E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	CIP-51 8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-SSOP (0.154", 3.90mm Width)
Supplier Device Package	24-QSOP
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f989-gur

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Registers

SFR	Definition #	5.1. ADC0CN: ADC0 Control	. 74
SFR	Definition #	5.2. ADC0CF: ADC0 Configuration	. 75
SFR	Definition #	5.3. ADC0AC: ADC0 Accumulator Configuration	. 76
SFR	Definition #	5.4. ADC0PWR: ADC0 Burst Mode Power-Up Time	. 77
SFR	Definition #	5.5. ADC0TK: ADC0 Burst Mode Track Time	. 78
SFR	Definition #	5.6. ADC0H: ADC0 Data Word High Byte	. 79
SFR	Definition #	5.7. ADC0L: ADC0 Data Word Low Byte	. 79
SFR	Definition \$	5.8. ADC0GTH: ADC0 Greater-Than High Byte	. 80
SFR	Definition \$	5.9. ADC0GTL: ADC0 Greater-Than Low Byte	. 80
SFR	Definition \$	5.10. ADC0LTH: ADC0 Less-Than High Byte	. 81
SFR	Definition \$	5.11. ADC0LTL: ADC0 Less-Than Low Byte	. 81
SFR	Definition \$	5.12. ADC0MX: ADC0 Input Channel Select	. 84
SFR	Definition \$	5.13. TOFFH: ADC0 Data Word High Byte	. 87
SFR	Definition \$	5.14. TOFFL: ADC0 Data Word Low Byte	. 87
SFR	Definition \$	5.15. REF0CN: Voltage Reference Control	. 90
SFR	Definition (6.1. IREF0CN: Current Reference Control	. 91
SFR	Definition (6.2. IREF0CF: Current Reference Configuration	. 92
SFR	Definition 7	7.1. CPT0CN: Comparator 0 Control	. 96
SFR	Definition	7.2. CPT0MD: Comparator 0 Mode Selection	. 97
SFR	Definition	7.3. CPT0MX: Comparator0 Input Channel Select	. 99
SFR	Definition 8	8.1. CS0CN: Capacitive Sense Control	107
SFR	Definition 8	8.2. CS0CF: Capacitive Sense Configuration	108
SFR	Definition 8	8.3. CS0DH: Capacitive Sense Data High Byte	109
SFR	Definition 8	8.4. CS0DL: Capacitive Sense Data Low Byte	109
SFR	Definition 8	8.5. CS0SCAN0: Capacitive Sense Channel Scan Mask 0	110
SFR	Definition 8	8.6. CS0SCAN1: Capacitive Sense Channel Scan Mask 1	110
SFR	Definition 8	8.7. CS0SS: Capacitive Sense Auto-Scan Start Channel	111
SFR	Definition 8	8.8. CS0SE: Capacitive Sense Auto-Scan End Channel	111
SFR	Definition 8	8.9. CS0THH: Capacitive Sense Comparator Threshold High Byte	112
SFR	Definition 8	8.10. CS0THL: Capacitive Sense Comparator Threshold Low Byte .	112
SFR	Definition 8	8.11. CS0MD1: Capacitive Sense Mode 1	113
SFR	Definition 8	8.12. CS0MD2: Capacitive Sense Mode 2	114
SFR	Definition 8	8.13. CS0MD3: Capacitive Sense Mode 3	115
SFR	Definition 8	8.14. CS0PM: Capacitive Sense Pin Monitor	116
SFR	Definition 8	8.15. CS0MX: Capacitive Sense Mux Channel Select	118
SFR	Definition 9	9.1. DPL: Data Pointer Low Byte	125
SFR	Definition 9	9.2. DPH: Data Pointer High Byte	125
SFR	Definition 9	9.3. SP: Stack Pointer	126
SFR	Definition 9	9.4. ACC: Accumulator	126
SFR	Definition 9	9.5. B: B Register	126
SFR	Definition 9	9.6. PSW: Program Status Word	127
SFR	Definition ²	12.1. SFR Page: SFR Page	134
SFR	Definition ⁷	13.1. IE: Interrupt Enable	142

Figure 1.2. C8051F981 Block Diagram

*Note: Signal only available on 'F986, 'F988, and 'F996 devices.

