E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	CIP-51 8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	17
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-SSOP (0.154", 3.90mm Width)
Supplier Device Package	24-QSOP
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f988-gu

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

OF 0.4.40 hit Time an with Auto Dalaged	004
	294
25.3.2.8-Bit Timers with Auto-Reload	295
25.3.3.SmaRTClock/External Oscillator Capture Mode	296
26. Programmable Counter Array	300
26.1.PCA Counter/Timer	301
26.2.PCA0 Interrupt Sources	302
26.3.Capture/Compare Modules	303
26.3.1.Edge-triggered Capture Mode	304
26.3.2.Software Timer (Compare) Mode	305
26.3.3.High-Speed Output Mode	306
26.3.4. Frequency Output Mode	306
26.3.5. 8-bit, 9-bit, 10-bit and 11-bit Pulse Width Modulator Modes	307
26.3.6. 16-Bit Pulse Width Modulator Mode	310
26.4.Watchdog Timer Mode	311
26.4.1.Watchdog Timer Operation	311
26.4.2.Watchdog Timer Usage	312
26.5.Register Descriptions for PCA0	313
27.C2 Interface	319
27.1.C2 Interface Registers	319
27.2.C2 Pin Sharing	322
Document Change List	323
Contact Information	325

Figure 5.10 Voltage Reference Functional Block Diagram	00
Figure 3.10. Voltage Reference Functional Block Diagram	00
Figure 7.1. Comparator Unctional Block Diagram	93
Figure 7.2. Comparator Hysteresis Piot	95
Figure 7.3. CP0 Multiplexer Block Diagram	98
Figure 8.1. CS0 Block Diagram	100
Figure 8.2. Auto-Scan Example	103
Figure 8.3. CS0 Multiplexer Block Diagram	117
Figure 9.1. CIP-51 Block Diagram	119
Figure 10.1. C8051F99x-C8051F98x Memory Map	128
Figure 10.2. Flash Program Memory Map	129
Figure 14.1. Flash Program Memory Map (8 kB and smaller devices)	152
Figure 15.1. C8051F99x-C8051F98x Power Distribution	163
Figure 16.1. CRC0 Block Diagram	172
Figure 16.2. Bit Reverse Register	179
Figure 18.1. Reset Sources	181
Figure 18.2. Power-Fail Reset Timing Diagram	182
Figure 19.1. Clocking Sources Block Diagram	188
Figure 19.2. 25 MHz External Crystal Example	190
Figure 20.1. SmaRTClock Block Diagram	197
Figure 20.2. Interpreting Oscillation Robustness (Duty Cycle) Test Results	206
Figure 21.1. Port I/O Functional Block Diagram	215
Figure 21.2. Port I/O Cell Block Diagram	216
Figure 21.3. Peripheral Availability on Port I/O Pins	219
Figure 21.4. Crossbar Priority Decoder in Example Configuration (No Pins Skippe	ed).
220	,
Figure 21.5. Crossbar Priority Decoder in Example Configuration (4 Pins Skipped	3)
· · · · · · · · · · · · · · · · · · ·	220
Figure 22.1. SMBus Block Diagram	235
Figure 22.2. Typical SMBus Configuration	236
Figure 22.3. SMBus Transaction	237
Figure 22.4 Typical SMBus SCI Generation	240
Figure 22.5. Typical Master Write Sequence	249
Figure 22.6. Typical Master Read Sequence	250
Figure 22.7. Typical Slave Write Sequence	251
Figure 22.8. Typical Slave Read Sequence	252
Figure 23.1. UARTO Block Diagram	257
Figure 23.2. UARTO Baud Rate Logic	258
Figure 23.3. UART Interconnect Diagram	259
Figure 23.4 8-Bit UART Timing Diagram	259
Figure 23.5. 9-Bit UART Timing Diagram	260
Figure 23.6 UART Multi-Processor Mode Interconnect Diagram	261
Figure 24.1 SPI Block Diagram	265
Figure 24.2 Multiple-Master Mode Connection Diagram	267
Figure 24.3. 3-Wire Single Master and 3-Wire Single Slave Mode Connection Diag	iram
267	num

1. System Overview

C8051F99x-C8051F98x devices are fully integrated mixed-signal system-on-a-chip MCUs. Highlighted features are listed below. Refer to Table 2.1 for specific product feature selection and part ordering numbers.

