

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	-
Core Size	-
Speed	-
Connectivity	-
Peripherals	-
Number of I/O	-
Program Memory Size	-
Program Memory Type	-
EEPROM Size	-
RAM Size	-
Voltage - Supply (Vcc/Vdd)	-
Data Converters	-
Oscillator Type	-
Operating Temperature	-
Mounting Type	-
Package / Case	-
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/df3026x25v

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	18.10.1	Socket Adapters and Memory Map	571
	18.10.2	Notes on Use of PROM Mode	572
18.11	Flash M	Iemory Programming and Erasing Precautions	573
18.12	Notes v	when Converting the F-ZTAT Application Software to the Mask ROM Versions	579
		Clock Pulse Generator	
19.1		2W	
	19.1.1	Block Diagram	582
19.2		or Circuit	
		Connecting a Crystal Resonator	
		External Clock Input	
19.3	•	djustment Circuit	
19.4		ers	
19.5	-	ncy Divider	
		Register Configuration	
		Division Control Register (DIVCR)	
	19.5.3	Usage Notes	589
Secti	on 20	Power-Down State	591
20.1	Overvie	?W	591
20.2	Registe	r Configuration	593
	20.2.1	System Control Register (SYSCR)	593
	20.2.2	Module Standby Control Register H (MSTCRH)	595
	20.2.3	Module Standby Control Register L (MSTCRL)	596
20.3	Sleep M	10de	598
	20.3.1	Transition to Sleep Mode	598
	20.3.2	Exit from Sleep Mode	598
20.4	Softwar	e Standby Mode	598
	20.4.1	Transition to Software Standby Mode	598
	20.4.2	Exit from Software Standby Mode	599
	20.4.3	Selection of Waiting Time for Exit from Software Standby Mode	599
	20.4.4	Sample Application of Software Standby Mode	601
	20.4.5	Usage Notes	601
20.5	Hardwa	re Standby Mode	602
	20.5.1	Transition to Hardware Standby Mode	602
	20.5.2	Exit from Hardware Standby Mode	602
	20.5.3	Timing for Hardware Standby Mode	603
20.6	Module	Standby Function	604
	20.6.1	Module Standby Timing	604
	20.6.2	Read/Write in Module Standby	604
	20.6.3	Usage Notes	604

Instruction	Size*	Function
BOR	В	$C \lor (of) \to C$
		ORs the carry flag with a specified bit in a general register or memory operand and stores the result in the carry flag.
		The bit number is specified by 3-bit immediate data.
BIOR	В	$C \lor [\neg (sbit-No.>of)] \to C$
		ORs the carry flag with the inverse of a specified bit in a general register or memory operand and stores the result in the carry flag.
		The bit number is specified by 3-bit immediate data.
BXOR	В	$C \oplus (<\!bit\!-\!No.\!> of <\!\mathsf{EAd\!\!>) \to C}$
		Exclusive-ORs the carry flag with a specified bit in a general register or memory operand and stores the result in the carry flag.
		The bit number is specified by 3-bit immediate data.
BIXOR	В	$C \oplus [\neg (<\!bit-No.\!> of <\!EAd\!>)] \to C$
		Exclusive-ORs the carry flag with the inverse of a specified bit in a general register or memory operand and stores the result in the carry flag.
		The bit number is specified by 3-bit immediate data.
BLD	В	$(\text{sbit-No.} \text{ of } \text{}) \rightarrow C$
		Transfers a specified bit in a general register or memory operand to the carry flag.
		The bit number is specified by 3-bit immediate data.
BILD	В	$\neg \text{ (of)} \rightarrow C$
		Transfers the inverse of a specified bit in a general register or memory operand to the carry flag.
		The bit number is specified by 3-bit immediate data.
BST	В	$C \rightarrow \text{ (of)}$
		Transfers the carry flag value to a specified bit in a general register or memory operand.
		The bit number is specified by 3-bit immediate data.
BIST	В	$C \rightarrow \neg$ (<bit-no.> of <ead>)</ead></bit-no.>
		Transfers the inverse of the carry flag value to a specified bit in a general register or memory operand.
		The bit number is specified by 3-bit immediate data.