Figure 3.2. QFN-24 Pinout Diagram (Top View)

Dimension	MIN	MAX
C1	3.90	4.00
C2	3.90	4.00
E	0.50	BSC
X1	0.20	0.30
X2	2.70	2.80
Y1	0.65	0.75
Y2	2.70	2.80

Table 3.5. PCB Land Pattern

Notes:

General

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. This Land Pattern Design is based on the IPC-7351 guidelines.

Solder Mask Design

1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be $60 \ \mu m$ minimum, all the way around the pad.

Stencil Design

- **1.** A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 2. The stencil thickness should be 0.125 mm (5 mils).
- **3.** The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.
- **4.** A 2x2 array of 1.10 mm x 1.10 mm openings on 1.30 mm pitch should be used for the center ground pad.

Card Assembly

- 1. A No-Clean, Type-3 solder paste is recommended.
- 2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

4.2. Electrical Characteristics

Table 4.2. Global Electrical Characteristics

-40 to +85 °C, 25 MHz system clock unless otherwise specified. See "AN358: Optimizing Low Power Operation of the 'F9xx" for details on how to achieve the supply current specifications listed in this table.

Parameter	Conditions	Min	Тур	Max	Units
Supply Voltage (V _{DD})		1.8	2.4	3.6	V
Minimum RAM Data	not in sleep mode		1.4	—	V
Retention Voltage ¹	in sleep mode	—	0.3	0.45	
SYSCLK (System Clock) ²		0	_	25	MHz
T _{SYSH} (SYSCLK High Time)		18	—	—	ns
T _{SYSL} (SYSCLK Low Time)		18	—	—	ns
Specified Operating Temperature Range		-40	—	+85	°C
Digital Supply Current—CP	U Active (Normal Mode, fetching instruct	tions fr	om Fla	sh)	
I _{DD} ^{3, 4, 5}	V _{DD} = 1.8–3.6 V, F = 24.5 MHz (includes precision oscillator current)		3.6	4.5	mA
	V_{DD} = 1.8–3.6 V, F = 20 MHz (includes low power oscillator current)	_	3.1	—	mA
	V _{DD} = 1.8 V, F = 1 MHz	_	225		μA
	V _{DD} = 3.6 V, F = 1 MHz	—	290	—	μA
	(includes external oscillator/GPIO current)				
	V _{DD} = 1.8–3.6 V, F = 32.768 kHz (includes SmaRTClock oscillator current)		84	_	μA
I _{DD} Frequency	V _{DD} = 1.8–3.6 V, T = 25 °C, F < 14 MHz	_	174	_	µA/MHz
Sensitivity ^{1, 3, 5}	(Flash oneshot active, see Section 14.6)				
	V _{DD} = 1.8–3.6 V, T = 25 °C, F > 14 MHz (Flash oneshot bypassed, see Section 14.6)	—	88	—	µA/MHz

5.6. Programmable Window Detector

The ADC Programmable Window Detector continuously compares the ADC0 output registers to userprogrammed limits, and notifies the system when a desired condition is detected. This is especially effective in an interrupt-driven system, saving code space and CPU bandwidth while delivering faster system response times. The window detector interrupt flag (AD0WINT in register ADC0CN) can also be used in polled mode. The ADC0 Greater-Than (ADC0GTH, ADC0GTL) and Less-Than (ADC0LTH, ADC0LTL) registers hold the comparison values. The window detector flag can be programmed to indicate when measured data is inside or outside of the user-programmed limits, depending on the contents of the ADC0 Less-Than and ADC0 Greater-Than registers.

