

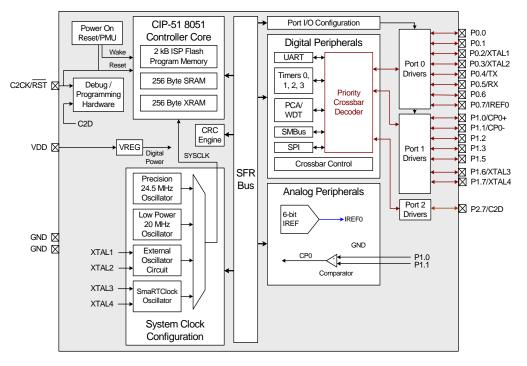
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

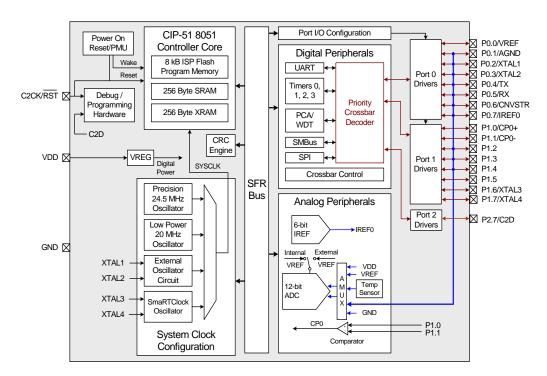
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Product Status	Obsolete
Core Processor	CIP-51 8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	17
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-WFQFN Exposed Pad
Supplier Device Package	24-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f988-gm

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

OF 0.4.40 hit Time an with Auto Dalaged	004
25.3.1.16-bit Timer with Auto-Reload	
25.3.2.8-Bit Timers with Auto-Reload	
25.3.3.SmaRTClock/External Oscillator Capture Mode	296
26. Programmable Counter Array	300
26.1.PCA Counter/Timer	301
26.2.PCA0 Interrupt Sources	302
26.3.Capture/Compare Modules	303
26.3.1.Edge-triggered Capture Mode	304
26.3.2.Software Timer (Compare) Mode	
26.3.3.High-Speed Output Mode	306
26.3.4. Frequency Output Mode	306
26.3.5. 8-bit, 9-bit, 10-bit and 11-bit Pulse Width Modulator Modes	307
26.3.6. 16-Bit Pulse Width Modulator Mode	310
26.4.Watchdog Timer Mode	311
26.4.1.Watchdog Timer Operation	
26.4.2.Watchdog Timer Usage	312
26.5.Register Descriptions for PCA0	313
27.C2 Interface	
27.1.C2 Interface Registers	319
27.2.C2 Pin Sharing	
Document Change List	
Contact Information	325

3. Pinout and Package Definitions

	Pin	Number	S						
Name	[•] F980/1/2 [•] F983/5 [•] F990/1 -GM	'F986/7 'F988/9 'F996/7 -GM	'F986/7 'F988/9 'F996/7 -GU	Туре	Description				
V _{DD}	4	3	6	P In	Power Supply Voltage. Must be 1.8 to 3.6 V.				
GND	3, 12	2	5	G	Required Ground.				
RST/	5	6	9	D I/O	Device Reset. Open-drain output of internal POR or V_D monitor. An external source can initiate a system reset by driving this pin low for at least 15 µs. A 1 k Ω to 5 k Ω pullup to V_{DD} is recommended. See Section "18. Rese Sources" on page 181 Section for a complete description.				
C2CK				D I/O	Clock signal for the C2 Debug Interface.				
P2.7/	6	7	10	D I/O	Port 2.7. This pin can only be used as GPIO. The Crossbar cannot route signals to this pin and it cannot to configured as an analog input. See Port I/O Section for complete description.				
C2D				D I/O	Bi-directional data signal for the C2 Debug Interface.				
P1.6/	8	9	12	D I/O	Port 1.6. See Port I/O Section for a complete description.				
XTAL3				A In	SmaRTClock Oscillator Crystal Input. See Section 20 for a complete description.				
P1.7/	7	8	11	D I/O	Port 1.7. See Port I/O Section for a complete description.				
XTAL4				A Out	SmaRTClock Oscillator Crystal Output. See Section 20 for a complete description.				
P0.0/	2	24	3	D I/O or A In	Port 0.0. See Port I/O Section for a complete description.				
V _{REF} *				A In	External V _{REF} Input. See Section "5.9. Voltage and Ground Reference Options" on page 88.				
* Note: Availa	ble only on t	he C805′	1F980/2/6	6/8 and C8	051F990/6 devices.				

