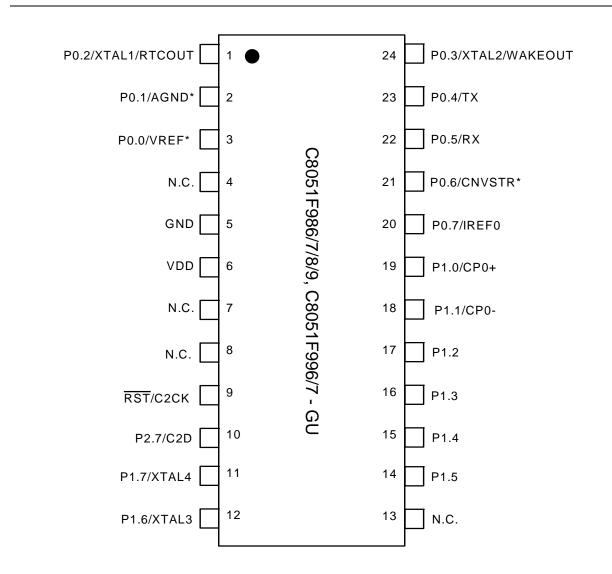


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	CIP-51 8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	16
Program Memory Size	2KB (2K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-UFQFN Exposed Pad
Supplier Device Package	20-QFN (3x3)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f985-gmr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

*Note: Signal only available on 'F986, 'F988, and 'F996 devices.

Figure 3.3. QSOP-24 Pinout Diagram (Top View)

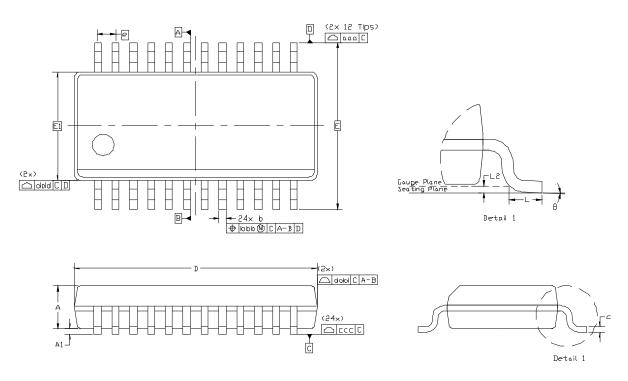


Figure 3.11. QSOP-24 Package Diagram

Table	3.6.	QSOP-24	Package	Dimensions
Table	5.0.		I denage	Dimensions

Dimension	Min	Тур	Max	Dimension	Min	Тур	Мах
A	_	—	1.75	L	0.40	—	1.27
A1	0.10	—	0.25	L2	0.25 BSC		
b	0.20	—	0.30	θ	0°	—	8°
С	0.10	—	0.25	aaa	0.20		
D		8.65 BSC.		bbb		0.18	
E		6.00 BSC		CCC		0.10	
E1	3.90 BSC			ddd		0.10	
е	0.635 BSC						

Notes:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to JEDEC outline MO-147, variation AE.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

8.4. CS0 Multiple Channel Enable

CS0 has the capability of measuring the total capacitance of multiple channels using a single conversion. When the multiple channel feature is enabled (CS0MCEN = 1), Channels selected by CS0SCAN0/1 are internally shorted together and the combined node is selected as the CS0 input. This mode can be used to detect a capacitance change on multiple channels using a single conversion and is useful for implementing "wake-on-multiple channels".

8.5. CS0 Gain Adjustment

The gain of the CS0 circuit can be adjusted in integer increments from 1x to 8x (8x is the default). High gain gives the best sensitivity and resolution for small capacitors, such as those typically implemented as touch-sensitive PCB features. To measure larger capacitance values, the gain should be lowered accordingly. The bits CS0CG[2:0] in register CS0MD set the gain value.

8.6. Wake from Suspend

CS0 has the capability of waking the device from a low power suspend mode upon detection of a "touch" using the digital comparator. When the CS0SMEN is set to 1, CS0 may also wake up the device after an end of scan event when CS0CM[2:0] are set to 101b or after each conversion when CS0CM[2:0] are set to 110b or 111b. If the accumulate feature is enabled, the device wakes up after all samples have been accumulated. The CS0WOI bit in the CS0MD1 register can be used to configure desire wake from suspend behavior.

