
Silicon Labs - C8051F983-GM Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor CIP-51 8051

Core Size 8-Bit

Speed 25MHz

Connectivity SMBus (2-Wire/I²C), SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, WDT

Number of I/O 16

Program Memory Size 4KB (4K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 512 x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 3.6V

Data Converters -

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 20-UFQFN Exposed Pad

Supplier Device Package 20-QFN (3x3)

Purchase URL https://www.e-xfl.com/product-detail/silicon-labs/c8051f983-gm

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/c8051f983-gm-4432899
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

C8051F99x-C8051F98x

23 Rev. 1.2

Figure 1.11. C8051F991 Block Diagram

Figure 1.12. C8051F996 Block Diagram

Port 0
Drivers

Digital Peripherals
UART

Timers 0,
1, 2, 3

PCA/
WDT

SMBus

Priority
Crossbar
Decoder

P0.0
P0.1
P0.2/XTAL1
P0.3/XTAL2
P0.4/TX
P0.5/RX
P0.6
P0.7/IREF0

Crossbar Control

Port I/O ConfigurationCIP-51 8051
Controller Core

8 kB ISP Flash
Program Memory

256 Byte SRAM

SFR
Bus

256 Byte XRAM

Port 1
Drivers

13-Channel
Capacitance

To Digital
Converter

SPI

Analog Peripherals

Comparator

+
-

VDD

XTAL1

SYSCLK

System Clock
Configuration

External
Oscillator

Circuit

Precision
24.5 MHz
Oscillator

Debug /
Programming

Hardware

Power On
Reset/PMU

Reset

C2D

C2CK/RST

Wake

XTAL2

Low Power
20 MHz

Oscillator

6-bit
IREF

IREF0

CP0

XTAL3

XTAL4

VREG
Digital
Power

CRC
Engine

Port 2
Drivers

P2.7/C2D

P1.0
P1.1

GND

GND

P1.0/CP0+
P1.1/CP0-
P1.2
P1.3
P1.5

P1.6/XTAL3
P1.7/XTAL4

SmaRTClock
Oscillator

Port 0
Drivers

Digital Peripherals
UART

Timers 0,
1, 2, 3

PCA/
WDT

SMBus

Priority
Crossbar
Decoder

P0.0/VREF
P0.1/AGND
P0.2/XTAL1
P0.3/XTAL2
P0.4/TX
P0.5/RX
P0.6/CNVSTR
P0.7/IREF0

Crossbar Control

Port I/O ConfigurationCIP-51 8051
Controller Core

8 kB ISP Flash
Program Memory

256 Byte SRAM

SFR
Bus

256 Byte XRAM

Port 1
Drivers

P1.0/CP0+
P1.1/CP0-
P1.2
P1.3
P1.4
P1.5

14-Channel
Capacitance

To Digital
Converter

SPI

Analog Peripherals

Comparator

+
-

VDD

XTAL1

SYSCLK

System Clock
Configuration

External
Oscillator

Circuit

Precision
24.5 MHz
Oscillator

Debug /
Programming

Hardware

Power On
Reset/PMU

Reset

C2D

C2CK/RST

Wake

12-bit
ADC

A
M
U
X

Temp
Sensor

External

VREF

Internal

VREF VDD

XTAL2

Low Power
20 MHz

Oscillator

6-bit
IREF

VREF

GND

P1.6/XTAL3

IREF0

CP0

SmaRTClock
Oscillator

XTAL3

XTAL4

GND

VREG
Digital
Power

CRC
Engine

P1.7/XTAL4

Port 2
Drivers

P2.7/C2D

P1.0
P1.1

C8051F99x-C8051F98x

45 Rev. 1.2

Table 3.5. PCB Land Pattern

Dimension MIN MAX

C1 3.90 4.00

C2 3.90 4.00

E 0.50 BSC

X1 0.20 0.30

X2 2.70 2.80

Y1 0.65 0.75

Y2 2.70 2.80

Notes:

General
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. This Land Pattern Design is based on the IPC-7351 guidelines.

Solder Mask Design
1. All metal pads are to be non-solder mask defined (NSMD). Clearance

between the solder mask and the metal pad is to be 60 µm minimum, all
the way around the pad.

Stencil Design
1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal

walls should be used to assure good solder paste release.
2. The stencil thickness should be 0.125 mm (5 mils).
3. The ratio of stencil aperture to land pad size should be 1:1 for all

perimeter pads.
4. A 2x2 array of 1.10 mm x 1.10 mm openings on 1.30 mm pitch should be

used for the center ground pad.

Card Assembly
1. A No-Clean, Type-3 solder paste is recommended.
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020

specification for Small Body Components.

C8051F99x-C8051F98x

83 Rev. 1.2

5.7. ADC0 Analog Multiplexer

ADC0 on C8051F99x-C8051F98x has an analog multiplexer, referred to as AMUX0.