Table 3.1. Pin Definitions for the C8051F99x-C8051F98x

Table 4.4. Reset Electrical Characteristics

 V_{DD} = 1.8 to 3.6 V, –40 to +85 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
RST Output Low Voltage	I _{OL} = 1.4 mA,	_	_	0.6	V
RST Input High Voltage	V _{DD} = 12.0 to 3.6 V	V _{DD} – 0.6		_	V
	V_{DD} = 10.9 to 2.0 V	$0.7 \times V_{DD}$	_	—	V
RST Input Low Voltage	V _{DD} = 12.0 to 3.6 V	_	_	0.6	V
	V _{DD} = 10.9 to 2.0 V	—	_	$0.3 \times V_{DD}$	V
RST Input Pullup Current	RST = 10.0 V, V _{DD} = 1.8 V RST = 10.0 V, V _{DD} = 13.6 V	_	4 20	— 30	μA
V _{DD} Monitor Threshold	Early Warning	1.8	1.85	1.9	V
(V _{RST})	Reset Trigger (all power modes except Sleep)	1.7	1.75	1.8	
V _{DD} Ramp Time for Power On	V _{DD} Ramp from 0–1.8 V	_		3	ms
POR Monitor Threshold	Brownout Condition (V _{DD} Falling)	0.75	1.0	1.3	V
(V _{POR})	Recovery from Brownout (V _{DD} Rising)		1.75		v
Missing Clock Detector Timeout	Time from last system clock rising edge to reset initiation	100	650	1000	μs
Minimum System Clock w/ Missing Clock Detector Enabled	System clock frequency which triggers a missing clock detector timeout	_	7	10	kHz
Reset Time Delay	Delay between release of any reset source and code execution at location 0x0000	_	10	_	μs
Minimum \overline{RST} Low Time to Generate a System Reset		15	_	_	μs
V _{DD} Monitor Turn-on Time		_	300	_	ns
V _{DD} Monitor Supply Current		_	7	_	μA

SFR Definition 5.2. ADC0CF: ADC0 Configuration

Bit	7	6	5	4	3	2	1	0					
Nam	e	AD0SC[4:0] AD08BE AD0TM AMP											
Туре	•		R/W		R/W	R/W	R/W						
Rese	t 1	1	1	1	1	0	0	0					
SFR F	age = 0x0; SI	R Address =	= 0x97			•							
Bit	Name		Function										
7:3	AD0SC[4:0]	SAR Conve AD0SC refe requiremen BURSTEN BURSTEN clock. AD0SC = *Round the	ADC0 SAR Conversion Clock Divider. SAR Conversion clock is derived from FCLK by the following equation, where <i>AD0SC</i> refers to the 5-bit value held in bits AD0SC[4:0]. SAR Conversion clock requirements are given in Table 4.10. BURSTEN = 0: FCLK is the current system clock. BURSTEN = 1: FCLK is the 20 MHz low power oscillator, independent of the system clock. $AD0SC = \frac{FCLK}{CLK_{SAR}} - 1 *$ *Round the result up. or $CLK_{SAR} = \frac{FCLK}{AD0SC + 1}$										
2	AD08BE	0: ADC0 op		-bit mode (n	ormal opera	ation).							
1	AD0TM AMP0GN	Selects betw 0: Normal T lowing the s 1: Delayed cycles follow this time.	ADC0 operates in 8-bit mode. ADC0 Track Mode. Selects between Normal or Delayed Tracking Modes. Normal Track Mode: When ADC0 is enabled, conversion begins immediately fol- owing the start-of-conversion signal. Delayed Track Mode: When ADC0 is enabled, conversion begins 3 SAR clock cycles following the start-of-conversion signal. The ADC is allowed to track during his time. ADC0 Gain Control.										
		0: The on-c	hip PGA gai hip PGA gai										

5.6.1. Window Detector In Single-Ended Mode

Figure 5.5 shows two example window comparisons for right-justified data. with ADC0LTH:ADC0LTL = 0x0080 (128d) and ADC0GTH:ADC0GTL = 0x0040 (64d). The input voltage can range from 0 to VREF x (1023/1024) with respect to GND, and is represented by a 10-bit unsigned integer value. In the left example, an AD0WINT interrupt will be generated if the ADC0 conversion word (ADC0H:ADC0L) is within the range defined by ADC0GTH:ADC0GTL and ADC0LTH:ADC0LTL (if 0x0040 < ADC0H:ADC0L < 0x0080). In the right example, and AD0WINT interrupt will be generated if the ADC0 conversion word is outside of the range defined by the ADC0GT and ADC0LT registers (if ADC0H:ADC0L < 0x0040 or ADC0H:ADC0L > 0x0080). Figure 5.6 shows an example using leftjustified data with the same comparison values.