8.7. Using CS0 in Applications that Utilize Sleep Mode

To achieve maximum power efficiency, CS0 should be enabled only when taking a conversion and disabled at all other times. CS0 must be disabled by software prior to entering Sleep Mode.

102

SFR Definition 8.13. CS0MD3: Capacitive Sense Mode 3

7	6	5	4	3	2	1	0		
			CS0R	P[1:0]		CS0LP[2:0]			
R/W	R/W	R/W	R/W	R/W	R/W R/W I		R/W		
0	0	0	0	0	0	0	0		
ige = 0xF; SF	R Address :	= 0xF3		I		II			
Name		Description							
Unused	Read = 0	000b; Write =	Don't care						
CS0RP[1:0]	These bi ramp tim cient. Se 00: Ram 01: Ram	ts are used t es. For most e the discus p time is less p time is bet	o compensa touch-sens sion in Secti s than 1.5 μs ween 1.5 μs	itive switches on 8.13 for n s. and 3 μs.	s, the defaul	t (fastest) va	•		
	R/W 0 age = 0xF; SF Name Unused	R/W R/W 0 0 age = 0xF; SFR Address = Name Unused Read = 0 CS0RP[1:0] CS0 Ran These bir ramp tim cient. Se 00: Ram 01: Ram	R/W R/W R/W 0 0 0 age = 0xF; SFR Address = 0xF3 Name Unused Read = 000b; Write = CS0RP[1:0] CS0 Ramp Selection These bits are used tramp times. For most cient. See the discuss 00: Ramp time is less 01: Ramp time is betw	R/W R/W R/W R/W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Read = 000b; Write = Don't care CSORP[1:0] CSORP[1:0] CSO Ramp Selection. These bits are used to compensar ramp times. For most touch-sens cient. See the discussion in Secti 00: Ramp time is less than 1.5 µs 01: Ramp time is between 1.5 µs 01: Ramp time is between 1.5 µs	R/W R/W R/W R/W R/W 0 0 0 0 0 age = 0xF; SFR Address = 0xF3 Mame Description Unused Read = 000b; Write = Don't care CS0RP[1:0] CS0RP[1:0] CS0 Ramp Selection. These bits are used to compensate CS0 conversation ramp times. For most touch-sensitive switches	R/W R/W R/W R/W R/W R/W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Read = 000b; Write = Don't care Description These bits are used to compensate CS0 conversions for or ramp times. For most touch-sensitive switches, the defaul cient. See the discussion in Section 8.13 for more informat 00: Ramp time is less than 1.5 µs. 01: Ramp time is between 1.5 µs and 3 µs.	R/WR/WR/WR/WR/WR/W000		

		10: Ramp time is between 3 μs and 6 μs.
		11: Ramp time is greater than 6 μs.
2:0	CS0LP[2:0]	CS0 Low Pass Filter Selection. These bits set the internal corner frequency of the CS0 low-pass filter. Higher values of CS0LP result in a lower internal corner frequency.
		For most touch-sensitive switches, the default setting of 000b should be used. If the CS0RP bits are adjusted from their default value, the CS0LP bits should nor- mally be set to 001b. Settings higher than 001b will result in attenuated readings from the CS0 module and should be used only under special circumstances. See the discussion in Section 8.13 for more information.