AMUX0 selects the positive inputs to the single-ended ADC0. Any of the following may be selected as the
positive input: Port I/O pins, the on-chip temperature sensor, Regulated Digital Supply Voltage (Output of
VREG0), VDD Supply, or the positive input may be connected to GND. The ADC0 input channels are
selected in the ADC0MX register described in SFR Definition 5.12.

Figure 5.7. ADC0 Multiplexer Block Diagram

Important Note About ADC0 Input Configuration: Port pins selected as ADC0 inputs should be
configured as analog inputs, and should be skipped by the Digital Crossbar. To configure a Port pin for
analog input, set to 0 the corresponding bit in register PnMDIN and disable the digital driver (PnMDOUT =
0 and Port Latch = 1). To force the Crossbar to skip a Port pin, set to 1 the corresponding bit in register
PnSKIP. See Section “21. Port Input/Output” on page 215 for more Port I/O configuration details.

ADC0

Temp
Sensor

AMUX

ADC0MX

A
D

0
M

X
4

A
D

0
M

X
3

A
D

0
M

X
2

A
D

0
M

X
1

A
M

0M
X

0

AIN+

P0.1

Digital Supply

VDD

Programmable
Attenuator

Gain = 0.5 or 1

P1.2

P0.7

P0.5

P0.4

P0.3

P0.2

P0.6

*P1.4

P1.3

*Only available on
24-pin devices.

C8051F99x-C8051F98x

97 Rev. 1.1

SFR Page = 0x0; SFR Address = 0x9D

SFR Definition 7.2. CPT0MD: Comparator 0 Mode Selection

Bit 7 6 5 4 3 2 1 0

Name CP0RIE CP0FIE CP0MD[1:0]

Type R/W R R/W R/W R R R/W

Reset 1 0 0 0 0 0 1 0

Bit Name Function

7 Reserved Read = 1b, Must Write 1b.

6 Unused Read = 0b, Write = don’t care.

5 CP0RIE Comparator0 Rising-Edge Interrupt Enable.

0: Comparator0 Rising-edge interrupt disabled.
1: Comparator0 Rising-edge interrupt enabled.

4 CP0FIE Comparator0 Falling-Edge Interrupt Enable.

0: Comparator0 Falling-edge interrupt disabled.
1: Comparator0 Falling-edge interrupt enabled.

3:2 Unused Read = 00b, Write = don’t care.

1:0 CP0MD[1:0] Comparator0 Mode Select

These bits affect the response time and power consumption for Comparator0.
00: Mode 0 (Fastest Response Time, Highest Power Consumption)
01: Mode 1
10: Mode 2
11: Mode 3 (Slowest Response Time, Lowest Power Consumption)

C8051F99x-C8051F98x

104 Rev. 1.2

8.9. Automatic Scanning (Method 2—CS0SMEN = 1)

When CS0SMEN is enabled, CS0 uses an alternate autoscanning method that uses the contents of
CS0SCAN0 and CS0SCAN1 to determine which channels to include in the scan. This maximizes flexibility
for application development and can result in more power efficient scanning. The following procedure can
be used to configure the device for Automatic Scanning with CS0SMEN = 1.

1. Set the CS0SMEN bit to 1.

2. Select the start of conversion mode (CS0CM[2:0]) if not already configured. Mode 101b is the mode of
choice for most systems.

3. Configure the CS0SCAN0 and CS0SCAN1 registers to enable channels in the scan.

4. Configure the CS0THH:CS0THL digital comparator threshold and polarity.

5. Enable wake from suspend on end of scan (CS0WOI = 1) if this functionality is desired.

6. Set CS0SS to point to the first channel in the scan. Note: CS0SS uses the same bit mapping as the
CS0MX register.

7. Issue a start of conversion (BUSY = 1).

8. Enable the CS0 Wakeup Source and place the device in Suspend mode (optional).

If using Mode 101b, scanning will stop once a “touch” has been detected using the digital comparator. The
CS0MX register will contain the channel mux value of the channel that caused the interrupt. Setting the
busy bit when servicing the interrupt will cause the scan to continue where it left off. Scanning will also stop
after all channels have been sampled and no “touches” have been detected. If the CS0WOI bit is set, a
wake from suspend event will be generated. Note: When automatic scanning is enabled, the contents of
the CS0MX register are only valid when the digital comparator interrupt is set and BUSY = 0.

8.10. CS0 Comparator

The CS0 comparator compares the latest capacitive sense conversion result with the value stored in
CS0THH:CS0THL. If the result is less than or equal to the stored value, the CS0CMPF bit(CS0CN:0) is set
to 0. If the result is greater than the stored value, CS0CMPF is set to 1.

If the CS0 conversion accumulator is configured to accumulate multiple conversions, a comparison will not
be made until the last conversion has been accumulated.

An interrupt will be generated if CS0 greater-than comparator interrupts are enabled by setting the ECSDC
bit (EIE2.5) when the comparator sets CS0CMPF to 1.

If auto-scan is running when the comparator sets the CS0CMPF bit, no further auto-scan initiated
conversions will start until firmware sets CS0BUSY to 1.