- Ultra low power consumption in active and sleep modes.
- High-speed pipelined 8051-compatible microcontroller core (up to 25 MIPS)
- In-system, full-speed, non-intrusive debug interface (on-chip)
- 10-bit 300 ksps or 12-bit 75 ksps single-ended ADC with analog multiplexer
- 6-bit programmable current reference (resolution can be increased with PWM)
- Precision programmable 24.5 MHz internal oscillator with spread spectrum technology.
- 8 kB, 4 kB, or 2 kB of on-chip Flash memory
- 512 bytes of on-chip RAM
- SMBus/I²C, Enhanced UART, and Enhanced SPI serial interfaces implemented in hardware
- Four general-purpose 16-bit timers
- Programmable counter/timer array (PCA) with three capture/compare modules and watchdog timer function
- On-chip power-on reset, V_{DD} monitor, and temperature sensor
- One on-chip voltage comparator
- Up to 14 Capacitive Touch Inputs
- Up to 17 Port I/O

With on-chip power-on reset, V_{DD} monitor, watchdog timer, and clock oscillator, the C8051F99x-C8051F98x devices are truly stand-alone system-on-a-chip solutions. The Flash memory can be reprogrammed even in-circuit, providing non-volatile data storage, and also allowing field upgrades of the 8051 firmware. User software has complete control of all peripherals, and may individually shut down any or all peripherals for power savings.

The on-chip Silicon Labs 2-Wire (C2) Development Interface allows non-intrusive (uses no on-chip resources), full speed, in-circuit debugging using the production MCU installed in the final application. This debug logic supports inspection and modification of memory and registers, setting breakpoints, single stepping, run and halt commands. All analog and digital peripherals are fully functional while debugging using C2. The two C2 interface pins can be shared with user functions, allowing in-system debugging without occupying package pins.

Each device is specified for 1.8 to 3.6 V operation over the industrial temperature range (-40 to +85 °C). The Port I/O and RST pins are powered from the supply voltage. The C8051F99x-C8051F98x devices are available in 20-pin or 24-pin QFN or 24-pin QSOP packages. All package options are lead-free and RoHS compliant. See Table 2.1 for ordering information. Block diagrams are included in Figure 1.1 through Figure 1.9.

1.2. Port Input/Output

Digital and analog resources are available through 16 or 17 I/O pins. Port pins are organized as three bytewide ports. Port pins P0.0–P1.7 can be defined as digital or analog I/O. Digital I/O pins can be assigned to one of the internal digital resources or used as general purpose I/O (GPIO). Analog I/O pins are used by the internal analog resources. P2.7 can be used as GPIO and is shared with the C2 Interface Data signal (C2D). See Section "27. C2 Interface" on page 319 for more details.

The designer has complete control over which digital and analog functions are assigned to individual Port pins, limited only by the number of physical I/O pins. This resource assignment flexibility is achieved through the use of a Priority Crossbar Decoder. See Section "21.3. Priority Crossbar Decoder" on page 219 for more information on the Crossbar.

All Port I/Os can tolerate voltages up to the supply rail when used as digital inputs or open-drain outputs. For Port I/Os configured as push-pull outputs, current is sourced from the VDD supply. Port I/Os used for analog functions can operate up to the VDD supply voltage. See Section "21.1. Port I/O Modes of Operation" on page 216 for more information on Port I/O operating modes and the electrical specifications chapter for detailed electrical specifications.

Figure 1.14. Port I/O Functional Block Diagram

5.2. Modes of Operation

ADC0 has a maximum conversion speed of 300 ksps in 10-bit mode. The ADC0 conversion clock (SARCLK) is a divided version of the system clock when burst mode is disabled (BURSTEN = 0), or a divided version of the low power oscillator when burst mode is enabled (BURSEN = 1). The clock divide value is determined by the AD0SC bits in the ADC0CF register.