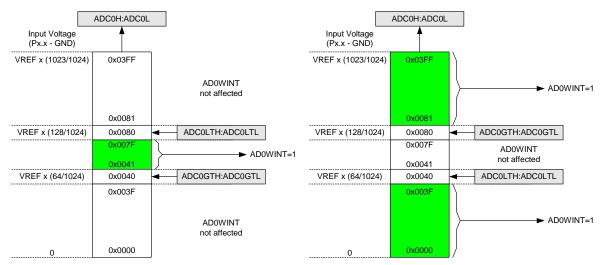


Figure 5.5. ADC Window Compare Example: Right-Justified Single-Ended Data

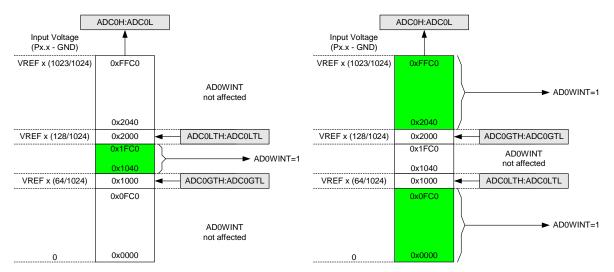


Figure 5.6. ADC Window Compare Example: Left-Justified Single-Ended Data

5.6.2. ADC0 Specifications

See "4. Electrical Characteristics" on page 48 for a detailed listing of ADC0 specifications.

7. Comparator

C8051F99x-C8051F98x devices include an on-chip programmable voltage comparator: Comparator 0 (CPT0) shown in Figure 7.1.

The Comparator offers programmable response time and hysteresis, an analog input multiplexer, and two outputs that are optionally available at the Port pins: a digital synchronous "latched" output (CP0), or a digital asynchronous "raw" output (CP0A). The asynchronous CP0A signal is available even when the system clock is not active. This allows the Comparator to operate and generate an output when the device is in some low power modes.

7.1. Comparator Inputs

Each Comparator performs an analog comparison of the voltage levels at its positive (CP0+) and negative (CP0-) input. The analog input multiplexers are completely under software control and configured using SFR registers. See Section "7.6. Comparator0 Analog Multiplexer" on page 98 for details on how to select and configure Comparator inputs.

Important Note About Comparator Inputs: The Port pins selected as Comparator inputs should be configured as analog inputs and skipped by the Crossbar. See the Port I/O chapter for more details on how to configure Port I/O pins as Analog Inputs. The Comparator may also be used to compare the logic level of digital signals, however, Port I/O pins configured as digital inputs must be driven to a valid logic state (HIGH or LOW) to avoid increased power consumption.

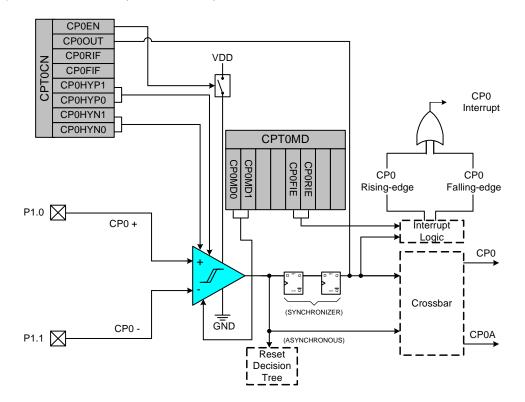


Figure 7.1. Comparator 0 Functional Block Diagram

SFR Definition 8.5. CS0SCAN0: Capacitive Sense Channel Scan Mask 0

Bit	7	6	5	4	3	2	1	0			
Name		CS0SCAN0[7:0]									
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			

SFR Page = 0x0; SFR Address = 0xD2

Bit	Name	Description					
7:0	CS0SCAN[7:0]	Capacitive Sense Channel Scan Mask for Port 0.					
		The selected channels are included in the Auto Scan when scan masking is enabled (CS0SMEN = 1).					