A CS0 greater-than comparator event can wake a device from suspend mode. This feature is useful in
systems configured to continuously sample one or more capacitive sense channels. The device will remain
in the low-power suspend state until the captured value of one of the scanned channels causes a CS0
greater-than comparator event to occur. It is not necessary to have CS0 comparator interrupts enabled in
order to wake a device from suspend with a greater-than event.

For a summary of behavior with different CS0 comparator, auto-scan, and auto accumulator settings,
please see Table 8.1.

Rev. 1.2 111

C8051F99x-C8051F98x

SFR Page = 0x0; SFR Address = 0xDD

SFR Page = 0x0; SFR Address = 0xDE

SFR Definition 8.7. CS0SS: Capacitive Sense Auto-Scan Start Channel

Bit 7 6 5 4 3 2 1 0

Name CS0SS[4:0]

Type R R R R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Description

7:5 Unused Read = 000b; Write = Don’t care

4:0 CS0SS[4:0] Starting Channel for Auto-Scan.

Sets the first CS0 channel to be selected by the mux for Capacitive Sense conver-
sion when auto-scan is enabled and active. All channels detailed in CS0MX SFR
Definition 8.15 are possible choices for this register.

When auto-scan is enabled, a write to CS0SS will also update CS0MX.

SFR Definition 8.8. CS0SE: Capacitive Sense Auto-Scan End Channel

Bit 7 6 5 4 3 2 1 0

Name CS0SE[4:0]

Type R R R R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Description

7:5 Unused Read = 000b; Write = Don’t care

4:0 CS0SE[4:0] Ending Channel for Auto-Scan.

Sets the last CS0 channel to be selected by the mux for Capacitive Sense conver-
sion when auto-scan is enabled and active. All channels detailed in CS0MX SFR
Definition 8.15 are possible choices for this register.

C8051F99x-C8051F98x

127 Rev. 1.2

SFR Page = All; SFR Address = 0xD0; Bit-Addressable

SFR Definition 9.6. PSW: Program Status Word

Bit 7 6 5 4 3 2 1 0

Name CY AC F0 RS[1:0] OV F1 PARITY

Type R/W R/W R/W R/W R/W R/W R

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7 CY Carry Flag.

This bit is set when the last arithmetic operation resulted in a carry (addition) or a bor-
row (subtraction). It is cleared to logic 0 by all other arithmetic operations.

6 AC Auxiliary Carry Flag.

This bit is set when the last arithmetic operation resulted in a carry into (addition) or a
borrow from (subtraction) the high order nibble. It is cleared to logic 0 by all other arith-
metic operations.

5 F0 User Flag 0.

This is a bit-addressable, general purpose flag for use under software control.

4:3 RS[1:0] Register Bank Select.

These bits select which register bank is used during register accesses.
00: Bank 0, Addresses 0x00-0x07
01: Bank 1, Addresses 0x08-0x0F
10: Bank 2, Addresses 0x10-0x17
11: Bank 3, Addresses 0x18-0x1F

2 OV Overflow Flag.

This bit is set to 1 under the following circumstances:
An ADD, ADDC, or SUBB instruction causes a sign-change overflow.
A MUL instruction results in an overflow (result is greater than 255).
A DIV instruction causes a divide-by-zero condition.

The OV bit is cleared to 0 by the ADD, ADDC, SUBB, MUL, and DIV instructions in all
other cases.

1 F1 User Flag 1.

This is a bit-addressable, general purpose flag for use under software control.

0 PARITY Parity Flag.

This bit is set to logic 1 if the sum of the eight bits in the accumulator is odd and cleared
if the sum is even.

C8051F99x-C8051F98x

142 Rev. 1.2

SFR Page = All; SFR Address = 0xA8; Bit-Addressable

SFR Definition 13.1. IE: Interrupt Enable

Bit 7 6 5 4 3 2 1 0

Name EA ESPI0 ET2 ES0 ET1 EX1 ET0 EX0

Type R/W R/W R/W R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7 EA Enable All Interrupts.

Globally enables/disables all interrupts. It overrides individual interrupt mask settings.
0: Disable all interrupt sources.
1: Enable each interrupt according to its individual mask setting.

6 ESPI0 Enable Serial Peripheral Interface (SPI0) Interrupt.

This bit sets the masking of the SPI0 interrupts.
0: Disable all SPI0 interrupts.
1: Enable interrupt requests generated by SPI0.

5 ET2 Enable Timer 2 Interrupt.

This bit sets the masking of the Timer 2 interrupt.
0: Disable Timer 2 interrupt.
1: Enable interrupt requests generated by the TF2L or TF2H flags.

4 ES0 Enable UART0 Interrupt.

This bit sets the masking of the UART0 interrupt.
0: Disable UART0 interrupt.
1: Enable UART0 interrupt.