Note: * Size refers to the operand size.

B: Byte

Bits 5 and 4—Area 6 Wait Control 1 and 0 (W61, W60): These bits select the number of program wait states when area 6 in external space is accessed while the AST6 bit in ASTCR is set to 1.

Bit 5 W61	Bit 4 W60	Description
0	0	Program wait not inserted when external space area 6 is accessed
	1	1 program wait state inserted when external space area 6 is accessed
1	0	2 program wait states inserted when external space area 6 is accessed
	1	3 program wait states inserted when external space area 6 is accessed (Initial value)

Bits 3 and 2—Area 5 Wait Control 1 and 0 (W51, W50): These bits select the number of program wait states when area 5 in external space is accessed while the AST5 bit in ASTCR is set to 1.

Bit 3 W51	Bit 2 W50	Description
0	0	Program wait not inserted when external space area 5 is accessed
	1	1 program wait state inserted when external space area 5 is accessed
1	0	2 program wait states inserted when external space area 5 is accessed
	1	3 program wait states inserted when external space area 5 is accessed (Initial value)

Bits 1 and 0—Area 4 Wait Control 1 and 0 (W41, W40): These bits select the number of program wait states when area 4 in external space is accessed while the AST4 bit in ASTCR is set to 1.

Bit 1 W41	Bit 0 W40	Description
0	0	Program wait not inserted when external space area 4 is accessed
	1	1 program wait state inserted when external space area 4 is accessed
1	0	2 program wait states inserted when external space area 4 is accessed
	1	3 program wait states inserted when external space area 4 is accessed (Initial value)

WCRL

Bit	7	6	5	4	3	2	1	0
	W31	W30	W21	W20	W11	W10	W01	W00
Initial value	1	1	1	1	1	1	1	1
Read/Write	R/W							

Bits 7 and 6—Area 3 Wait Control 1 and 0 (W31, W30): These bits select the number of program wait states when area 3 in external space is accessed while the AST3 bit in ASTCR is set to 1.

Bit 7 W31	Bit 6 W30	Description
0	0	Program wait not inserted when external space area 3 is accessed
	1	1 program wait state inserted when external space area 3 is accessed
1	0	2 program wait states inserted when external space area 3 is accessed
	1	3 program wait states inserted when external space area 3 is accessed (Initial value)

Bits 5 and 4—Area 2 Wait Control 1 and 0 (W21, W20): These bits select the number of program wait states when area 2 in external space is accessed while the AST2 bit in ASTCR is set to 1.

Bit 5 W21	Bit 4 W20	Description
0	0	Program wait not inserted when external space area 2 is accessed
	1	1 program wait state inserted when external space area 2 is accessed
1	0	2 program wait states inserted when external space area 2 is accessed
	1	3 program wait states inserted when external space area 2 is accessed (Initial value)

P1DDR is initialized to H'FF in modes 1 to 4, and to H'00 in modes 5 to 7, by a reset and in hardware standby mode. In sofware standby mode it retains its previous setting. Therefore, if a transition is made to software standby mode while port 1 is functioning as an input/output port and a P1DDR bit is set to 1, the corresponding pin maintains its output state.

Port 1 Data Register (P1DR): P1DR is an 8-bit readable/writable register that stores port 1 output data. When port 1 functions as an output port, the value of this register is output. When this register is read, the pin logic level is read for bits for which the P1DDR setting is 0, and the P1DR value is read for bits for which the P1DDR setting is 1.

Bit	7	6	5	4	3	2	1	0
	P17	P1 ₆	P1 ₅	P14	P1 ₃	P12	P1 ₁	P10
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Port 1 data 7 to 0 These bits store data for port 1 pins								

P1DR is initialized to H'00 by a reset and in hardware standby mode. In software standby mode it retains its previous setting.

Port 3 Data Direction Register (P3DDR): P3DDR is an 8-bit write-only register that can select input or output for each pin in port 3.