Mnemonic	Description	Bytes	Clock Cycles
ANL C, /bit	AND complement of direct bit to Carry	2	2
ORL C, bit	OR direct bit to carry	2	2
ORL C, /bit	OR complement of direct bit to Carry	2	2
MOV C, bit	Move direct bit to Carry	2	2
MOV bit, C	Move Carry to direct bit	2	2
JC rel	Jump if Carry is set	2	2/3
JNC rel	Jump if Carry is not set	2	2/3
JB bit, rel	Jump if direct bit is set	3	3/4
JNB bit, rel	Jump if direct bit is not set	3	3/4
JBC bit, rel	Jump if direct bit is set and clear bit	3	3/4
	Program Branching	·	
ACALL addr11	Absolute subroutine call	2	3
LCALL addr16	Long subroutine call	3	4
RET	Return from subroutine	1	5
RETI	Return from interrupt	1	5
AJMP addr11	Absolute jump	2	3
LJMP addr16	Long jump	3	4
SJMP rel	Short jump (relative address)	2	3
JMP @A+DPTR	Jump indirect relative to DPTR	1	3
JZ rel	Jump if A equals zero	2	2/3
JNZ rel	Jump if A does not equal zero	2	2/3
CJNE A, direct, rel	Compare direct byte to A and jump if not equal	3	3/4
CJNE A, #data, rel	Compare immediate to A and jump if not equal	3	3/4
CJNE Rn, #data, rel	Compare immediate to Register and jump if not equal	3	3/4
CJNE @Ri, #data, rel	Compare immediate to indirect and jump if not equal	3	4/5
DJNZ Rn, rel	Decrement Register and jump if not zero	2	2/3
DJNZ direct, rel	Decrement direct byte and jump if not zero	3	3/4
NOP	No operation	1	1

Table 9.1. CIP-51 Instruction Set Summary (Continued)

Notes on Registers, Operands and Addressing Modes:

Rn—Register R0–R7 of the currently selected register bank.

@Ri—Data RAM location addressed indirectly through R0 or R1.

rel—8-bit, signed (twos complement) offset relative to the first byte of the following instruction. Used by SJMP and all conditional jumps.

direct—8-bit internal data location's address. This could be a direct-access Data RAM location (0x00–0x7F) or an SFR (0x80–0xFF).

#data—8-bit constant

#data16—16-bit constant

bit—Direct-accessed bit in Data RAM or SFR

addr11—11-bit destination address used by ACALL and AJMP. The destination must be within the same 2 kB page of program memory as the first byte of the following instruction.

addr16—16-bit destination address used by LCALL and LJMP. The destination may be anywhere within the 8 kB program memory space.

There is one unused opcode (0xA5) that performs the same function as NOP. All mnemonics copyrighted © Intel Corporation 1980.

Interrupt Source	t Source Interrupt Vector Order Priority		Pending Flag	Bit addressable?	Cleared by HW?	Enable Flag	Priority Control
Reset	0x0000	Тор	None	N/A	N/A	Always Enabled	Always Highest
External Interrupt 0 (INT0)	0x0003	0	IE0 (TCON.1)	Y	Y	EX0 (IE.0)	PX0 (IP.0)
Timer 0 Overflow	0x000B	1	TF0 (TCON.5)	Y	Y	ET0 (IE.1)	PT0 (IP.1)
External Interrupt 1 (INT1)	0x0013	2	IE1 (TCON.3)	Y	Y	EX1 (IE.2)	PX1 (IP.2)
Timer 1 Overflow	0x001B	3	TF1 (TCON.7)	Y	Y	ET1 (IE.3)	PT1 (IP.3)
UART0	0x0023	4	RI0 (SCON0.0) TI0 (SCON0.1)	Y	Ν	ES0 (IE.4)	PS0 (IP.4)
Timer 2 Overflow	0x002B	5	TF2H (TMR2CN.7) TF2L (TMR2CN.6)	Y	N	ET2 (IE.5)	PT2 (IP.5)
SPI0	0x0033	6	SPIF (SPI0CN.7) WCOL (SPI0CN.6) MODF (SPI0CN.5) RXOVRN (SPI0CN.4)	Y	N	ESPI0 (IE.6)	PSPI0 (IP.6)
SMB0	0x003B	7	SI (SMB0CN.0)	Y	Ν	ESMB0 (EIE1.0)	PSMB0 (EIP1.0)
SmaRTClock Alarm	0x0043	8	ALRM (RTC0CN.2) ²	Ν	Ν	EARTC0 (EIE1.1)	PARTC0 (EIP1.1)
ADC0 Window Comparator	0x004B	9	AD0WINT (ADC0CN.3)	Y	Ν	EWADC0 (EIE1.2)	PWADC0 (EIP1.2)
ADC0 End of Conversion	0x0053	10	AD0INT (ADC0CN.5)	Υ	Ν	EADC0 (EIE1.3)	PADC0 (EIP1.3)
Programmable Counter Array	0x005B	11	CF (PCA0CN.7) CCFn (PCA0CN.n)	Υ	Ν	EPCA0 (EIE1.4)	PPCA0 (EIP1.4)
Comparator0	0x0063	12	CP0FIF (CPT0CN.4) CP0RIF (CPT0CN.5)	Ν	Ν	ECP0 (EIE1.5)	PCP0 (EIP1.5)
Reserved	0x006B	13					
Timer 3 Overflow	0x0073	14	TF3H (TMR3CN.7) TF3L (TMR3CN.6)	Ν	Ν	ET3 (EIE1.7)	PT3 (EIP1.7)
Supply Monitor Early Warning	0x007B	15	VDDOK (VDM0CN.5) ¹	Ν	Ν	EWARN (EIE2.0)	PWARN (EIP2.0)
Port Match	0x0083	16	None			EMAT (EIE2.1)	PMAT (EIP2.1)
SmaRTClock Oscillator Fail	0x008B	17	OSCFAIL (RTC0CN.5) ²	Ν	Ν	ERTC0F (EIE2.2)	PFRTC0F (EIP2.2)
Reserved	0x0093	18					
CS0 Conversion Complete	0x009B	19	CS0INT (CS0CN.5)	Y	Ν	ECSCPT (EIE2.4)	PCSCPT (EIP2.4)
CS0 Digital Comparator	0x00A3	20	CS0CMPF (CS0CN.0)	Y	N	ECSDC (EIE2.5)	PCSDC (EIP2.5)
CS0 End of Scan	0x00AB	21	CS0EOS (CS0CN.6)	Y	Ν	ECSEOS (EIE2.6)	PCSEOS (EIP2.6)