3 ET1 Enable Timer 1 Interrupt.

This bit sets the masking of the Timer 1 interrupt.
0: Disable all Timer 1 interrupt.
1: Enable interrupt requests generated by the TF1 flag.

2 EX1 Enable External Interrupt 1.

This bit sets the masking of External Interrupt 1.
0: Disable external interrupt 1.
1: Enable interrupt requests generated by the INT1 input.

1 ET0 Enable Timer 0 Interrupt.

This bit sets the masking of the Timer 0 interrupt.
0: Disable all Timer 0 interrupt.
1: Enable interrupt requests generated by the TF0 flag.

0 EX0 Enable External Interrupt 0.

This bit sets the masking of External Interrupt 0.
0: Disable external interrupt 0.
1: Enable interrupt requests generated by the INT0 input.

Rev. 1.2 157

C8051F99x-C8051F98x

14.5.2. PSWE Maintenance

1. Reduce the number of places in code where the PSWE bit (b0 in PSCTL) is set to a 1. There should be
exactly one routine in code that sets PSWE to a 1 to write Flash bytes and one routine in code that sets
both PSWE and PSEE both to a 1 to erase Flash pages.

2. Minimize the number of variable accesses while PSWE is set to a 1. Handle pointer address updates
and loop maintenance outside the "PSWE = 1;... PSWE = 0;" area. Code examples showing this can be
found in :AN201: "Writing to Flash from Firmware", available from the Silicon Laboratories website.

3. Disable interrupts prior to setting PSWE to a 1 and leave them disabled until after PSWE has been
reset to 0. Any interrupts posted during the Flash write or erase operation will be serviced in priority
order after the Flash operation has been completed and interrupts have been re-enabled by software.

4. Make certain that the Flash write and erase pointer variables are not located in XRAM. See your
compiler documentation for instructions regarding how to explicitly locate variables in different memory
areas.

5. Add address bounds checking to the routines that write or erase Flash memory to ensure that a routine
called with an illegal address does not result in modification of the Flash.

14.5.3. System Clock

1. If operating from an external crystal, be advised that crystal performance is susceptible to electrical
interference and is sensitive to layout and to changes in temperature. If the system is operating in an
electrically noisy environment, use the internal oscillator or use an external CMOS clock.

2. If operating from the external oscillator, switch to the internal oscillator during Flash write or erase
operations. The external oscillator can continue to run, and the CPU can switch back to the external
oscillator after the Flash operation has completed.

Additional Flash recommendations and example code can be found in “AN201: Writing to Flash from Firm-
ware", available from the Silicon Laboratories web site.

C8051F99x-C8051F98x

176 Rev. 1.2

SFR Page = All; SFR Address = 0x85

SFR Page = All; SFR Address = 0x86

SFR Definition 16.2. CRC0IN: CRC0 Data Input

Bit 7 6 5 4 3 2 1 0

Name CRC0IN[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 CRC0IN[7:0] CRC0 Data Input.

Each write to CRC0IN results in the written data being computed into the existing
CRC result according to the CRC algorithm described in Section 16.1

SFR Definition 16.3. CRC0DAT: CRC0 Data Output

Bit 7 6 5 4 3 2 1 0

Name CRC0DAT[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 CRC0DAT[7:0] CRC0 Data Output.

Each read or write performed on CRC0DAT targets the CRC result bits pointed to
by the CRC0 Result Pointer (CRC0PNT bits in CRC0CN).

Rev. 1.2 177

C8051F99x-C8051F98x

SFR Page = All; SFR Address = 0x9E

SFR Definition 16.4. CRC0AUTO: CRC0 Automatic Control

Bit 7 6 5 4 3 2 1 0

Name AUTOEN CRCDONE CRC0ST[4:0]

Type R/W R R R/W

Reset 0 1 0 0 0 0 0 0

Bit Name Function

7 AUTOEN Automatic CRC Calculation Enable.

When AUTOEN is set to 1, any write to CRC0CN will initiate an automatic CRC
starting at Flash sector CRC0ST and continuing for CRC0CNT sectors.

6 CRCDONE CRCDONE Automatic CRC Calculation Complete.

Set to 0 when a CRC calculation is in progress. Code execution is stopped during
a CRC calculation; therefore, reads from firmware will always return 1.

5 Unused Read = 0b; Write = Don’t Care.

4:0 CRC0ST[4:0] Automatic CRC Calculation Starting Block.

These bits specify the Flash block to start the automatic CRC calculation. The
starting address of the first Flash block included in the automatic CRC calculation
is CRC0ST x Block Size.
Note: The block size is 256 bytes.

C8051F99x-C8051F98x

217 Rev. 1.2

21.1.3. Interfacing Port I/O to 5 V Logic

All Port I/O have internal ESD protection diodes to prevent the pin voltage from exceeding the VDD supply.
The Port I/O pins are not 5V tolerant and require level translators to interface to 5V logic.