Bit	7	6	5	4	3	2	1	0	
	P37DDR	P3 ₆ DDR	P35DDR	P3 ₄ DDR	P3 ₃ DDR	P32DDR	P31DDR	P30DDR	
Initial value	0	0	0	0	0	0	0	0	
Read/Write	W	W	W	W	W	W	W	W	
	Port 3 data direction 7 to 0								

These bits select input or output for port 3 pins

• Modes 1 to 5 (Expanded Modes)

Port 3 functions as a data bus, regardless of the P3DDR settings.

• Modes 6 and 7 (Single-Chip Mode)

Port 3 functions as an input/output port. A pin in port 3 becomes an output port if the corresponding P3DDR bit is set to 1, and an input port if this bit is cleared to 0.

P3DDR is a write-only register. Its value cannot be read. All bits return 1 when read.

P3DDR is initialized to H'00 by a reset and in hardware standby mode. In software standby mode it retains its previous setting. Therefore, if a transition is made to software standby mode while port 3 is functioning as an input/output port and a P3DDR bit is set to 1, the corresponding pin maintains its output state.

Port 3 Data Register (P3DR): P3DR is an 8-bit readable/writable register that stores output data for port 3. When port 3 functions as an output port, the value of this register is output. When a bit in P3DDR is set to 1, if port 3 is read the value of the corresponding P3DR bit is returned. When a bit in P3DDR is cleared to 0, if port 3 is read the corresponding pin logic level is read.

Bit	7	6	5	4	3	2	1	0
	P37	P3 ₆	P3 ₅	P34	P3 ₃	P32	P3 ₁	P3 ₀
Initial value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Port 3 data 7 to 0 These bits store data for port 3 pins

P3DR is initialized to H'00 by a reset and in hardware standby mode. In software standby mode it retains its previous setting.

Table 7.24 Port B Pin Functions (Modes 6 and 7)

Pin Pin Functions and Selection Method

PB ₇ /TP ₁₅	Bit NDER15 in NDERB and bit PB7DDR select the pin function as follows.								
	PB ₇ DDR 0 1 1								
	NDER15	—	0	1					
	Pin function	PB7 input	PB7 output	TP ₁₅ output					

 PB₆/TP₁₄
 Bit NDER14 in NDERB and bit PB₆DDR select the pin function as follows.

 PB₆DDR
 0
 1
 1

 NDER14
 —
 0
 1

 Pin function
 PB₆ input
 PB₆ output
 TP₁₄ output

 PB5/TP13
 Bit NDER13 in NDERB and bit PB5DDR select the pin function as follows.

 PB5DDR
 0
 1
 1

 NDER13
 —
 0
 1
 1

 Pin function
 PB5 input
 PB5 output
 TP13 output

PB₄/TP₁₂ Bit NDER12 in NDERB and bit PB₄DDR select the pin function as follows.

PB₄DDR	0	1	1
NDER12	_	0	1
Pin function	PB₄ input	PB ₄ output	TP ₁₂ output

PB₃/TP₁₁/Bits OIS3/2 and OS1/0 in 8TCSR3, bit NDER11 in NDERB, and bit PB₃DDR selectTMIO3the pin function as follows.

OIS3/2 and OS1/0		Not all 0						
PB ₃ DDR	0	1	1	—				
NDER11	—	—						
Pin function	PB ₃ input	TMIO ₃ output						
		TMIO ₃	•					
Note: * TMIO input when hit ICE 4 in 9TCCD2								

Note: * $TMIO_3$ input when bit ICE = 1 in 8TCSR3.

Timing of Setting of Overflow Flag (OVF): OVF is set to 1 when 16TCNT overflows from H'FFFF to H'0000 or underflows from H'0000 to H'FFFF. Figure 8.35 shows the timing.