5.2.1. Starting a Conversion

A conversion can be initiated in one of five ways, depending on the programmed states of the ADC0 Start of Conversion Mode bits (AD0CM2–0) in register ADC0CN. Conversions may be initiated by one of the following:

- 1. Writing a 1 to the AD0BUSY bit of register ADC0CN
- 2. A Timer 0 overflow (i.e., timed continuous conversions)
- 3. A Timer 2 overflow
- 4. A Timer 3 overflow
- 5. A rising edge on the CNVSTR input signal (pin P0.6)

Writing a 1 to AD0BUSY provides software control of ADC0 whereby conversions are performed "ondemand". During conversion, the AD0BUSY bit is set to logic 1 and reset to logic 0 when the conversion is complete. The falling edge of AD0BUSY triggers an interrupt (when enabled) and sets the ADC0 interrupt flag (AD0INT). When polling for ADC conversion completions, the ADC0 interrupt flag (AD0INT) should be used. Converted data is available in the ADC0 data registers, ADC0H:ADC0L, when bit AD0INT is logic 1. When Timer 2 or Timer 3 overflows are used as the conversion source, Low Byte overflows are used if Timer 2/3 is in 8-bit mode; High byte overflows are used if Timer 2/3 is in 16-bit mode. See "25. Timers" on page 278 for timer configuration.

Important Note About Using CNVSTR: The CNVSTR input pin also functions as Port pin P0.6. When the CNVSTR input is used as the ADC0 conversion source, Port pin P0.6 should be skipped by the Digital Crossbar. To configure the Crossbar to skip P0.6, set to 1 Bit 6 in register P0SKIP. See "21. Port Input/Output" on page 215 for details on Port I/O configuration.

SFR Definition 5.12. ADC0MX: ADC0 Input Channel Select

Bit	7	6	5	4	3	2	1	0
Name						AD0MX		
Туре	R	R	R	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	1	1	1	1	1

SFR Page = 0x0; SFR Address = 0x96

Bit	Name	Function							
7:5	Unused	Read = 000b; Write = Don't Care.							
4:0	AD0MX	AMUX0 Posi	tive Input Selection.						
		Selects the po	ositive input channel for ADC	0.					
		00000:	Reserved.	10000:	Reserved.				
		00001:	P0.1	10001:	Reserved.				
		00010:	P0.2	10010:	Reserved.				
		00011:	P0.3	10011:	Reserved.				
		00100:	P0.4	10100:	Reserved.				
		00101:	P0.5	10101:	Reserved.				
		00110:	P0.6	10110:	Reserved.				
		00111:	P0.7	10111:	Reserved.				
		01000:	Reserved.	11000:	Reserved.				
		01001:	Reserved.	11001:	Reserved.				
		01010:	P1.2	11010:	Reserved.				
		01011:	P1.3	11011:	Temperature Sensor				
		01100:	P1.4 (only available on 24-pin devices)	11100:	V _{DD} Supply Voltage				
		01101:	Reserved.	11101:	Digital Supply Voltage				
		01110:	Reserved.		(VREG0 Output, 1.7 V Typical)				
		01111:	Reserved.	11110:	V _{DD} Supply Voltage				
				11111:	Ground				

8.8. Automatic Scanning (Method 1—CS0SMEN = 0)

CS0 can be configured to automatically scan a sequence of contiguous CS0 input channels by configuring and enabling auto-scan. Using auto-scan with the CS0 comparator interrupt enabled allows a system to detect a change in measured capacitance without requiring any additional dedicated MCU resources.

Auto-scan is enabled by setting the CS0 start-of-conversion bits (CS0CF6:4) to 111b. After enabling autoscan, the starting and ending channels should be set to appropriate values in CS0SS and CS0SE, respectively. Writing to CS0SS when auto-scan is enabled will cause the value written to CS0SS to be copied into CS0MX. After being enabled, writing a 1 to CS0BUSY will start auto-scan conversions. When auto-scan completes the number of conversions defined in the CS0 accumulator bits (CS0CF1:0), autoscan configures CS0MX to the next sequential port pin configured as an analog input and begins a conversion on that channel. All other pins between CS0SS and CS0SE which are set as analog inputs are grounded during the conversion. This scan sequence continues until CS0MX reaches the ending input channel value defined in CS0SE. After one or more conversions have been taken at this channel, autoscan configures CS0MX back to the starting input channel. For an example system configured to use autoscan, please see Figure "8.2 Auto-Scan Example" on page 103.

Note: Auto-scan attempts one conversion on a CS0MX channel regardless of whether that channel's port pin has been configured as an analog input. Auto-scan will also complete the current rotation when the device is halted for debugging.