21.1.4. Increasing Port I/O Drive Strength

Port I/O output drivers support a high and low drive strength; the default is low drive strength. The drive
strength of a Port I/O can be configured using the PnDRV registers. See Section “4. Electrical Characteris-
tics” on page 48 for the difference in output drive strength between the two modes.

21.2. Assigning Port I/O Pins to Analog and Digital Functions

Port I/O pins P0.0–P1.7 can be assigned to various analog, digital, and external interrupt functions. The
Port pins assuaged to analog functions should be configured for analog I/O and Port pins assuaged to dig-
ital or external interrupt functions should be configured for digital I/O.

21.2.1. Assigning Port I/O Pins to Analog Functions

Table 21.1 shows all available analog functions that need Port I/O assignments. Port pins selected for
these analog functions should have their digital drivers disabled (PnMDOUT.n = 0 and Port Latch =
1) and their corresponding bit in PnSKIP set to 1. This reserves the pin for use by the analog function
and does not allow it to be claimed by the Crossbar. Table 21.1 shows the potential mapping of Port I/O to
each analog function.

Table 21.1. Port I/O Assignment for Analog Functions

Analog Function Potentially
Assignable Port Pins

Registers used for
Assignment

ADC Input P0.1–P0.7, P1.2–P1.4 ADC0MX, PnSKIP

Comparator0 Input P1.0, P1.1 CPT0MX, PnSKIP

Voltage Reference (VREF0) P0.0 REF0CN, PnSKIP

Analog Ground Reference (AGND) P0.1 REF0CN, PnSKIP

Current Reference (IREF0) P0.7 IREF0CN, PnSKIP

External Oscillator Input (XTAL1) P0.2 OSCXCN, PnSKIP

External Oscillator Output (XTAL2) P0.3 OSCXCN, PnSKIP

SmaRTClock Oscillator Input (XTAL3) P1.6 RTC0CN, PnSKIP

SmaRTClock Oscillator Output (XTAL4) P1.7 RTC0CN, PnSKIP

Rev. 1.2 248

C8051F99x-C8051F98x

22.4.4. Data Register

The SMBus Data register SMB0DAT holds a byte of serial data to be transmitted or one that has just been
received. Software may safely read or write to the data register when the SI flag is set. Software should not
attempt to access the SMB0DAT register when the SMBus is enabled and the SI flag is cleared to logic 0,
as the interface may be in the process of shifting a byte of data into or out of the register.

Data in SMB0DAT is always shifted out MSB first. After a byte has been received, the first bit of received
data is located at the MSB of SMB0DAT. While data is being shifted out, data on the bus is simultaneously
being shifted in. SMB0DAT always contains the last data byte present on the bus. In the event of lost arbi-
tration, the transition from master transmitter to slave receiver is made with the correct data or address in
SMB0DAT.

SFR Page = 0x0; SFR Address = 0xC2

SFR Definition 22.5. SMB0DAT: SMBus Data

Bit 7 6 5 4 3 2 1 0

Name SMB0DAT[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 SMB0DAT[7:0] SMBus Data.

The SMB0DAT register contains a byte of data to be transmitted on the SMBus
serial interface or a byte that has just been received on the SMBus serial interface.
The CPU can read from or write to this register whenever the SI serial interrupt flag
(SMB0CN.0) is set to logic 1. The serial data in the register remains stable as long
as the SI flag is set. When the SI flag is not set, the system may be in the process
of shifting data in/out and the CPU should not attempt to access this register.

Rev. 1.2 252

C8051F99x-C8051F98x

22.5.4. Read Sequence (Slave)

During a read sequence, an SMBus master reads data from a slave device. The slave in this transfer will
be a receiver during the address byte, and a transmitter during all data bytes. When slave events are
enabled (INH = 0), the interface enters Slave Receiver Mode (to receive the slave address) when a START
followed by a slave address and direction bit (READ in this case) is received. If hardware ACK generation
is disabled, upon entering Slave Receiver Mode, an interrupt is generated and the ACKRQ bit is set. The
software must respond to the received slave address with an ACK, or ignore the received slave address
with a NACK. If hardware ACK generation is enabled, the hardware will apply the ACK for a slave address
which matches the criteria set up by SMB0ADR and SMB0ADM. The interrupt will occur after the ACK
cycle.

If the received slave address is ignored (by software or hardware), slave interrupts will be inhibited until the
next START is detected. If the received slave address is acknowledged, zero or more data bytes are trans-
mitted. If the received slave address is acknowledged, data should be written to SMB0DAT to be transmit-
ted. The interface enters Slave Transmitter Mode, and transmits one or more bytes of data. After each byte
is transmitted, the master sends an acknowledge bit; if the acknowledge bit is an ACK, SMB0DAT should
be written with the next data byte. If the acknowledge bit is a NACK, SMB0DAT should not be written to
before SI is cleared (Note: an error condition may be generated if SMB0DAT is written following a received
NACK while in Slave Transmitter Mode). The interface exits Slave Transmitter Mode after receiving a
STOP. Note that the interface will switch to Slave Receiver Mode if SMB0DAT is not written following a
Slave Transmitter interrupt. Figure 22.8 shows a typical slave read sequence. Two transmitted data bytes
are shown, though any number of bytes may be transmitted. Notice that all of the ‘data byte transferred’
interrupts occur after the ACK cycle in this mode, regardless of whether hardware ACK generation is
enabled.