SFR Definition 8.6. CS0SCAN1: Capacitive Sense Channel Scan Mask 1

Bit	7	6	5	4	3	2	1	0		
Name				CS0SCAN[5:0]						
Туре	R	R	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0		

SFR Page = 0x0; SFR Address = 0xD3

Bit	Name	Description					
7:6	Unused	Read = 00b; Write = Don't care					
5:0	CS0SCAN[5:0]	pacitive Sense Channel Scan Mask for Port 0.					
		The selected channels are included in the Auto Scan when scan masking is enabled (CS0SMEN = 1).					

SFR Definition 9.6. PSW: Program Status Word

Bit	7	6	5	4	3	2	1	0					
Nam	e CY	AC	F0	RS	[1:0]	OV	F1	PARITY					
Туре	R/W	R/W	R/W	R/	/W	R/W	R/W	R					
Rese	et O	0	0	0	0	0	0	0					
SFR F	SFR Page = All; SFR Address = 0xD0; Bit-Addressable												
Bit	Bit Name Function												
7	CY		Carry Flag. This bit is set when the last arithmetic operation resulted in a carry (addition) or a bor- row (subtraction). It is cleared to logic 0 by all other arithmetic operations.										
6	AC	This bit is set borrow from (s	Auxiliary Carry Flag. This bit is set when the last arithmetic operation resulted in a carry into (addition) or a porrow from (subtraction) the high order nibble. It is cleared to logic 0 by all other arith- netic operations.										
5	F0	User Flag 0. This is a bit-ad	ddressable,	general purp	ose flag for	use under so	oftware contr	ol.					
4:3	RS[1:0]	Register Ban These bits sel 00: Bank 0, Ao 01: Bank 1, Ao 10: Bank 2, Ao 11: Bank 3, Ao	ect which re ddresses 0x ddresses 0x ddresses 0x	00-0x07 08-0x0F 10-0x17	s used durin	ig register ac	cesses.						
2	OV	This bit is set • An ADD, • A MUL in • A DIV ins	 Overflow Flag. This bit is set to 1 under the following circumstances: An ADD, ADDC, or SUBB instruction causes a sign-change overflow. A MUL instruction results in an overflow (result is greater than 255). A DIV instruction causes a divide-by-zero condition. The OV bit is cleared to 0 by the ADD, ADDC, SUBB, MUL, and DIV instructions in all 										
1	F1	User Flag 1. This is a bit-ad	ddressable,	general purp	ose flag for	use under so	oftware contr	ol.					
0	PARITY	Parity Flag. This bit is set t if the sum is e	•	ne sum of the	eight bits in	the accumu	lator is odd a	and cleared					

Table 12.3. Special Function Registers (Continued)

SFRs are listed in alphabetical order. All undefined SFR locations are reserved.