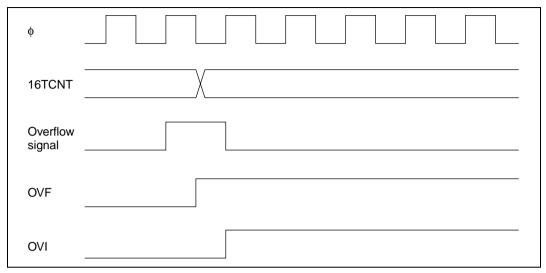
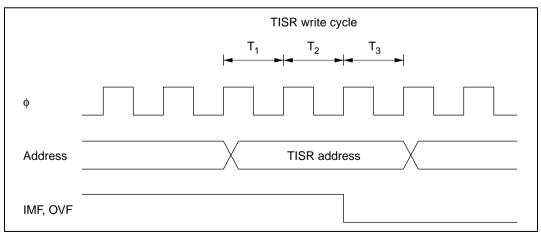



Figure 8.35 Timing of Setting of OVF

8.5.2 Timing of Clearing of Status Flags

If the CPU reads a status flag while it is set to 1, then writes 0 in the status flag, the status flag is cleared. Figure 8.36 shows the timing.

9.3 CPU Interface

9.3.1 8-Bit Registers

8TCNT, TCORA, TCORB, 8TCR, and 8TCSR are 8-bit registers. These registers are connected to the CPU by an internal 16-bit data bus and can be read and written a word at a time or a byte at a time.

Figures 9.2 and 9.3 show the operation in word read and write accesses to 8TCNT.

Figures 9.4 to 9.7 show the operation in byte read and write accesses to 8TCNT0 and 8TCNT1.

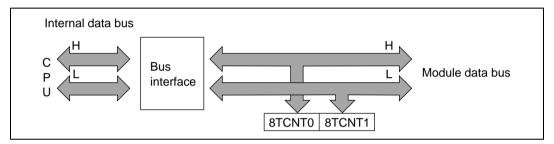


Figure 9.2 8TCNT Access Operation (CPU Writes to 8TCNT, Word)

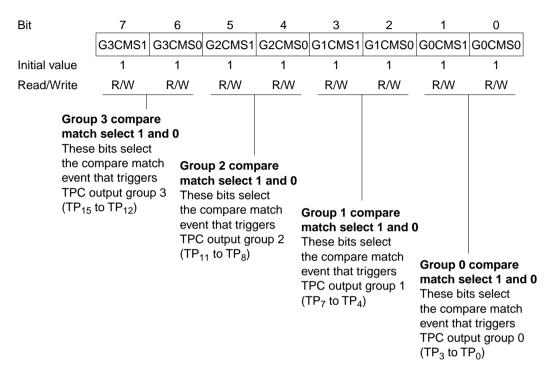



Figure 9.3 8TCNT Access Operation (CPU Reads 8TCNT, Word)

10.2.9 TPC Output Control Register (TPCR)

TPCR is an 8-bit readable/writable register that selects output trigger signals for TPC outputs on a group-by-group basis.

TPCR is initialized to H'FF by a reset and in hardware standby mode. It is not initialized in software standby mode.

10.3.3 Normal TPC Output

Sample Setup Procedure for Normal TPC Output: Figure 10.4 shows a sample procedure for setting up normal TPC output.

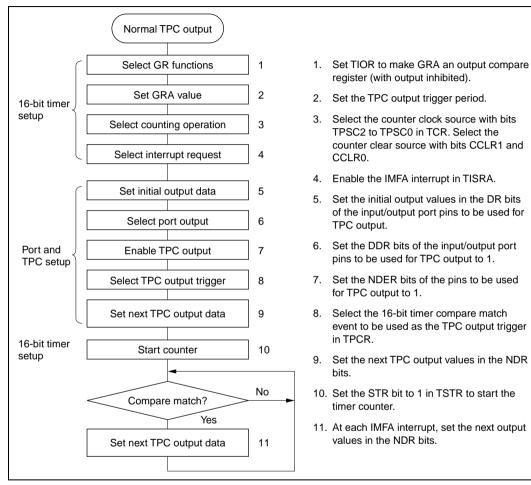
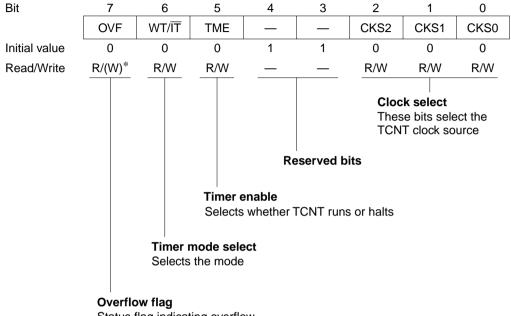