If auto-scan is enabled when the device enters suspend mode, auto-scan will remain enabled and running. This feature allows the device to wake from suspend through CS0 greater-than comparator event on any configured capacitive sense input included in the auto-scan sequence of inputs.

Figure 8.2. Auto-Scan Example

8.12. CS0 Pin Monitor

The CS0 module provides accurate conversions in all operating modes of the CPU, peripherals and I/O ports. Pin monitoring circuits are provided to improve interference immunity from high-current output pin switching. The CS0 Pin Monitor register (CS0PM, SFR Definition 8.14) controls the operation of these pin monitors.

Conversions in the CS0 module are immune to any change on digital inputs and immune to most output switching. Even high-speed serial data transmission will not affect CS0 operation as long as the output load is limited. Output changes that switch large loads such as LEDs and heavily-loaded communications lines can affect conversion accuracy. For this reason, the CS0 module includes pin monitoring circuits that will, if enabled, automatically adjust conversion timing if necessary to eliminate any effect from high-current output pin switching.

The pin monitor enable bit should be set for any output signal that is expected to drive a large load.

Example: The SMBus in a system is heavily loaded with multiple slaves and a long PCB route. Set the SMBus pin monitor enable, SMBPM = 1.

Example: Timer2 controls an LED on Port 1, pin 3 to provide variable dimming. Set the Port SFR write monitor enable, PIOPM = 1.

Example: The SPI bus is used to communicate to a nearby host. The pin monitor is not needed because the output is not heavily loaded, SPIPM remains = 0, the default reset state.

Pin monitors should not be enabled unless they are required. The pin monitor works by repeating any portion of a conversion that may have been corrupted by a change on an output pin. Setting pin monitor enables bits will slow CS0 conversions.

The frequency of CS0 retry operations can be limited by setting the CSPMMD bits. In the default (reset) state, all converter retry requests will be performed. This is the recommended setting for all applications. The number of retries per conversion can be limited to either two or four retries by changing CSPMMD. Limiting the number of retries per conversion ensures that even in circumstances where extremely frequent high-power output switching occurs, conversions will be completed, though there may be some loss of accuracy due to switching noise.

Activity of the pin monitor circuit can be detected by reading the Pin Monitor Event bit, CS0PME, in register CS0CN. This bit will be set if any CS0 converter retries have occurred. It remains set until cleared by software or a device reset.

8.13. Adjusting CS0 For Special Situations

There are several configuration options in the CS0 module designed to modify the operation of the circuit and address special situations. In particular, any circuit with more than 500 ohms of series impedance between the sensor and the device pin may require adjustments for optimal performance. Typical applications which may require adjustments include:

- Touch panel sensors fabricated using a resistive conductor such as indium-tin-oxide (ITO).
- Circuits using a high-value series resistor to isolate the sensor element for high ESD protection.

Most systems will require no fine tuning, and the default settings for CS0DT, CS0DR, CS0IA, CS0RP and CS0LP should be used.

SFR Definition 8.15. CS0MX: Capacitive Sense Mux Channel Select

Bit	7	6	5	4	3	2	1	0
Name	Reserved	Reserved	Reserved	Reserved	CS0MX[3:0]			
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Page = 0x0; SFR Address = 0xAB

Bit	Name		Description							
7:5	Reserved	Read = 0000b	Read = 0000b; Write = 0000b.							
4:0	CS0MX[4:0]	CS0 Mux Channel Select.								
		Selects one of	the 14 input channels for Capacitive Sense conversion.							
		Value	/alue Channel							
		0000	P0.0							
		0001	P0.1							
		0010	P0.2							
		0011	P0.3							
		0100	P0.4							
		0101	P0.5							
		0110	P0.6							
		0111	P0.7							
		1000	P1.0							
		1001	P1.1							
		1010	P1.2							
		1011	P1.3							
		1100	P1.4 (24-pin packages only)							
		1101	P1.5							
		1110	Reserved							
		1111	Reserved							

11. On-Chip XRAM

The C8051F99x-C8051F98x MCUs include on-chip RAM mapped into the external data memory space (XRAM). The external memory space may be accessed using the external move instruction (MOVX) with the target address specified in either the data pointer (DPTR), or with the target address low byte in R0 or R1. On C8051F99x-C8051F98x devices, the target address high byte is a don't care.

When using the MOVX instruction to access on-chip RAM, no additional initialization is required and the MOVX instruction execution time is as specified in the CIP-51 chapter.