Figure 22.8. Typical Slave Read Sequence

22.6. SMBus Status Decoding

The current SMBus status can be easily decoded using the SMB0CN register. The appropriate actions to
take in response to an SMBus event depend on whether hardware slave address recognition and ACK
generation is enabled or disabled. Table 22.5 describes the typical actions when hardware slave address
recognition and ACK generation is disabled. Table 22.6 describes the typical actions when hardware slave
address recognition and ACK generation is enabled. In the tables, STATUS VECTOR refers to the four
upper bits of SMB0CN: MASTER, TXMODE, STA, and STO. The shown response options are only the typ-
ical responses; application-specific procedures are allowed as long as they conform to the SMBus specifi-
cation. Highlighted responses are allowed by hardware but do not conform to the SMBus specification.

PRSLAS Data ByteData Byte A NA

S = START
P = STOP
N = NACK
R = READ
SLA = Slave Address

Received by SMBus
Interface

Transmitted by
SMBus Interface

Interrupts with Hardware ACK Disabled (EHACK = 0)

Interrupts with Hardware ACK Enabled (EHACK = 1)

C8051F99x-C8051F98x

263 Rev. 1.2

SFR Page = 0x0; SFR Address = 0x99

SFR Definition 23.2. SBUF0: Serial (UART0) Port Data Buffer

Bit 7 6 5 4 3 2 1 0

Name SBUF0[7:0]

Type R/W R/W R/W R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 SBUF0 Serial Data Buffer Bits 7:0 (MSB–LSB).

This SFR accesses two registers; a transmit shift register and a receive latch register.
When data is written to SBUF0, it goes to the transmit shift register and is held for
serial transmission. Writing a byte to SBUF0 initiates the transmission. A read of
SBUF0 returns the contents of the receive latch.

Rev. 1.2 266

C8051F99x-C8051F98x

24.1. Signal Descriptions

The four signals used by SPI0 (MOSI, MISO, SCK, NSS) are described below.

24.1.1. Master Out, Slave In (MOSI)

The master-out, slave-in (MOSI) signal is an output from a master device and an input to slave devices. It
is used to serially transfer data from the master to the slave. This signal is an output when SPI0 is
operating as a master and an input when SPI0 is operating as a slave. Data is transferred most-significant
bit first. When configured as a master, MOSI is driven by the MSB of the shift register in both 3- and 4-wire
mode.

24.1.2. Master In, Slave Out (MISO)

The master-in, slave-out (MISO) signal is an output from a slave device and an input to the master device.
It is used to serially transfer data from the slave to the master. This signal is an input when SPI0 is
operating as a master and an output when SPI0 is operating as a slave. Data is transferred most-
significant bit first. The MISO pin is placed in a high-impedance state when the SPI module is disabled and
when the SPI operates in 4-wire mode as a slave that is not selected. When acting as a slave in 3-wire
mode, MISO is always driven by the MSB of the shift register.

24.1.3. Serial Clock (SCK)

The serial clock (SCK) signal is an output from the master device and an input to slave devices. It is used
to synchronize the transfer of data between the master and slave on the MOSI and MISO lines. SPI0
generates this signal when operating as a master. The SCK signal is ignored by a SPI slave when the
slave is not selected (NSS = 1) in 4-wire slave mode.

24.1.4. Slave Select (NSS)

The function of the slave-select (NSS) signal is dependent on the setting of the NSSMD1 and NSSMD0
bits in the SPI0CN register. There are three possible modes that can be selected with these bits:

1. NSSMD[1:0] = 00: 3-Wire Master or 3-Wire Slave Mode: SPI0 operates in 3-wire mode, and NSS is
disabled. When operating as a slave device, SPI0 is always selected in 3-wire mode. Since no select
signal is present, SPI0 must be the only slave on the bus in 3-wire mode. This is intended for point-to-
point communication between a master and one slave.

2. NSSMD[1:0] = 01: 4-Wire Slave or Multi-Master Mode: SPI0 operates in 4-wire mode, and NSS is
enabled as an input. When operating as a slave, NSS selects the SPI0 device. When operating as a
master, a 1-to-0 transition of the NSS signal disables the master function of SPI0 so that multiple
master devices can be used on the same SPI bus.

3. NSSMD[1:0] = 1x: 4-Wire Master Mode: SPI0 operates in 4-wire mode, and NSS is enabled as an
output. The setting of NSSMD0 determines what logic level the NSS pin will output. This configuration
should only be used when operating SPI0 as a master device.