Figure 10.4 Setup Procedure for Normal TPC Output (Example)

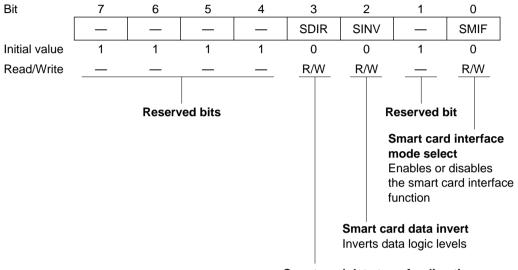
11.2.2 Timer Control/Status Register (TCSR)

TCSR is an 8-bit readable and writable register. Its functions include selecting the timer mode and clock source.

Status flag indicating overflow

- Notes: The method for writing to TCSR is different from that for general registers to prevent inadvertent overwriting. For details see section 11.2.4, Notes on Register Access.
 - * Only 0 can be written, to clear the flag.

Bits 7 to 5 are initialized to 0 by a reset and in standby mode. Bits 2 to 0 are initialized to 0 by a reset. In software standby mode bits 2 to 0 are not initialized, but retain their previous values.



13.2 Register Descriptions

This section describes the new or modified registers and bit functions in the smart card interface.

13.2.1 Smart Card Mode Register (SCMR)

SCMR is an 8-bit readable/writable register that selects smart card interface functions.

Smart card data transfer direction Selects the serial/parallel conversion format

SCMR is initialized to H'F2 by a reset and in standby mode.

Bits 7 to 4—Reserved: Read-only bits, always read as 1.

Bit 3—Smart Card Data Transfer Direction (SDIR): Selects the serial/parallel conversion format.^{*1}

Bit 3 SDIR	Description	
0	TDR contents are transmitted LSB-first	(Initial value)
	Receive data is stored LSB-first in RDR	
1	TDR contents are transmitted MSB-first	
	Receive data is stored MSB-first in RDR	

Bit 7—Trigger Enable (TRGE): Enables or disables starting of A/D conversion by an external trigger or 8-bit timer compare match.

Bit 7 TRGE	Description
0	Starting of A/D conversion by an external trigger or 8-bit timer compare match is disabled (Initial value)
1	A/D conversion is started at the falling edge of the external trigger signal (ADTRG) or by an 8-bit timer compare match

External trigger pin and 8-bit timer selection is performed by the 8-bit timer. For details, see section 9, 8-Bit Timers.

Bits 6 to 1—Reserved: These bits cannot be modified and are always read as 1.

Bit 0—Reserved: This bit can be read or written, but must not be set to 1.

14.3 CPU Interface

ADDRA to ADDRD are 16-bit registers, but they are connected to the CPU by an 8-bit data bus. Therefore, although the upper byte can be be accessed directly by the CPU, the lower byte is read through an 8-bit temporary register (TEMP).

An A/D data register is read as follows. When the upper byte is read, the upper-byte value is transferred directly to the CPU and the lower-byte value is transferred into TEMP. Next, when the lower byte is read, the TEMP contents are transferred to the CPU.

When reading an A/D data register, always read the upper byte before the lower byte. It is possible to read only the upper byte, but if only the lower byte is read, incorrect data may be obtained.

Figure 14.2 shows the data flow for access to an A/D data register.

Bit 1—Erase Mode (E): Selects erase mode transition or clearing. (Do not set the SWE, ESU, PSU, EV, PV, or P bit at the same time.)