Table 13.1. Interrupt Summary

Notes:

1. Indicates a read-only interrupt pending flag. The interrupt enable may be used to prevent software from vectoring to the associated interrupt service routine.

2. Indicates a register located in an indirect memory space.

13.5. Interrupt Register Descriptions

The SFRs used to enable the interrupt sources and set their priority level are described in the following register descriptions. Refer to the data sheet section associated with a particular on-chip peripheral for information regarding valid interrupt conditions for the peripheral and the behavior of its interrupt-pending flag(s).

15.7. Determining the Event that Caused the Last Wakeup

When waking from idle mode, the CPU will vector to the interrupt which caused it to wake up. When waking from stop mode, the RSTSRC register may be read to determine the cause of the last reset.

Upon exit from suspend or sleep mode, the wake-up flags in the PMU0CF and PMU0FL registers can be read to determine the event which caused the device to wake up. After waking up, the wake-up flags will continue to be updated if any of the wake-up events occur. Wake-up flags are always updated, even if they are not enabled as wake-up sources.

All wake-up flags enabled as wake-up sources in PMU0CF and PMU0FL must be cleared before the device can enter suspend or sleep mode. After clearing the wake-up flags, each of the enabled wake-up events should be checked in the individual peripherals to ensure that a wake-up event did not occur while the wake-up flags were being cleared.

Notes:

SFR Definition 16.5. CRC0CNT: CRC0 Automatic Flash Sector Count

Bit	7	6	5	4	3	2	1	0	
Nam	e			CRC0CNT[4:0]					
Туре	e R	R	R	R/W					
Rese	et 0	0	0	0 0 0 0 0					
SFR F	Page = All; SFR	Address =	0x9A						
Bit	Name		Function						
7:5	Unused	Read = 0	Read = 000b; Write = Don't Care.						
4:0	CRC0CNT[4:0]	Automa	utomatic CRC Calculation Block Count.						

calculation is (CRC0ST+CRC0CNT) x Block Size - 1.

1. The block size is 256 bytes.

These bits specify the number of Flash blocks to include in an automatic CRC calculation. The last address of the last Flash block included in the automatic CRC

2. The maximum number of blocks that may be computed in a single operation is 31. To compute a CRC on all 32 blocks, perform one operation on 31 blocks, then perform a second operation on 1 block without clearing the CRC result.

