	64	71	μs
Erase Time ¹	t _{ERASE}	One Page	28	32	36	ms

Table	4.9.	ADC
-------	------	-----

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Resolution	N _{bits}			10		Bits
Throughput Rate	f _S				300	ksps
Tracking Time	t _{TRK}		1.5	_	_	μs
Power-On Time	t _{PWR}		1.5	_	_	μs
SAR Clock Frequency	f _{SAR}	High Speed Mode,		_	8.33	MHz
Conversion Time	T _{CNV}		13	_	_	Clocks
Sample/Hold Capacitor	C _{SAR}	Gain = 1		30	_	pF
		Gain = 0.5		28	_	pF
Input Pin Capacitance	C _{IN}		_	20	_	pF
Input Mux Impedance	R _{MUX}		_	5	_	kΩ
Voltage Reference Range	V _{REF}		1	_	V _{DD}	V
Input Voltage Range ¹	V _{IN}	Gain = 1	0	_	V _{REF}	V
		Gain = 0.5	0	_	2 x V _{REF}	V
Power Supply Rejection Ratio	PSRR _{ADC}	Internal High Speed VREF		67	_	dB
		External VREF	_	74	_	dB
DC Performance					1	
Integral Nonlinearity	INL		_	±0.5	±1	LSB
Differential Nonlinearity (Guaran- teed Monotonic)	DNL		—	±0.5	±1	LSB
Offset Error	E _{OFF}	VREF = 1.65 V	-2	0	2	LSB
Offset Temperature Coefficient	TC _{OFF}		_	0.004	_	LSB/°C
Slope Error	E _M		_	±0.06	±0.24	%
Dynamic Performance 10 kHz Sine	Wave Input	1dB below full scale, Max throughpu	ut		1	
Signal-to-Noise	SNR		54	58	_	dB
Signal-to-Noise Plus Distortion	SNDR		54	58	_	dB
Total Harmonic Distortion (Up to 5th Harmonic)	THD		—	-73	-	dB
Spurious-Free Dynamic Range	SFDR			75	_	dB

Table 4.10. Voltage References

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Internal Fast Settling Reference						
Output Voltage	V _{REFFS}		1.60	1.65	1.70	V

Parameter	Symbol	Test Condition	Min	Тур	Мах	Unit
Temperature Coefficient	TC _{REFFS}		_	50	_	ppm/°C
Turn-on Time	t _{VREFFS}		—	_	1.5	μs
Power Supply Rejection	PSRR _{REF} FS		_	400	_	ppm/V
On-chip Precision Reference				1	1	
Output Voltage	V _{REFP}		1.645	1.68	1.715	V
Turn-on Time, settling to 0.5 LSB	t _{VREFP}	4.7 μF tantalum + 0.1 μF ceramic bypass on VREF pin	—	15	_	ms
		0.1 µF ceramic bypass on VREF pin	_	300		μs
		No bypass on VREF pin	—	25	—	μs
Load Regulation	LR _{VREFP}	Load = 0 to 200 µA to GND	_	400		μV / μΑ
Short-circuit current	ISC _{VREFP}		_	3.5	_	mA
Power Supply Rejection	PSRR _{VRE} FP		_	140	_	ppm/V
External Reference	1		1	1	1	
Input Voltage	V _{EXTREF}		1		V _{DD}	V
Input Current	I _{EXTREF}	Sample Rate = 300 ksps; VREF = 3.0 V	—	5.25	—	μΑ

Table 4.11. Temperature Sensor

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Offset	V _{OFF}	T _A = 0 °C	—	940	_	mV
Offset Error ¹	E _{OFF}	T _A = 0 °C	_	18	_	mV
Slope	М		_	3.40	—	mV/°C
Slope Error ¹	E _M		_	40	_	µV/°C
Linearity			_	±1	_	°C
Turn-on Time	t _{PWR}		_	1.8	_	μs
Note: 1. Represents one standard deviation from the mean.						

Table 4.12. Comparators

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Response Time, CPMD = 00	t _{RESP0}	+100 mV Differential	—	130	_	ns
(Highest Speed)		-100 mV Differential	—	200	_	ns
Response Time, CPMD = 11 (Low-	t _{RESP3}	+100 mV Differential	—	1.75	—	μs
est Power)		-100 mV Differential	—	6.2	_	μs