Bit 1		
Е	Description	
0	Erase mode cleared	(Initial value)
1	Transition to erase mode	
	[Setting condition]	
	When $FWE = 1$, $SWE = 1$, and $ESU = 1$	

Note: Do not access the flash memory while the E bit is set.

Bit 0—Program (P): Selects program mode transition or clearing. (Do not set the SWE, ESU, PSU, EV, PV, or E bit at the same time.)

Bit 0 P	Description	
0	Program mode cleared	(Initial value)
1	Transition to program mode	
	[Setting condition]	
	When $FWE = 1$, $SWE = 1$, and $PSU = 1$	

Note: Do not access the flash memory while the P bit is set.

17.3.2 Flash Memory Control Register 2 (FLMCR2)

Bit	7	6	5	4	3	2	1	0
	FLER	_		—	—	—	—	—
Initial value	0	0	0	0	0	0	0	0
Read/Write	R	R	R	R	R	R	R	R

FLMCR2 is an 8-bit register used for flash memory operating mode control. FLMCR2 is initialized to H'00 by a reset, and in hardware standby mode and software standby mode. When the on-chip flash memory is disabled, a read will return H'00.

Note: FLMCR2 is a read-only register, and should not be written to.

17.4 Overview of Operation

17.4.1 Mode Transitions

When the mode pins and the FWE pin are set in the reset state and a reset-start is executed, the H8/3026F-ZTAT version enters one of the operating modes shown in figure 17.2. In user mode, flash memory can be read but not programmed or erased.

Flash memory can be programmed and erased in boot mode, user program mode, and PROM mode.

Boot mode and user program mode cannot be used in the H8/3026F-ZTAT version's mode 6 (normal mode with on-chip ROM enabled).

3. FWE application/disconnection

FWE application should be carried out when MCU operation is in a stable condition. If MCU operation is not stable, fix the FWE pin low and set the protection state.

The following points must be observed concerning FWE application and disconnection to prevent unintentional programming or erasing of flash memory:

- Apply FWE when the V_{CC} voltage has stabilized within its rated voltage range. If FWE is applied when the MCU's V_{CC} power supply is not within its rated voltage range, MCU operation will be unstable and flash memory may be erroneously programmed or erased.
- Apply FWE when oscillation has stabilized (after the elapse of the oscillation settling time).

When V_{CC} power is turned on, hold the \overline{RES} pin low for the duration of the oscillation settling time before applying FWE. Do not apply FWE when oscillation has stopped or is unstable.

• In boot mode, apply and disconnect FWE during a reset.

In a transition to boot mode, FWE = 1 input and MD_2-MD_0 setting should be performed while the \overline{RES} input is low. FWE and MD_2-MD_0 pin input must satisfy the mode programming setup time (t_{MDS}) with respect to the reset release timing. When making a transition from boot mode to another mode, also, a mode programming setup time is necessary with respect to the reset release timing.

In a reset during operation, the $\overline{\text{RES}}$ pin must be held low for a minimum of 20 system clock cycles.

• In user program mode, FWE can be switched between high and low level regardless of RES input.

FWE input can also be switched during execution of a program in flash memory.

• Do not apply FWE if program runaway has occurred.

During FWE application, the program execution state must be monitored using the watchdog timer or some other means.

• Disconnect FWE only when the SWE, ESU, PSU, EV, PV, E, and P bits in FLMCR1 are cleared.

Make sure that the SWE, ESU, PSU, EV, PV, E, and P bits are not set by mistake when applying or disconnecting FWE.

- 2. Given current consumption values are when all the output pins are made to unloaded state and, furthermore, when the on-chip pull-up MOS is turned off under conditions that V_{IH} min = V_{CC} 0.5 V and V_{IL} max = 0.5 V. Also, the aforesaid current consumption values are when V_{IH} min = V_{CC} × 0.9 and V_{IL} max = 0.3 V under the condition of V_{RAM} \leq V_{CC} < 3.0 V.
- 3. I_{CC} max. (under normal operations) = 3.0 (mA) + 0.61 (mA/(MHz × V)) × V_{CC} × f I_{CC} max. (when using the sleeve) = 3.0 (mA) + 0.49 (mA/(MHz × V)) × V_{CC} × f I_{CC} max. (when the sleeve + module are standing by) = 3.0 (mA) + 0.38 (mA/(MHz × V)) × V_{CC} × f

Also, the typ. values for current dissipation are reference values.