See Figure 24.2, Figure 24.3, and Figure 24.4 for typical connection diagrams of the various operational
modes. Note that the setting of NSSMD bits affects the pinout of the device. When in 3-wire master or
3-wire slave mode, the NSS pin will not be mapped by the crossbar. In all other modes, the NSS signal will
be mapped to a pin on the device. See Section “21. Port Input/Output” on page 215 for general purpose
port I/O and crossbar information.

24.2. SPI0 Master Mode Operation

A SPI master device initiates all data transfers on a SPI bus. SPI0 is placed in master mode by setting the
Master Enable flag (MSTEN, SPI0CN.6). Writing a byte of data to the SPI0 data register (SPI0DAT) when
in master mode writes to the transmit buffer. If the SPI shift register is empty, the byte in the transmit buffer
is moved to the shift register, and a data transfer begins. The SPI0 master immediately shifts out the data
serially on the MOSI line while providing the serial clock on SCK. The SPIF (SPI0CN.7) flag is set to logic

Rev. 1.2 289

C8051F99x-C8051F98x

25.2.2. 8-bit Timers with Auto-Reload

When T2SPLIT is set, Timer 2 operates as two 8-bit timers (TMR2H and TMR2L). Both 8-bit timers oper-
ate in auto-reload mode as shown in Figure 25.5. TMR2RLL holds the reload value for TMR2L; TMR2RLH
holds the reload value for TMR2H. The TR2 bit in TMR2CN handles the run control for TMR2H. TMR2L is
always running when configured for 8-bit Mode.

Each 8-bit timer may be configured to use SYSCLK, SYSCLK divided by 12, SmaRTClock divided by 8 or
Comparator 0 output. The Timer 2 Clock Select bits (T2MH and T2ML in CKCON) select either SYSCLK or
the clock defined by the Timer 2 External Clock Select bits (T2XCLK[1:0] in TMR2CN), as follows:

The TF2H bit is set when TMR2H overflows from 0xFF to 0x00; the TF2L bit is set when TMR2L overflows
from 0xFF to 0x00. When Timer 2 interrupts are enabled (IE.5), an interrupt is generated each time
TMR2H overflows. If Timer 2 interrupts are enabled and TF2LEN (TMR2CN.5) is set, an interrupt is gener-
ated each time either TMR2L or TMR2H overflows. When TF2LEN is enabled, software must check the
TF2H and TF2L flags to determine the source of the Timer 2 interrupt. The TF2H and TF2L interrupt flags
are not cleared by hardware and must be manually cleared by software.

Figure 25.5. Timer 2 8-Bit Mode Block Diagram

T2MH T2XCLK[1:0] TMR2H Clock
Source

T2ML T2XCLK[1:0] TMR2L Clock
Source

0 00 SYSCLK / 12 0 00 SYSCLK / 12
0 01 SmaRTClock / 8 0 01 SmaRTClock / 8
0 10 Reserved 0 10 Reserved
0 11 Comparator 0 0 11 Comparator 0
1 X SYSCLK 1 X SYSCLK

SYSCLK

TCLK

0

1
TR2

1

0

TMR2H

TMR2RLH
Reload

Reload

TCLK TMR2L

TMR2RLL

Interrupt

 T
M

R
2

C
N

T2SPLIT
TF2CEN
TF2LEN

TF2L
TF2H

T2XCLK

TR2

To ADC,
SMBus

To SMBus

CKCON
T
3
M
H

T
3
M
L

S
C
A
0

S
C
A
1

T
0
M

T
2
M
H

T
2
M
L

T
1
M

SmaRTClock / 8

SYSCLK / 12 00

T2XCLK[1:0]

01

11Comparator 0

C8051F99x-C8051F98x

292 Rev. 1.2

SFR Page = 0x0; SFR Address = 0xCA

SFR Page = 0x0; SFR Address = 0xCB

SFR Definition 25.9. TMR2RLL: Timer 2 Reload Register Low Byte

Bit 7 6 5 4 3 2 1 0

Name TMR2RLL[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 TMR2RLL[7:0] Timer 2 Reload Register Low Byte.

TMR2RLL holds the low byte of the reload value for Timer 2.

SFR Definition 25.10. TMR2RLH: Timer 2 Reload Register High Byte

Bit 7 6 5 4 3 2 1 0

Name TMR2RLH[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 TMR2RLH[7:0] Timer 2 Reload Register High Byte.

TMR2RLH holds the high byte of the reload value for Timer 2.

C8051F99x-C8051F98x

296 Rev. 1.2

25.3.3. SmaRTClock/External Oscillator Capture Mode

The Capture Mode in Timer 3 allows either SmaRTClock or the external oscillator period to be measured
against the system clock or the system clock divided by 12. SmaRTClock and the external oscillator period
can also be compared against each other.

Setting TF3CEN to 1 enables the SmaRTClock/External Oscillator Capture Mode for Timer 3. In this mode,
T3SPLIT should be set to 0, as the full 16-bit timer is used.