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Positive Hysterisis	HYS _{CP+}	CPHYP = 00	_	0.4	_	mV
Mode 0 (CPMD = 00)		CPHYP = 01	_	8	_	mV
		CPHYP = 10	_	16	_	mV
		CPHYP = 11	_	32	_	mV
Negative Hysterisis	HYS _{CP-}	CPHYN = 00	_	-0.4	_	mV
Mode 0 (CPMD = 00)		CPHYN = 01	—	-8	—	mV
		CPHYN = 10	—	-16	—	mV
		CPHYN = 11	_	-32	—	mV
Positive Hysterisis	HYS _{CP+}	CPHYP = 00	—	0.5	—	mV
Mode 1 (CPMD = 01)		CPHYP = 01	_	6	—	mV
		CPHYP = 10	_	12	—	mV
		CPHYP = 11	—	24	—	mV
Negative Hysterisis	HYS _{CP-}	CPHYN = 00		-0.5	_	mV
Mode 1 (CPMD = 01)		CPHYN = 01	_	-6	_	mV
		CPHYN = 10	—	-12	—	mV
		CPHYN = 11	_	-24	_	mV
Positive Hysterisis	HYS _{CP+}	CPHYP = 00	_	0.7	_	mV
Mode 2 (CPMD = 10)		CPHYP = 01	_	4.5	_	mV
		CPHYP = 10	_	9	_	mV
		CPHYP = 11	_	18	_	mV
Negative Hysterisis	HYS _{CP-}	CPHYN = 00		-0.6	_	mV
Mode 2 (CPMD = 10)		CPHYN = 01	—	-4.5	—	mV
		CPHYN = 10	_	-9	—	mV
		CPHYN = 11	_	-18	_	mV
Positive Hysteresis	HYS _{CP+}	CPHYP = 00	_	1.5	_	mV
Mode 3 (CPMD = 11)		CPHYP = 01	_	4	—	mV
		CPHYP = 10	—	8	—	mV
		CPHYP = 11	—	16	—	mV
Negative Hysteresis	HYS _{CP-}	CPHYN = 00	—	-1.5	—	mV
Mode 3 (CPMD = 11)		CPHYN = 01	—	-4	—	mV
		CPHYN = 10	_	-8	_	mV
		CPHYN = 11	—	-16	—	mV
Input Range (CP+ or CP-)	V _{IN}		-0.25	—	V _{DD} +0.25	V
Input Pin Capacitance	C _{CP}			12		pF
Common-Mode Rejection Ratio	CMRR _{CP}		_	70		dB
Power Supply Rejection Ratio	PSRR _{CP}		_	72		dB
Input Offset Voltage	V _{OFF}	T _A = 25 °C	-10	0	10	mV

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
19	P1.5	Multifunction I/O	Yes	P1MAT.5	ADC0.13
				EMIF_AD5	CMP0N.6
					CMP1N.6
20	P1.4	Multifunction I/O	Yes	P1MAT.4	ADC0.12
				EMIF_AD4	CMP0P.6
					CMP1P.6
21	P1.3	Multifunction I/O	Yes	P1MAT.3	ADC0.11
				SPI1_NSS	CMP0N.5
				EMIF_AD3	CMP1N.5
22	P1.2	Multifunction I/O	Yes	P1MAT.2	ADC0.10
				SPI1_MOSI	CMP0P.5
				EMIF_AD2	CMP1P.5
23	P1.1	Multifunction I/O	Yes	P1MAT.1	ADC0.9
				SPI1_MISO	CMP0N.4
				EMIF_AD1	CMP1N.4
24	P1.0	Multifunction I/O	Yes	P1MAT.0	ADC0.8
				SPI1_SCK	CMP0P.4
				EMIF_AD0	CMP1P.4
25	P0.7	Multifunction I/O	Yes	P0MAT.7	ADC0.7
				INT0.7	IREF0
				INT1.7	CMP0N.3
					CMP1N.3
26	P0.6	Multifunction I/O	Yes	P0MAT.6	ADC0.6
				CNVSTR	CMP0P.3
				INT0.6	CMP1P.3
				INT1.6	
27	P0.5	Multifunction I/O	Yes	P0MAT.5	ADC0.5
				INT0.5	CMP0N.2
				INT1.5	CMP1N.2
28	P0.4	Multifunction I/O	Yes	P0MAT.4	ADC0.4
				INT0.4	CMP0P.2
				INT1.4	CMP1P.2
29	P0.3	Multifunction I/O	Yes	P0MAT.3	ADC0.3
				EXTCLK	XTAL2
				INT0.3	CMP0N.1
				INT1.3	CMP1N.1

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
19	P0.5	Multifunction I/O	Yes	P0MAT.5	ADC0.5
				INT0.5	CMP0N.2
				INT1.5	CMP1N.2
20	P0.4	Multifunction I/O	Yes	P0MAT.4	ADC0.4
				INT0.4	CMP0P.2
				INT1.4	CMP1P.2
21	P0.3	Multifunction I/O	Yes	P0MAT.3	ADC0.3
				EXTCLK	XTAL2
				INT0.3	CMP0N.1
				INT1.3	CMP1N.1
22	P0.2	Multifunction I/O	Yes	P0MAT.2	ADC0.2
				INT0.2	CMP0P.1
				INT1.2	CMP1P.1
					XTAL1
23	P0.1	Multifunction I/O	Yes	P0MAT.1	ADC0.1
				INT0.1	AGND
				INT1.1	CMP0N.0
					CMP1N.0
24	P0.0	Multifunction I/O	Yes	P0MAT.0	ADC0.0
				INT0.0	CMP0P.0
				INT1.0	CMP1P.0
					VREF
Center	GND	Ground			