Register	Address	SFR Page	Description	Page
P1SKIP	0xD5	0x0	Port 1 Skip	231
P2	0xA0	All	Port 2 Latch	233
P2DRV	0x9D	0xF	Port 2 Drive Strength	234
P2MDOUT	0xA6	0x0	Port 2 Output Mode Configuration	234
PCA0CN	0xD8	0x0	PCA0 Control	313
PCA0CPH0	0xFC	0x0	PCA0 Capture 0 High	318
PCA0CPH1	0xEA	0x0	PCA0 Capture 1 High	318
PCA0CPH2	0xEC	0x0	PCA0 Capture 2 High	318
PCA0CPL0	0xFB	0x0	PCA0 Capture 0 Low	318
PCA0CPL1	0xE9	0x0	PCA0 Capture 1 Low	318
PCA0CPL2	0xEB	0x0	PCA0 Capture 2 Low	318
PCA0CPM0	0xDA	0x0	PCA0 Module 0 Mode Register	316
PCA0CPM1	0xDB	0x0	PCA0 Module 1 Mode Register	316
PCA0CPM2	0xDC	0x0	PCA0 Module 2 Mode Register	316
PCA0H	0xFA	0x0	PCA0 Counter High	317
PCA0L	0xF9	0x0	PCA0 Counter Low	317
PCA0MD	0xD9	0x0	PCA0 Mode	314
PCA0PWM	0xDF	0x0	PCA0 PWM Configuration	315
PCON	0x87	All	Power Control	171
PMU0CF	0xB5	0x0	PMU0 Configuration	168
PMU0FL	0xCE	0x0	PMU0 Flag Register	169
PMU0MD	0xB5	0xF	PMU0 Mode	170
PSCTL	0x8F	All	Program Store R/W Control	159
PSW	0xD0	All	Program Status Word	127
REF0CN	0xD1	0x0	Voltage Reference Control	90
REG0CN	0xC9	0x0	Voltage Regulator (REG0) Control	180
REVID	0xE2	0xF	Revision ID	155
RSTSRC	0xEF	0x0	Reset Source Configuration/Status	187
RTC0ADR	0xAC	0x0	RTC0 Address	202
RTC0DAT	0xAD	0x0	RTC0 Data	202
RTC0KEY	0xAE	0x0	RTC0 Key	201
SBUF0	0x99	0x0	UART0 Data Buffer	263
SCON0	0x98	0x0	UART0 Control	262
SFRPAGE	0xA7	All	SFR Page	134
SMB0ADM	0xF5	0x0	SMBus Slave Address Mask	247
SMB0ADR	0xF4	0x0	SMBus Slave Address	247
SMB0CF	0xC1	0x0	SMBus0 Configuration	242
SMB0CN	0xC0	0x0	SMBus0 Control	244
SMB0DAT	0xC2	0x0	SMBus0 Data	248
SP	0x81	All	Stack Pointer	126
SPI0CFG	0xA1	0x0	SPI0 Configuration	272
SPI0CKR	0xA2	0x0	SPI0 Clock Rate Control	274
SPI0CN	0xF8	0x0	SPI0 Control	273
SPI0DAT	0xA3	0x0	SPI0 Data	274

13. Interrupt Handler

The C8051F99x-C8051F98x microcontroller family includes an extended interrupt system supporting multiple interrupt sources and two priority levels. The allocation of interrupt sources between on-chip peripherals and external input pins varies according to the specific version of the device. Refer to Table 13.1, "Interrupt Summary," on page 140 for a detailed listing of all interrupt sources supported by the device. Refer to the data sheet section associated with a particular on-chip peripheral for information regarding valid interrupt conditions for the peripheral and the behavior of its interrupt-pending flag(s).

Each interrupt source has one or more associated interrupt-pending flag(s) located in an SFR or an indirect register. When a peripheral or external source meets a valid interrupt condition, the associated interrupt-pending flag is set to logic 1. If both global interrupts and the specific interrupt source is enabled, a CPU interrupt request is generated when the interrupt-pending flag is set.

As soon as execution of the current instruction is complete, the CPU generates an LCALL to a predetermined address to begin execution of an interrupt service routine (ISR). Each ISR must end with an RETI instruction, which returns program execution to the next instruction that would have been executed if the interrupt request had not occurred. If interrupts are not enabled, the interrupt-pending flag is ignored by the hardware and program execution continues as normal. (The interrupt-pending flag is set to logic 1 regardless of the interrupt's enable/disable state.)

Some interrupt-pending flags are automatically cleared by hardware when the CPU vectors to the ISR. However, most are not cleared by the hardware and must be cleared by software before returning from the ISR. If an interrupt-pending flag remains set after the CPU completes the return-from-interrupt (RETI) instruction, a new interrupt request will be generated immediately and the CPU will re-enter the ISR after the completion of the next instruction.

13.1. Enabling Interrupt Sources

Each interrupt source can be individually enabled or disabled through the use of an associated interrupt enable bit in the Interrupt Enable and Extended Interrupt Enable SFRs. However, interrupts must first be globally enabled by setting the EA bit (IE.7) to logic 1 before the individual interrupt enables are recognized. Setting the EA bit to logic 0 disables all interrupt sources regardless of the individual interrupt-enable settings. Note that interrupts which occur when the EA bit is set to logic 0 will be held in a pending state, and will not be serviced until the EA bit is set back to logic 1.

13.2. MCU Interrupt Sources and Vectors

The CPU services interrupts by generating an LCALL to a predetermined address (the interrupt vector address) to begin execution of an interrupt service routine (ISR). The interrupt vector addresses associated with each interrupt source are listed in Table 13.1 on page 140. Software should ensure that the interrupt vector for each enabled interrupt source contains a valid interrupt service routine.

Software can simulate an interrupt by setting any interrupt-pending flag to logic 1. If interrupts are enabled for the flag, an interrupt request will be generated and the CPU will vector to the ISR address associated with the interrupt-pending flag.