When Capture Mode is enabled, a capture event will be generated either every SmaRTClock rising edge
or every 8 external clock cycles, depending on the T3XCLK1 setting. When the capture event occurs, the
contents of Timer 3 (TMR3H:TMR3L) are loaded into the Timer 3 reload registers (TMR3RLH:TMR3RLL)
and the TF3H flag is set (triggering an interrupt if Timer 3 interrupts are enabled). By recording the differ-
ence between two successive timer capture values, the SmaRTClock or external clock period can be
determined with respect to the Timer 3 clock. The Timer 3 clock should be much faster than the capture
clock to achieve an accurate reading.

For example, if T3ML = 1b, T3XCLK1 = 0b, and TF3CEN = 1b, Timer 3 will clock every SYSCLK and cap-
ture every SmaRTClock rising edge. If SYSCLK is 24.5 MHz and the difference between two successive
captures is 350 counts, then the SmaRTClock period is as follows:

350 x (1 / 24.5 MHz) = 14.2 µs.

This mode allows software to determine the exact frequency of the external oscillator in C and RC mode or
the time between consecutive SmaRTClock rising edges, which is useful for determining the SmaRTClock
frequency.

Figure 25.9. Timer 3 Capture Mode Block Diagram

External C lock/8

SYSCLK

0

1

T3XCLK1

CKCO N
T
3
M
H

T
3
M
L

S
C
A
0

S
C
A
1

T
0
M

T
2
M
H

T
2
M
L

T
1
M

TM R3L TM R3H
TCLKTR3

TM R3RLL TM R3RLH

Capture

T
M

R
3

C
N

T3SPLIT

T3XCLK1

TF3CEN

TF3L
TF3H

T3XCLK0

TR3

TF3LEN

TF3CEN
Interrupt

SYSCLK/12 X0

T3XCLK[1:0]

01

11Sm aRTClock

0

1

Sm aRTClock

External C lock/8

Rev. 1.2 309

C8051F99x-C8051F98x

26.3.5.2. 9/10/11-bit Pulse Width Modulator Mode

The duty cycle of the PWM output signal in 9/10/11-bit PWM mode should be varied by writing to an “Auto-
Reload” Register, which is dual-mapped into the PCA0CPHn and PCA0CPLn register locations. The data
written to define the duty cycle should be right-justified in the registers. The auto-reload registers are
accessed (read or written) when the bit ARSEL in PCA0PWM is set to 1. The capture/compare registers
are accessed when ARSEL is set to 0.

When the least-significant N bits of the PCA0 counter match the value in the associated module’s
capture/compare register (PCA0CPn), the output on CEXn is asserted high. When the counter overflows
from the Nth bit, CEXn is asserted low (see Figure 26.9). Upon an overflow from the Nth bit, the COVF flag
is set, and the value stored in the module’s auto-reload register is loaded into the capture/compare
register. The value of N is determined by the CLSEL bits in register PCA0PWM.

The 9, 10 or 11-bit PWM mode is selected by setting the ECOMn and PWMn bits in the PCA0CPMn
register, and setting the CLSEL bits in register PCA0PWM to the desired cycle length (other than 8-bits). If
the MATn bit is set to 1, the CCFn flag for the module will be set each time a comparator match (rising
edge) occurs. The COVF flag in PCA0PWM can be used to detect the overflow (falling edge), which will
occur every 512 (9-bit), 1024 (10-bit) or 2048 (11-bit) PCA clock cycles. The duty cycle for 9/10/11-Bit
PWM Mode is given in Equation 26.2, where N is the number of bits in the PWM cycle.

Important Note About PCA0CPHn and PCA0CPLn Registers: When writing a 16-bit value to the
PCA0CPn registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn
bit to 0; writing to PCA0CPHn sets ECOMn to 1.

Equation 26.3. 9, 10, and 11-Bit PWM Duty Cycle

A 0% duty cycle may be generated by clearing the ECOMn bit to 0.

Figure 26.9. PCA 9, 10 and 11-Bit PWM Mode Diagram

Duty Cycle
2N PCA0CPn–()

2N
--=

N-bit Comparator

PCA0H:L

(Capture/Compare)

PCA0CPH:Ln
(right-justified)

(Auto-Reload)

PCA0CPH:Ln
(right-justified)

CEXn
Crossbar Port I/OEnable

Overflow of Nth Bit

PCA Timebase

0 0 x 0 x

Q

Q
SET

CLR

S

R

match

PCA0CPMn
P
W
M
1
6
n

E
C
O
M
n

E
C
C
F
n

T
O
G
n

P
W
M
n

C
A
P
P
n

C
A
P
N
n

M
A
T
n

0

PCA0PWM
A
R
S
E
L

E
C
O
V

C
L
S
E
L
0

C
L
S
E
L
1

C
O
V
F

x

ENB

ENB

0

1

Write to
PCA0CPLn

Write to
PCA0CPHn

Reset

R/W when
ARSEL = 1

R/W when
ARSEL = 0 Set “N” bits:

01 = 9 bits
10 = 10 bits
11 = 11 bits