S	Y
SILICON	LABS

16.5. CRC0 Bit Reverse Feature

CRC0 includes hardware to reverse the bit order of each bit in a byte as shown in Figure 16.2. Each byte of data written to CRC0FLIP is read back bit reversed. For example, if 0xC0 is written to CRC0FLIP, the data read back is 0x03. Bit reversal is a useful mathematical function used in algorithms such as the FFT.

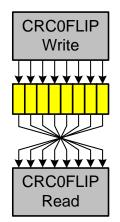


Figure 16.2. Bit Reverse Register

SFR Definition 16.6. CRC0FLIP: CRC0 Bit Flip

Bit	7	6	5	4	3	2	1	0		
Name	CRC0FLIP[7:0]									
Туре	R/W									
Reset	0	0	0	0	0	0	0	0		

SFR Page = All; SFR Address = 0x9C

Bit	Name	Function
7:0	CRC0FLIP[7:0]	CRC0 Bit Flip.
		Any byte written to CRC0FLIP is read back in a bit-reversed order, i.e. the written LSB becomes the MSB. For example: If 0xC0 is written to CRC0FLIP, the data read back will be 0x03.
		If 0x05 is written to CRC0FLIP, the data read back will be 0xA0.

18.4. Missing Clock Detector Reset

The missing clock detector (MCD) is a one-shot circuit that is triggered by the system clock. If the system clock remains high or low for more than 100 μ s, the one-shot will time out and generate a reset. After a MCD reset, the MCDRSF flag (RSTSRC.2) will read 1, signifying the MCD as the reset source; otherwise, this bit reads 0. Writing a 1 to the MCDRSF bit enables the Missing Clock Detector; writing a 0 disables it. The missing clock detector reset is automatically disabled when the device is in the low power suspend or sleep mode. Upon exit from either low power state, the enabled/disabled state of this reset source is restored to its previous value. The state of the RST pin is unaffected by this reset.

18.5. Comparator0 Reset

Comparator0 can be configured as a reset source by writing a 1 to the CORSEF flag (RSTSRC.5). Comparator0 should be enabled and allowed to settle prior to writing to CORSEF to prevent any turn-on chatter on the output from generating an unwanted reset. The Comparator0 reset is active-low: if the non-inverting input voltage (on CP0+) is less than the inverting input voltage (on CP0–), the device is put into the reset state. After a Comparator0 reset, the CORSEF flag (RSTSRC.5) will read 1 signifying Comparator0 as the reset source; otherwise, this bit reads 0. The Comparator0 reset source remains functional even when the device is in the low power <u>susp</u>end and sleep states as long as Comparator0 is also enabled as a wake-up source. The state of the RST pin is unaffected by this reset.

18.6. PCA Watchdog Timer Reset

The programmable watchdog timer (WDT) function of the programmable counter array (PCA) can be used to prevent software from running out of control during a system malfunction. The PCA WDT function can be enabled or disabled by software as described in Section "26.4. Watchdog Timer Mode" on page 311; the WDT is enabled and clocked by SYSCLK / 12 following any reset. If a system malfunction prevents user software from updating the WDT, a reset is generated and the WDTRSF bit (RSTSRC.5) is set to 1. The PCA Watchdog Timer reset source is automatically disabled when the device is in the low power suspend or sleep mode. Upon exit from either low power state, the enabled/disabled state of this reset source is restored to its previous value. The state of the RST pin is unaffected by this reset.

18.7. Flash Error Reset

If a Flash read/write/erase or program read targets an illegal address, a system reset is generated. This may occur due to any of the following:

- A Flash write or erase is attempted above user code space. This occurs when PSWE is set to 1 and a MOVX write operation targets an address above the Lock Byte address.
- A Flash read is attempted above user code space. This occurs when a MOVC operation targets an address above the Lock Byte address.
- A Program read is attempted above user code space. This occurs when user code attempts to branch to an address above the Lock Byte address.
- A Flash read, write or erase attempt is restricted due to a Flash security setting (see Section "14.3. Security Options" on page 152).
- A Flash write or erase is attempted while the V_{DD} Monitor is disabled.