Table 21.12 Permissible Output Currents

Conditions: $V_{CC} = 3.0$ V to 3.6 V, $AV_{CC} = 3.0$ V to 3.6 V, $V_{REF} = 3.0$ V to AV_{CC} , $V_{SS} = AV_{SS} = 0$ V, $T_a = -20^{\circ}$ C to $+75^{\circ}$ C (regular specifications),

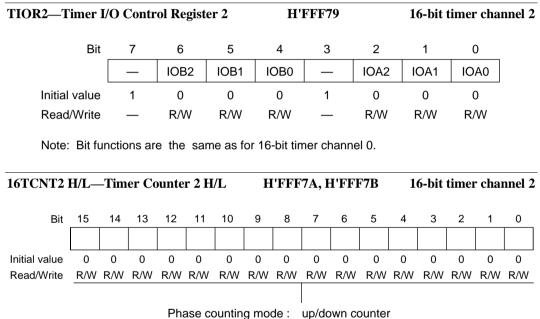
 $T_a = -40^{\circ}C$ to $+85^{\circ}C$ (wide-range specifications)

ltem		Symbol	Min	Тур	Max	Unit
Permissible output	Itput Ports 1, 2, and 5		_	_	10	mA
low current (per pin)	Other output pins		—	—	2.0	mA
Permissible output low current (total)	Total of 20 pins in Ports 1, 2, and 5	Σl _{OL}		_	80	mA
	Total of all output pins, including the above				120	mA
Permissible output high current (per pin)	All output pins	—І _{ОН}			2.0	mA
Permissible output high current (total)	Total of all output pins	$ -\Sigma I_{OH} $	_		40	mA

Notes: 1. To protect chip reliability, do not exceed the output current values in table 21.12.

2. When directly driving a darlington pair or LED, always insert a current-limiting resistor in the output line, as shown in figures 21.4 and 21.5.

16TCR2 Timer Control Register 2


Bit	7	6	5	4	3	2	1	0
	—	CCLR1	CCLR0	CKEG1	CKEG0	TPSC2	TPSC1	TPSC0
Initial value	1	0	0	0	0	0	0	0
Read/Write	—	R/W						

H'FFF78

16-bit timer channel 2

Notes: 1. Bit functions are the same as for 16-bit timer channel 0.

2. When phase counting mode is selected in channel 2, the settings of bits CKEG1 and CKEG0 and TPSC2 to TPSC0 in 16TCR2 are ignored.

Other mode : up-counter

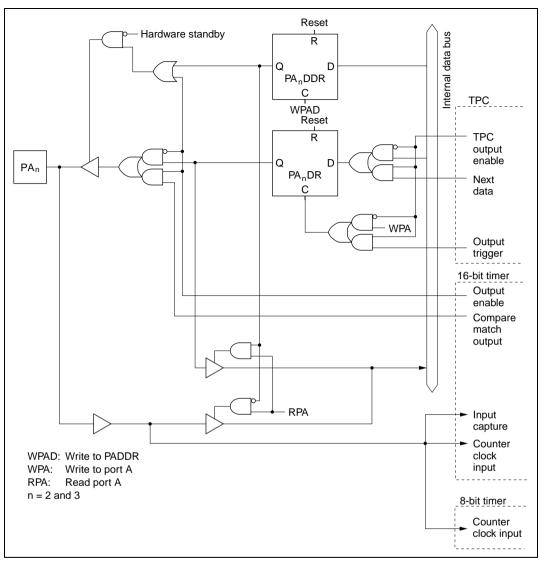


Figure C.10 (b) Port A Block Diagram (Pins PA₂ and PA₃)