Important Note: MOVX write operations can be configured to target Flash memory, instead of XRAM. See Section "14. Flash Memory" on page 150 for more details. The MOVX instruction accesses XRAM by default.

Important Note: On device reset or upon waking up from Sleep mode, address 0x0000 of external memory may be overwritten by an indeterminate value. The indeterminate value is 0x00 in most situations. A dummy variable should be placed at address 0x0000 in external memory to ensure that the application firmware does not store any data that needs to be retained during sleep or reset at this memory location.

11.1. Accessing XRAM

The XRAM memory space is accessed using the MOVX instruction. The MOVX instruction has two forms, both of which use an indirect addressing method. The first method uses the Data Pointer, DPTR, a 16-bit register which contains the effective address of the XRAM location to be read from or written to. The second method uses R0 or R1 to generate the effective XRAM address. Examples of both of these methods are given below.

11.1.1. 16-Bit MOVX Example

The 16-bit form of the MOVX instruction accesses the memory location pointed to by the contents of the DPTR register. The following series of instructions reads the value of the byte at address 0x1234 into the accumulator A:

MOV	DPTR, #0034h	;	load J	DPTR with	n 10	6-bit a	address	s to	read	(0x0034)
MOVX	A, @DPTR	;	load (contents	of	0x0034	4 into	acc	umulat	or A

The above example uses the 16-bit immediate MOV instruction to set the contents of DPTR. Alternately, the DPTR can be accessed through the SFR registers DPH, which contains the upper 8-bits of DPTR, and DPL, which contains the lower 8-bits of DPTR.

11.1.2. 8-Bit MOVX Example

The 8-bit form of the MOVX instruction uses the contents of R0 or R1 to determine the 8-bits of the effective address to be accessed. The following series of instructions read the contents of the byte at address 0x0034 into the accumulator A.

MOV	R0, #34h	;	load	low byte	of	address	into	> R0 (or R1)	
MOVX	a, @R0	;	load	contents	of	0x0034	into	accumulator .	A

13.5. Interrupt Register Descriptions

The SFRs used to enable the interrupt sources and set their priority level are described in the following register descriptions. Refer to the data sheet section associated with a particular on-chip peripheral for information regarding valid interrupt conditions for the peripheral and the behavior of its interrupt-pending flag(s).

SFR Definition 14.4. FLKEY: Flash Lock and Key

Bit	7	6	6 5 4 3 2 1 0									
Nam	e	FLKEY[7:0]										
Туре	9	R/W										
Rese	et O	0 0 0 0 0 0 0										
SFR F	Page = All; SF	R Address =	0xB7	•	•	•	•					
Bit	Name				Function							
7:0	FLKEY[7:0]	Flash Lock	and Key Re	gister.								
		Write:										
		This register	provides a l	ock and key	function for	Flash erasu	res and write	s. Flash				
		writes and e	rases are en	abled by wri	ting 0xA5 fol	lowed by 0x	F1 to the FLI	KEY regis-				
		ter. Flash wr	ites and eras	Ses are autor	matically disa	abled after th	if a Elach write	or erase is				
		operation is	attempted w	hile these or	perionneu in	disabled th	n a riash will l	he nerma-				
		nently locked	d from writes	or erasures	until the nex	kt device res	et. If an appl	ication				
		never writes	to Flash, it c	an intentiona	ally lock the I	-lash by writ	ing a non-0x	A5 value to				
		FLKEY from	software.		•	·	-					
		Read:										
		When read,	bits 1–0 indi	cate the curr	ent Flash loo	ck state.						
		00: Flash is write/erase locked.										
		01: The first	key code ha	s been writte	en (0xA5).							
		10: Flash is	unlocked (wi	rites/erases	allowed).							
		11: Flash wri	tes/erases d	lisabled until	the next res	set.						

19.3.2. External RC Mode

If an RC network is used as the external oscillator, the circuit should be configured as shown in Figure 19.1, Option 2. The RC network should be added to XTAL2, and XTAL2 should be configured for analog I/O with the digital output drivers disabled. XTAL1 is not affected in RC mode.