The FERROR bit (RSTSRC.6) is set following a Flash error reset. The state of the \overline{RST} pin is unaffected by this reset.

SFR Definition 21.6. P1MASK: Port1 Mask Register

Bit	7	6	5	4	3	2	1	0		
Name	P1MASK[7:0]									
Туре	R/W									
Reset	0	0	0	0	0	0	0	0		

SFR Page= 0x0; SFR Address = 0xBF

Bit	Name	Function
7:0	P1MASK[7:0]	Port 1 Mask Value.
		Selects P1 pins to be compared to the corresponding bits in P1MAT. 0: P1.n pin logic value is ignored and cannot cause a Port Mismatch event. 1: P1.n pin logic value is compared to P1MAT.n.

SFR Definition 21.7. P1MAT: Port1 Match Register

Bit	7	6	5	4	3	2	1	0		
Name	P1MAT[7:0]									
Туре				R/	W					
Reset	1	1	1	1	1	1	1	1		

SFR Page = 0x0; SFR Address = 0xCF

Bit	Name	Function
7:0	P1MAT[7:0]	Port 1 Match Value.
		Match comparison value used on Port 1 for bits in P1MASK which are set to 1. 0: P1.n pin logic value is compared with logic LOW. 1: P1.n pin logic value is compared with logic HIGH.

SFR Definition 21.19. P2MDOUT: Port2 Output Mode

Bit	7	6	5	4	3	2	1	0
Name	P2MDOUT							
Туре	R/W	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

SFR Page = 0x0; SFR Address = 0xA6

Bit	Name	Function
7	P2MDOUT	Output Configuration Bits for P2.7.
		These bits control the digital driver. 0: P2.7 Output is open-drain. 1: P2.7 Output is push-pull.
6:0	Unused	Read = 0000000b; Write = Don't Care.

SFR Definition 21.20. P2DRV: Port2 Drive Strength

Bit	7	6	5	4	3	2	1	0
Name	P2DRV							
Туре	R/W	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

SFR Page = 0xF; SFR Address = 0x9D

Bit	Name	Function
7	P2DRV	Drive Strength Configuration Bits for P2.7.
		Configures digital I/O Port cells to high or low output drive strength. 0: P2.7 Output has low output drive strength. 1: P2.7 Output has high output drive strength.
6:0	Unused	Read = 0000000b; Write = Don't Care.

SFR Definition 22.1. SMB0CF: SMBus Clock/Configuration

Bit	7	6	5	4	3	2	1	0
Name	ENSMB	INH	BUSY	EXTHOLD	SMBTOE	SMBFTE	SMBCS[1:0]	
Туре	R/W	R/W	R	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0

SFR Page = 0x0; SFR Address = 0xC1

Bit	Name	Function
7	ENSMB	SMBus Enable.
		This bit enables the SMBus interface when set to 1. When enabled, the interface constantly monitors the SDA and SCL pins.
6	INH	SMBus Slave Inhibit.
		When this bit is set to logic 1, the SMBus does not generate an interrupt when slave events occur. This effectively removes the SMBus slave from the bus. Master Mode interrupts are not affected.
5	BUSY	SMBus Busy Indicator.
		This bit is set to logic 1 by hardware when a transfer is in progress. It is cleared to logic 0 when a STOP or free-timeout is sensed.
4	EXTHOLD	SMBus Setup and Hold Time Extension Enable.
		This bit controls the SDA setup and hold times according to Table 22.2. 0: SDA Extended Setup and Hold Times disabled. 1: SDA Extended Setup and Hold Times enabled.
3	SMBTOE	SMBus SCL Timeout Detection Enable.
		This bit enables SCL low timeout detection. If set to logic 1, the SMBus forces Timer 3 to reload while SCL is high and allows Timer 3 to count when SCL goes low. If Timer 3 is configured to Split Mode, only the High Byte of the timer is held in reload while SCL is high. Timer 3 should be programmed to generate interrupts at 25 ms, and the Timer 3 interrupt service routine should reset SMBus communication.
2	SMBFTE	SMBus Free Timeout Detection Enable.
		When this bit is set to logic 1, the bus will be considered free if SCL and SDA remain high for more than 10 SMBus clock source periods.
1:0	SMBCS[1:0]	SMBus Clock Source Selection.
		These two bits select the SMBus clock source, which is used to generate the SMBus bit rate. The selected device should be configured according to Equation 22.1. 00: Timer 0 Overflow 01: Timer 1 Overflow 10:Timer 2 High Byte Overflow
		11: Timer 2 Low Byte Overflow