Table 6.3. Pin Definitions for EFM8SB2x-QFP32

Pin	Pin Name	Description	Crossbar Capability	Additional Digital	Analog Functions
Number				Functions	
1	N/C	No Connection			
2	GND	Ground			
3	VDD	Supply Power Input			
4	N/C	No Connection			
5	N/C	No Connection			
6	RSTb /	Active-low Reset /			
	C2CK	C2 Debug Clock			
7	P2.7 /	Multifunction I/O /			
	C2D	C2 Debug Data			

Pin Number	Pin Name	Description	Crossbar Capability	Additional Digital Functions	Analog Functions
8	P2.6	Multifunction I/O	Yes	EMIF_WRb	ADC0.22
					CMP0P.11
					CMP1P.11
9	XTAL4	RTC Crystal			XTAL4
10	XTAL3	RTC Crystal			XTAL3
11	P2.5	Multifunction I/O	Yes	EMIF_RDb	ADC0.21
					CMP0N.10
					CMP1N.10
12	P2.4	Multifunction I/O	Yes	EMIF_ALE	ADC0.20
					CMP0P.10
					CMP1P.10
13	P2.3	Multifunction I/O	Yes	EMIF_A11	ADC0.19
					CMP0N.9
					CMP1N.9
14	P2.2	Multifunction I/O	Yes	EMIF_A10	ADC0.18
					CMP0P.9
					CMP1P.9
15	P2.1	Multifunction I/O	Yes	EMIF_A9	ADC0.17
					CMP0N.8
					CMP1N.8
16	P2.0	Multifunction I/O	Yes	EMIF_A8	ADC0.16
					CMP0P.8
					CMP1P.8
17	P1.7	Multifunction I/O	Yes	P1MAT.7	ADC0.15
				EMIF_AD7	CMP0N.7
					CMP1N.7
18	P1.6	Multifunction I/O	Yes	P1MAT.6	ADC0.14
				EMIF_AD6	CMP0P.7
					CMP1P.7
19	P1.5	Multifunction I/O	Yes	P1MAT.5	ADC0.13
				EMIF_AD5	CMP0N.6
					CMP1N.6
20	P1.4	Multifunction I/O	Yes	P1MAT.4	ADC0.12
				EMIF_AD4	CMP0P.6
					CMP1P.6

7.2 QFN32 PCB Land Pattern

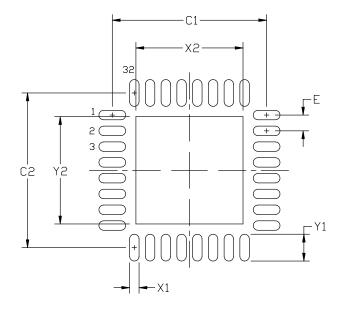


Figure 7.2. QFN32 PCB Land Pattern Drawing

Dimension	Min	Мах
C1	4.80	4.90
C2	4.80	4.90
E	0.50	BSC
X1	0.20	0.30
X2	3.20	3.40
Y1	0.75	0.85
Y2	3.20	3.40

Note:

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. This Land Pattern Design is based on the IPC-7351 guidelines.
- 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.
- 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 5. The stencil thickness should be 0.125 mm (5 mils).
- 6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.
- 7. A 3 x 3 array of 1.0 mm x 1.0 mm openings on a 1.2 mm pitch should be used for the center pad.
- 8. A No-Clean, Type-3 solder paste is recommended.

9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

Figure 7.3. QFN32 Package Marking

The package marking consists of:

- PPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.
- # The device revision (A, B, etc.).

Dimension	Min	Тур	Мах
bbb	—	—	0.10
ddd	_	—	0.05
eee	_		0.08
Z		0.24	
Y	—	0.18	—

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to JEDEC Solid State Outline MO-220, variation WGGD except for custom features D2, E2, Z, Y, and L which are toleranced per supplier designation.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

Max

Note:

Dimension

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. This Land Pattern Design is based on the IPC-7351 guidelines.
- 3. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.
- 4. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 5. The stencil thickness should be 0.125 mm (5 mils).
- 6. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.
- 7. A 2 x 2 array of 1.10 mm x 1.10 mm openings on 1.30 mm pitch should be used for the center ground pad.
- 8. A No-Clean, Type-3 solder paste is recommended.
- 9. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

8.3 QFN24 Package Marking

The package marking consists of:

- PPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.
- # The device revision (A, B, etc.).

Dimension	Min	Тур	Мах		
bbb		0.20			
ссс	0.10				
ddd	0.20				
theta	0°	3.5°	7°		
Noto					

Note:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to JEDEC outline MS-026, variation BBA.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020C specification for Small Body Components.

9.3 QFP32 Package Marking

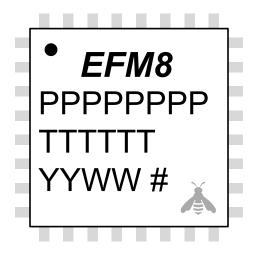


Figure 9.3. QFP32 Package Marking

The package marking consists of:

- PPPPPPP The part number designation.
- TTTTTT A trace or manufacturing code.
- YY The last 2 digits of the assembly year.
- WW The 2-digit workweek when the device was assembled.
- # The device revision (A, B, etc.).