The capacitor should be no greater than 100 pF; however for very small capacitors, the total capacitance may be dominated by parasitic capacitance in the PCB layout. The resistor should be no smaller than 10 k Ω . The oscillation frequency can be determined by the following equation:

$$f = \frac{1.23 \times 10^3}{\text{R} \times \text{C}}$$

where

f = frequency of clock in MHzR = pull-up resistor value in k Ω V_{DD} = power supply voltage in VoltsC = capacitor value on the XTAL2 pin in pF

To determine the required External Oscillator Frequency Control value (XFCN) in the OSCXCN Register, first select the RC network value to produce the desired frequency of oscillation. For example, if the frequency desired is 100 kHz, let R = 246 k Ω and C = 50 pF:

$$f = \frac{1.23 \times 10^3}{\text{R} \times \text{C}} = \frac{1.23 \times 10^3}{246 \times 50} = 100 \text{ kHz}$$

where

 $\begin{array}{ll} f = \mbox{frequency of clock in MHz} & R = \mbox{pull-up resistor value in } k\Omega \\ V_{DD} = \mbox{power supply voltage in Volts} & C = \mbox{capacitor value on the XTAL2 pin in pF} \end{array}$

Referencing Table 19.2, the recommended XFCN setting is 010.

XFCN	Approximate Frequency Range (RC and C Mode)	K Factor (C Mode)	Typical Supply Current/ Actual Measured Frequency (C Mode, VDD = 2.4 V)
000	f ≤ 25 kHz	K Factor = 0.87	3.0 µA, f = 11 kHz, C = 33 pF
001	25 kHz < f ≤ 50 kHz	K Factor = 2.6	5.5 µA, f = 33 kHz, C = 33 pF
010	50 kHz < f ≤ 100 kHz	K Factor = 7.7	13 μA, f = 98 kHz, C = 33 pF
011	100 kHz < f ≤ 200 kHz	K Factor = 22	32 µA, f = 270 kHz, C = 33 pF
100	200 kHz < f ≤ 400 kHz	K Factor = 65	82 μA, f = 310 kHz, C = 46 pF
101	400 kHz < f ≤ 800 kHz	K Factor = 180	242 µA, f = 890 kHz, C = 46 pF
110	800 kHz < f ≤ 1.6 MHz	K Factor = 664	1.0 mA, f = 2.0 MHz, C = 46 pF
111	$1.6 \text{ MHz} < f \le 3.2 \text{ MHz}$	K Factor = 1590	4.6 mA, f = 6.8 MHz, C = 46 pF

Table 19.2. Recommende	ed XFCN Settings	for RC and C modes
------------------------	------------------	--------------------

When the RC oscillator is first enabled, the external oscillator valid detector allows software to determine when oscillation has stabilized. The recommended procedure for starting the RC oscillator is as follows:

- 1. Configure XTAL2 for analog I/O and disable the digital output drivers.
- 2. Configure and enable the external oscillator.
- 3. Poll for XTLVLD \geq 1.
- 4. Switch the system clock to the external oscillator.

	Valu	es I	Rea	d			Va V	lues Nrit	sto e	tus ected
Mode	Status Vector	Status Vector ACKRQ ARBLOST ACK		ACK	Current SMbus State	Typical Response Options	STA	STO	ACK	Next Sta Vector Exp
	1110	0	0	х	A master START was gener- ated.	Load slave address + R/W into SMB0DAT.	0	0	х	1100
		0	0	0	A master data or address byte	Set STA to restart transfer.	1	0	Х	1110
ŗ		0	0	0	received.	Abort transfer.	0	1	Х	—
nsmitte						Load next data byte into SMB0- DAT.	0	0	х	1100
Trar					A master data or address byte was transmitted; ACK received.	End transfer with STOP.	0	1	Х	—
laster	1100	0	0	1		End transfer with STOP and start another transfer.	1	1	х	
≥		Ŭ	Ŭ			Send repeated START.	1	0	Х	1110
						Switch to Master Receiver Mode (clear SI without writing new data to SMB0DAT). Set ACK for initial data byte.	0	0	1	1000
) 1		Set ACK for next data byte; Read SMB0DAT.	0	0	1	1000
		0	0		A master data byte was	Set NACK to indicate next data byte as the last data byte; Read SMB0DAT.	0	0	0	1000
er					Teceived, ACR Sent.	Initiate repeated START.	1	0	0	1110
er Receiv	1000					Switch to Master Transmitter Mode (write to SMB0DAT before clearing SI).	0	0	x	1100
aste						Read SMB0DAT; send STOP.	0	1	0	_
Σ					A master data byte was	Read SMB0DAT; Send STOP followed by START.	1	1	0	1110
		0	0	0	received; NACK sent (last	Initiate repeated START.	1	0	0	1110
				0	by(6).	Switch to Master Transmitter Mode (write to SMB0DAT before clearing SI).	0	0	х	1100