22.4.4. Data Register

The SMBus Data register SMB0DAT holds a byte of serial data to be transmitted or one that has just been received. Software may safely read or write to the data register when the SI flag is set. Software should not attempt to access the SMB0DAT register when the SMBus is enabled and the SI flag is cleared to logic 0, as the interface may be in the process of shifting a byte of data into or out of the register.

Data in SMB0DAT is always shifted out MSB first. After a byte has been received, the first bit of received data is located at the MSB of SMB0DAT. While data is being shifted out, data on the bus is simultaneously being shifted in. SMB0DAT always contains the last data byte present on the bus. In the event of lost arbitration, the transition from master transmitter to slave receiver is made with the correct data or address in SMB0DAT.

SFR Definition 22.5. SMB0DAT: SMBus Data

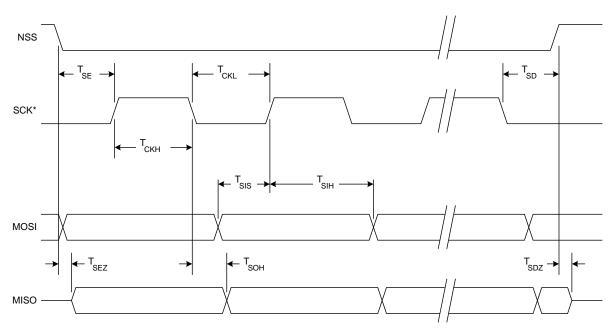
Bit	7	6	5	4	3	2	1	0		
Name	SMB0DAT[7:0]									
Туре				R/	W					
Reset	0	0	0	0	0	0	0	0		

SFR Page = 0x0; SFR Address = 0xC2

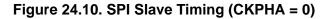
Bit	Name	Function
7:0	SMB0DAT[7:0]	SMBus Data.
		The SMB0DAT register contains a byte of data to be transmitted on the SMBus serial interface or a byte that has just been received on the SMBus serial interface. The CPU can read from or write to this register whenever the SI serial interrupt flag (SMB0CN.0) is set to logic 1. The serial data in the register remains stable as long as the SI flag is set. When the SI flag is not set, the system may be in the process of shifting data in/out and the CPU should not attempt to access this register.

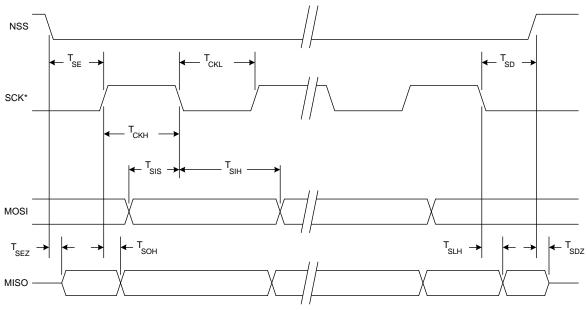
SFR Definition 24.3. SPI0CKR: SPI0 Clock Rate

Bit	7 6 5 4 3 2 1								
Name SCR[7:0]									
Туре	e R/W								
Reset	0	0	0	0	0				
SFR Pa	ge = 0x0; SF	R Address =	= 0xA2		1		I	I	
Bit	Name								
7:0	SCR[7:0]	configured sion of the the system register. f _{SCK} = for 0 <= S Example:	s determine d for master e system clo	mode opera ck, and is gi Jency and S SCLK CKR[7:0] + 255 = 2 MHz and	tion. The Solven in the formula $PIOCKR$ is t	CK clock fre ollowing equ he 8-bit valu	en the SPI0 of quency is a c ation, where ue held in the	livided ver- SYSCLK is	


SFR Definition 24.4. SPI0DAT: SPI0 Data

Bit	7	6	5	4	3	2	1	0
Name	SPI0DAT[7:0]							
Туре	R/W							
Reset	0	0	0	0	0	0	0	0


SFR Page = 0x0; SFR Address = 0xA3


Bit	Name	Function
7:0	SPI0DAT[7:0]	SPI0 Transmit and Receive Data.
		The SPI0DAT register is used to transmit and receive SPI0 data. Writing data to SPI0DAT places the data into the transmit buffer and initiates a transfer when in Master Mode. A read of SPI0DAT returns the contents of the receive buffer.

* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.

* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.

SFR Definition 25.2. TCON: Timer Control

Bit	7	6	5	4	3	2	1	0		
		TR1	TF0	TR0	IE1	IT1	IE0	ITO		
Name	·									
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Rese	t 0	0	0	0	0	0	0	0		
SFR P	SFR Page = 0x0; SFR Address = 0x88; Bit-Addressable									
Bit	Name	Function								
7 TF1 Timer 1 Overflow Flag.										
		Set to 1 by hardware when Timer 1 overflows. This flag can be cleared by software but is automatically cleared when the CPU vectors to the Timer 1 interrupt service routine.								
6	TR1	Timer 1 Run Control.								
Timer 1 is enabled by setting this bit to 1.										
5 TF0 Timer 0 Overflow Flag.										
		Set to 1 by hardware when Timer 0 overflows. This flag can be cleared by software but is automatically cleared when the CPU vectors to the Timer 0 interrupt service routine.								
4	TR0	Timer 0 Ru	n Control.							
		Timer 0 is enabled by setting this bit to 1.								
3	IE1	External Interrupt 1.								
		This flag is set by hardware when an edge/level of type defined by IT1 is detected. It can be cleared by software but is automatically cleared when the CPU vectors to the External Interrupt 1 service routine in edge-triggered mode.								
2	2 IT1 Interrupt 1 Type Select.									
		This bit selects whether the configured INT1 interrupt will be edge or level sensitive. INT1 is configured active low or high by the IN1PL bit in the IT01CF register (see SFR Definition 13.7). 0: INT1 is level triggered. 1: INT1 is edge triggered.								
1	IE0	External In	-							
		This flag is set by hardware when an edge/level of type defined by IT1 is detected. It can be cleared by software but is automatically cleared when the CPU vectors to the External Interrupt 0 service routine in edge-triggered mode.								
0	IT0	Interrupt 0	Type Select	t.						
		This bit selects whether the configured INTO interrupt will be edge or level sensitive.INTO is configured active low or high by the INOPL bit in register ITO1CF (see SFRDefinition 13.7).0: INTO is level triggered.1: INTO is edge triggered.								

26.3.1. Edge-triggered Capture Mode

In this mode, a valid transition on the CEXn pin causes the PCA to capture the value of the PCA counter/timer and load it into the corresponding module's 16-bit capture/compare register (PCA0CPLn and PCA0CPHn). The CAPPn and CAPNn bits in the PCA0CPMn register are used to select the type of transition that triggers the capture: low-to-high transition (positive edge), high-to-low transition (negative edge), or either transition (positive or negative edge). When a capture occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic 1. An interrupt request is generated if the CCFn interrupt for that module is enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. If both CAPPn and CAPNn bits are set to logic 1, then the state of the Port pin associated with CEXn can be read directly to determine whether a rising-edge or falling-edge caused the capture.

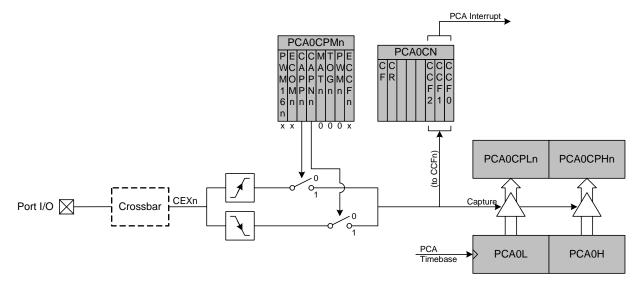


Figure 26.4. PCA Capture Mode Diagram

Note: The CEXn input signal must remain high or low for at least 2 system clock cycles to be recognized by the hardware.