SFR Definition 16.4. CRC0AUTO: CRC0 Automatic Control

Bit	7	6	5	4	3	2	1	0	
Name	AUTOEN	CRCDONE		CRC0ST[4:0]					
Туре	R/W	R	R	R/W					
Reset	0	1	0	0	0	0	0	0	

SFR Page = All; SFR Address = 0x9E

Bit	Name	Function
7	AUTOEN	Automatic CRC Calculation Enable.
		When AUTOEN is set to 1, any write to CRC0CN will initiate an automatic CRC starting at Flash sector CRC0ST and continuing for CRC0CNT sectors.
6	CRCDONE	CRCDONE Automatic CRC Calculation Complete.
		Set to 0 when a CRC calculation is in progress. Code execution is stopped during a CRC calculation; therefore, reads from firmware will always return 1.
5	Unused	Read = 0b; Write = Don't Care.
4:0	CRC0ST[4:0]	Automatic CRC Calculation Starting Block.
		These bits specify the Flash block to start the automatic CRC calculation. The starting address of the first Flash block included in the automatic CRC calculation is CRC0ST x Block Size. Note: The block size is 256 bytes.

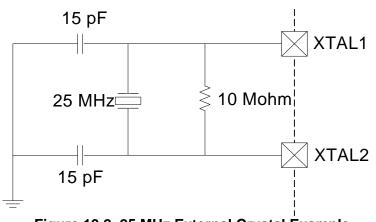


Figure 19.2. 25 MHz External Crystal Example

Important Note on External Crystals: Crystal oscillator circuits are quite sensitive to PCB layout. The crystal should be placed as close as possible to the XTAL pins on the device. The traces should be as short as possible and shielded with ground plane from any other traces which could introduce noise or interference.

When using an external crystal, the external oscillator drive circuit must be configured by software for *Crystal Oscillator Mode* or *Crystal Oscillator Mode with divide by 2 stage*. The divide by 2 stage ensures that the clock derived from the external oscillator has a duty cycle of 50%. The External Oscillator Frequency Control value (XFCN) must also be specified based on the crystal frequency. The selection should be based on Table 19.1. For example, a 25 MHz crystal requires an XFCN setting of 111b.

XFCN	Crystal Frequency	Bias Current	Typical Supply Current (VDD = 2.4 V)
000	f ≤ 20 kHz	0.5 µA	3.0 μA, f = 32.768 kHz
001	20 kHz < f ≤ 58 kHz	1.5 µA	4.8 μA, f = 32.768 kHz
010	58 kHz < f ≤ 155 kHz	4.8 µA	9.6 μA, f = 32.768 kHz
011	155 kHz < f ≤ 415 kHz	14 µA	28 µA, f = 400 kHz
100	415 kHz $<$ f \leq 1.1 MHz	40 µA	71 µA, f = 400 kHz
101	$1.1 \text{ MHz} < f \le 3.1 \text{ MHz}$	120 µA	193 µA, f = 400 kHz
110	$3.1 \text{ MHz} < f \le 8.2 \text{ MHz}$	550 µA	940 µA, f = 8 MHz
111	8.2 MHz < f ≤ 25 MHz	2.6 mA	3.9 mA, f = 25 MHz

 Table 19.1. Recommended XFCN Settings for Crystal Mode

When the crystal oscillator is first enabled, the external oscillator valid detector allows software to determine when the external system clock has stabilized. Switching to the external oscillator before the crystal oscillator has stabilized can result in unpredictable behavior. The recommended procedure for starting the crystal is as follows:

- 1. Configure XTAL1 and XTAL2 for analog I/O and disable the digital output drivers.
- 2. Configure and enable the external oscillator.
- 3. Poll for XTLVLD \geq 1.
- 4. Switch the system clock to the external oscillator.

Mode	Setting	Power Consumption
Crystal	Bias Double Off, AGC On	Lowest 600 nA
	Bias Double Off, AGC Off	Low 800 nA
	Bias Double On, AGC On	High
	Bias Double On, AGC Off	Highest
Self-Oscillate	Bias Double Off	Low
	Bias Double On	High

Table 20.3. SmaRTClock Bias Settings

Registers XBR0, XBR1, and XBR2 are used to assign the digital I/O resources to the physical I/O Port pins. Note that when the SMBus is selected, the Crossbar assigns both pins associated with the SMBus (SDA and SCL); when either UART is selected, the Crossbar assigns both pins associated with the UART (TX and RX). UART0 pin assignments are fixed for bootloading purposes: UART TX0 is always assigned to P0.4; UART RX0 is always assigned to P0.5. Standard Port I/Os appear contiguously after the prioritized functions have been assigned.