Table 22.6. SMBus Status Decoding With Hardware ACK Generation Enabled(EHACK = 1)

24. Enhanced Serial Peripheral Interface (SPI0)

The Enhanced Serial Peripheral Interface (SPI0) provides access to a flexible, full-duplex synchronous serial bus. SPI0 can operate as a master or slave device in both 3-wire or 4-wire modes, and supports multiple masters and slaves on a single SPI bus. The slave-select (NSS) signal can be configured as an input to select SPI0 in slave mode, or to disable Master Mode operation in a multi-master environment, avoiding contention on the SPI bus when more than one master attempts simultaneous data transfers. NSS can also be configured as a chip-select output in master mode, or disabled for 3-wire operation. Additional general purpose port I/O pins can be used to select multiple slave devices in master mode.

Figure 25.1. T0 Mode 0 Block Diagram

25.1.2. Mode 1: 16-bit Counter/Timer

Mode 1 operation is the same as Mode 0, except that the counter/timer registers use all 16 bits. The counter/timers are enabled and configured in Mode 1 in the same manner as for Mode 0.

SFR Definition 25.16. TMR3L: Timer 3 Low Byte

Bit	7	6	5	4	3	2	1	0
Name	TMR3L[7:0]							
Туре	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Page = 0x0; SFR Address = 0x94

Bit	Name	Function
7:0	TMR3L[7:0]	Timer 3 Low Byte.
		In 16-bit mode, the TMR3L register contains the low byte of the 16-bit Timer 3. In 8-bit mode, TMR3L contains the 8-bit low byte timer value.

SFR Definition 25.17. TMR3H Timer 3 High Byte

Bit	7	6	5	4	3	2	1	0
Name	TMR3H[7:0]							
Туре	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Page = 0x0; SFR Address = 0x95

Bit	Name	Function
7:0	TMR3H[7:0]	Timer 3 High Byte.
		In 16-bit mode, the TMR3H register contains the high byte of the 16-bit Timer 3. In 8-bit mode, TMR3H contains the 8-bit high byte timer value.

SFR Definition 26.4. PCA0CPMn: PCA Capture/Compare Mode

Bit	7	6	5	4	3	2	1	0	
Nam	e PWM16	n ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMn	ECCFn	
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Rese	t 0	0	0	0	0	0	0	0	
SFR A	ddress, Pa	ge: PCA0CPM	$0 = 0 \times DA, 0 \times DA$	0; PCA0CP	M1 = 0 x DB,	0x0; PCA0C	$PM2 = 0 \times DC$	C, 0x0	
Bit	Name		Function						
7	PWM16n	16-bit Pulse \	5-bit Pulse Width Modulation Enable.						
		This bit enable	his bit enables 16-bit mode when Pulse Width Modulation mode is enabled.						
		0: 8 to 11-bit F	WM selecte	ed.					
		1: 16-bit PWN	selected.						
6	ECOMn	Comparator I	Function En	able.					
		This bit enable	es the compa	arator function	on for PCA n	nodule n whe	en set to 1.		
5	CAPPn	Capture Posi	tive Functio	on Enable.					
		This bit enable	This bit enables the positive edge capture for PCA module n when set to 1.						
4	CAPNn	Capture Negative Function Enable.							
		This bit enable	es the negat	ive edge cap	oture for PCA	A module n w	when set to 1		
3	MATn	Match Function Enable.							
		This bit enable	es the match	function for	PCA modul	e n when set	t to 1. When	enabled,	
		matches of the	PCA count	er with a mo	dule's captur	e/compare r	egister cause	e the CCFn	
				be set to log					
2	TOGn	Toggle Funct	ion Enable.	6					
		I his bit enable	es the toggle	e function for	PCA modul	e n wnen sei re/compare	t to 1. When register caus	enabled,	
		level on the C	EXn pin to to	oggle. If the	PWMn bit is	also set to lo	ogic 1, the m	odule oper-	
		ates in Freque	ency Output	Mode.					
1	PWMn	Pulse Width I	Modulation	Mode Enab	le.				
		This bit enable	es the PWM	function for	PCA module	n when set	to 1. When e	enabled, a	
		PWM16n is cl	odulated sig eared: 16-bi	nal is output t mode is us	ed if PWM16	n pin. 8 to 11 Sn is set to lo	oic 1 If the	used if TOGn bit is	
		also set, the n	nodule opera	ates in Frequ	iency Output	Mode.	gio 1. il tito		
0	ECCFn	Capture/Compare Flag Interrupt Enable.							
This bit sets the masking of the Capture/Compare Flag (CCFn) inte				interrupt.					
0: Disable CCFn interrupts.									
		1: Enable a C	apture/Comp	pare Flag int	errupt reque	st when CCF	n is set.		
Note:	When the V	VDTE bit is set to	1, the PCA0	CPM5 registe	r cannot be m	odified, and m	nodule 5 acts	as the	
watchdog timer. To change the contents of the PCA0CPM5 register or the function of module Timer must be disabled.					finiouule 5, tr	e watenuog			