Notes:

- 1. The Crossbar must be enabled (XBARE = 1) before any Port pin is used as a digital output. Port output drivers are disabled while the Crossbar is disabled.
- 2. When SMBus is selected in the Crossbar, the pins associated with SDA and SCL will automatically be forced into open-drain output mode regardless of the PnMDOUT setting.
- 3. SPI0 can be operated in either 3-wire or 4-wire modes, depending on the state of the NSSMD1-NSSMD0 bits in register SPI0CN. The NSS signal is only routed to a Port pin when 4-wire mode is selected. When SPI0 is selected in the Crossbar, the SPI0 mode (3-wire or 4-wire) will affect the pinout of all digital functions lower in priority than SPI0.
- 4. For given XBRn, PnSKIP, and SPInCN register settings, one can determine the I/O pin-out of the device using Figure 21.3.
- 5. On 20-pin devices, P1.4 should be skipped in the Crossbar. It is not available as a device pin.

SFR Definition 21.8. P0: Port0

Bit	7	6	5	4	3	2	1	0		
Name	P0[7:0]									
Туре		R/W								
Reset	1	1 1								

SFR Page = All; SFR Address = 0x80; Bit-Addressable

Bit	Name	Description	Write	Read
7:0	P0[7:0]	Port 0 Data. Sets the Port latch logic value or reads the Port pin logic state in Port cells con- figured for digital I/O.	0: Set output latch to logic LOW. 1: Set output latch to logic HIGH.	LOW.

SFR Definition 21.9. P0SKIP: Port0 Skip

Bit	7	6	5	4	3	2	1	0		
Name	P0SKIP[7:0]									
Туре		R/W								
Reset	0	0 0 0 0 0 0 0 0								

SFR Page= 0x0; SFR Address = 0xD4

Bit	Name	Function
7:0	P0SKIP[7:0]	Port 0 Crossbar Skip Enable Bits.
		 These bits select Port 0 pins to be skipped by the Crossbar Decoder. Port pins used for analog, special functions or GPIO should be skipped by the Crossbar. 0: Corresponding P0.n pin is not skipped by the Crossbar. 1: Corresponding P0.n pin is skipped by the Crossbar.

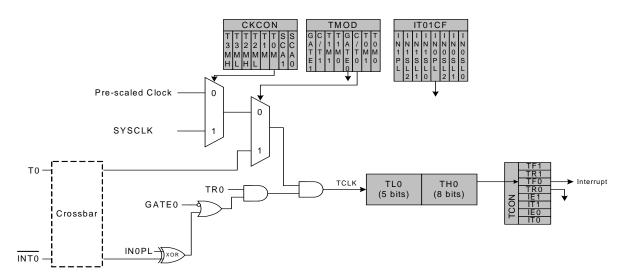


Figure 25.1. T0 Mode 0 Block Diagram

25.1.2. Mode 1: 16-bit Counter/Timer

Mode 1 operation is the same as Mode 0, except that the counter/timer registers use all 16 bits. The counter/timers are enabled and configured in Mode 1 in the same manner as for Mode 0.

SFR Definition 25.6. TH0: Timer 0 High Byte

		T						
Bit	7	6	5	4	3	2	1	0
Name TH0[7:0]								
Type R/W								
Rese	et 0	0	0	0	0	0	0	0
SFR F	Page = 0x0; SI	- R Address =	= 0x8C					
Bit	Name	Function						
7:0	TH0[7:0]	Timer 0 Hig	jh Byte.					

SFR Definition 25.7. TH1: Timer 1 High Byte

Bit	7	6	5	4	3	2	1	0			
Nam	e	TH1[7:0]									
Туре	Type R/W										
Rese	et O	0	0	0	0	0	0	0			
SFR F	Page = 0x0; SI	R Address :	= 0x8D								
Bit	Name	Name Function									
7:0	TH1[7:0]	Timer 1 High Byte.									
		The TH1 register is the high byte of the 16-bit Timer 1.									