SFR Definition 26.7. PCA0CPLn: PCA Capture Module Low Byte

Bit	7	6	5	4	3	2	1	0
Name	PCA0CPn[7:0]							
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Addresses: PCA0CPL0 = 0xFB, PCA0CPL1 = 0xE9, PCA0CPL2 = 0xEB

SFR Pages: PCA0CPL0 = 0x0, PCA0CPL1 = 0x0, PCA0CPL2 = 0x0,

Bit	Name	Function					
7:0	PCA0CPn[7:0]	PCA Capture Module Low Byte.					
		The PCA0CPLn register holds the low byte (LSB) of the 16-bit capture module n. This register address also allows access to the low byte of the corresponding PCA channel's auto-reload value for 9, 10, or 11-bit PWM mode. The ARSEL bit in register PCA0PWM controls which register is accessed.					
Note:	Jote: A write to this register will clear the module's ECOMn bit to a 0.						

SFR Definition 26.8. PCA0CPHn: PCA Capture Module High Byte

Bit	7	6	5	4	3	2	1	0
Name	PCA0CPn[15:8]							
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Addresses: PCA0CPH0 = 0xFC, PCA0CPH1 = 0xEA, PCA0CPH2 = 0xEC

SFR Pages: PCA0CPH0 = 0x0, PCA0CPH1 = 0x0, PCA0CPH2 = 0x0,

Bit	Name	Function				
7:0	PCA0CPn[15:8]	PCA Capture Module High Byte.				
		The PCA0CPHn register holds the high byte (MSB) of the 16-bit capture module n. This register address also allows access to the high byte of the corresponding PCA channel's auto-reload value for 9, 10, or 11-bit PWM mode. The ARSEL bit in register PCA0PWM controls which register is accessed.				
Note	Note: A write to this register will set the module's ECOMn bit to a 1.					

27. C2 Interface

C8051F99x-C8051F98x devices include an on-chip Silicon Labs 2-Wire (C2) debug interface to allow Flash programming and in-system debugging with the production part installed in the end application. The C2 interface uses a clock signal (C2CK) and a bi-directional C2 data signal (C2D) to transfer information between the device and a host system. See the C2 Interface Specification for details on the C2 protocol.

27.1. C2 Interface Registers

The following describes the C2 registers necessary to perform Flash programming through the C2 interface. All C2 registers are accessed through the C2 interface as described in the C2 Interface Specification.

C2 Register Definition 27.1. C2ADD: C2 Address

Bit	7	6	5	4	3	2	1	0
Name	C2ADD[7:0]							
Туре	R/W							
Reset	0 0 0 0 0 0 0 0							

Bit	Name		Function					
7:0	C2ADD[7:0]	C2 Address.						
		The C2ADD regist for C2 Data Read	ne C2ADD register is accessed via the C2 interface to select the target Data register C2 Data Read and Data Write commands.					
		Address	dress Description					
		0x00	Selects the Device ID register for Data Read instructions					
		0x01	Selects the Revision ID register for Data Read instructions					
		0x02	Selects the C2 Flash Programming Control register for Data Read/Write instructions					
		0xB4	Selects the C2 Flash Programming Data register for Data Read/Write instructions					