25.2. Timer 2

Timer 2 is a 16-bit timer formed by two 8-bit SFRs: TMR2L (low byte) and TMR2H (high byte). Timer 2 may operate in 16-bit auto-reload mode or (split) 8-bit auto-reload mode. The T2SPLIT bit (TMR2CN.3) defines the Timer 2 operation mode. Timer 2 can also be used in Capture Mode to measure the SmaRTClock or the Comparator 0 period with respect to another oscillator. The ability to measure the Comparator 0 period with respect to the system clock is makes using Touch Sense Switches very easy.

Timer 2 may be clocked by the system clock, the system clock divided by 12, SmaRTClock divided by 8, or Comparator 0 output. Note that the SmaRTClock divided by 8 and Comparator 0 output is synchronized with the system clock.

25.2.1. 16-bit Timer with Auto-Reload

When T2SPLIT (TMR2CN.3) is zero, Timer 2 operates as a 16-bit timer with auto-reload. Timer 2 can be clocked by SYSCLK, SYSCLK divided by 12, SmaRTClock divided by 8, or Comparator 0 output. As the 16-bit timer register increments and overflows from 0xFFFF to 0x0000, the 16-bit value in the Timer 2 reload registers (TMR2RLH and TMR2RLL) is loaded into the Timer 2 register as shown in Figure 25.4, and the Timer 2 High Byte Overflow Flag (TMR2CN.7) is set. If Timer 2 interrupts are enabled (if IE.5 is set), an interrupt will be generated on each Timer 2 overflow. Additionally, if Timer 2 interrupts are enabled and the TF2LEN bit is set (TMR2CN.5), an interrupt will be generated each time the lower 8 bits (TMR2L) overflow from 0xFF to 0x00.

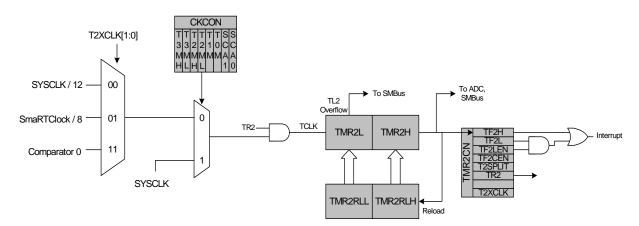


Figure 25.4. Timer 2 16-Bit Mode Block Diagram

25.3. Timer 3

Timer 3 is a 16-bit timer formed by two 8-bit SFRs: TMR3L (low byte) and TMR3H (high byte). Timer 3 may operate in 16-bit auto-reload mode or (split) 8-bit auto-reload mode. The T3SPLIT bit (TMR2CN.3) defines the Timer 3 operation mode. Timer 3 can also be used in Capture Mode to measure the external oscillator source or the SmaRTClock oscillator period with respect to another oscillator.

Timer 3 may be clocked by the system clock, the system clock divided by 12, external oscillator source divided by 8, or the SmaRTClock oscillator. The external oscillator source divided by 8 and SmaRTClock oscillator is synchronized with the system clock.

25.3.1. 16-bit Timer with Auto-Reload

When T3SPLIT (TMR3CN.3) is zero, Timer 3 operates as a 16-bit timer with auto-reload. Timer 3 can be clocked by SYSCLK, SYSCLK divided by 12, external oscillator clock source divided by 8, or SmaRTClock oscillator. As the 16-bit timer register increments and overflows from 0xFFFF to 0x0000, the 16-bit value in the Timer 3 reload registers (TMR3RLH and TMR3RLL) is loaded into the Timer 3 register as shown in Figure 25.7, and the Timer 3 High Byte Overflow Flag (TMR3CN.7) is set. If Timer 3 interrupts are enabled (if EIE1.7 is set), an interrupt will be generated on each Timer 3 overflow. Additionally, if Timer 3 interrupts are enabled and the TF3LEN bit is set (TMR3CN.5), an interrupt will be generated each time the lower 8 bits (TMR3L) overflow from 0xFF to 0x00.

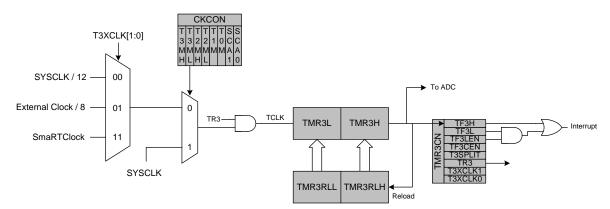


Figure 25.7. Timer 3 16-Bit Mode Block Diagram