SFR Definition 5.8. ADC0GTH: ADC0 Greater-Than High Byte

Bit	7	6	5	4	3	2	1	0
Name	AD0GT[15:8]							
Туре	R/W							
Reset	1	1	1	1	1	1	1	1

SFR Page = 0x0; SFR Address = 0xC4

Bit	Name	Function
7:0	AD0GT[15:8]	ADC0 Greater-Than High Byte.
		Most Significant Byte of the 16-bit Greater-Than window compare register.

SFR Definition 5.9. ADC0GTL: ADC0 Greater-Than Low Byte

Bit	7	6	5	4	3	2	1	0
Name	AD0GT[7:0]							
Туре	R/W							
Reset	1	1	1	1	1	1	1	1

SFR Page = 0x0; SFR Address = 0xC3

Bit	Name	Function
7:0	AD0GT[7:0]	ADC0 Greater-Than Low Byte.
		Least Significant Byte of the 16-bit Greater-Than window compare register.
Note:	In 8-bit mode,	this register should be set to 0x00.

10. Memory Organization

The memory organization of the CIP-51 System Controller is similar to that of a standard 8051. There are two separate memory spaces: program memory and data memory. Program and data memory share the same address space but are accessed via different instruction types. The memory organization of the C8051F99x-C8051F98x device family is shown in Figure 10.1.

13. Interrupt Handler

The C8051F99x-C8051F98x microcontroller family includes an extended interrupt system supporting multiple interrupt sources and two priority levels. The allocation of interrupt sources between on-chip peripherals and external input pins varies according to the specific version of the device. Refer to Table 13.1, "Interrupt Summary," on page 140 for a detailed listing of all interrupt sources supported by the device. Refer to the data sheet section associated with a particular on-chip peripheral for information regarding valid interrupt conditions for the peripheral and the behavior of its interrupt-pending flag(s).

Each interrupt source has one or more associated interrupt-pending flag(s) located in an SFR or an indirect register. When a peripheral or external source meets a valid interrupt condition, the associated interrupt-pending flag is set to logic 1. If both global interrupts and the specific interrupt source is enabled, a CPU interrupt request is generated when the interrupt-pending flag is set.

As soon as execution of the current instruction is complete, the CPU generates an LCALL to a predetermined address to begin execution of an interrupt service routine (ISR). Each ISR must end with an RETI instruction, which returns program execution to the next instruction that would have been executed if the interrupt request had not occurred. If interrupts are not enabled, the interrupt-pending flag is ignored by the hardware and program execution continues as normal. (The interrupt-pending flag is set to logic 1 regardless of the interrupt's enable/disable state.)

Some interrupt-pending flags are automatically cleared by hardware when the CPU vectors to the ISR. However, most are not cleared by the hardware and must be cleared by software before returning from the ISR. If an interrupt-pending flag remains set after the CPU completes the return-from-interrupt (RETI) instruction, a new interrupt request will be generated immediately and the CPU will re-enter the ISR after the completion of the next instruction.

13.1. Enabling Interrupt Sources

Each interrupt source can be individually enabled or disabled through the use of an associated interrupt enable bit in the Interrupt Enable and Extended Interrupt Enable SFRs. However, interrupts must first be globally enabled by setting the EA bit (IE.7) to logic 1 before the individual interrupt enables are recognized. Setting the EA bit to logic 0 disables all interrupt sources regardless of the individual interrupt-enable settings. Note that interrupts which occur when the EA bit is set to logic 0 will be held in a pending state, and will not be serviced until the EA bit is set back to logic 1.

13.2. MCU Interrupt Sources and Vectors

The CPU services interrupts by generating an LCALL to a predetermined address (the interrupt vector address) to begin execution of an interrupt service routine (ISR). The interrupt vector addresses associated with each interrupt source are listed in Table 13.1 on page 140. Software should ensure that the interrupt vector for each enabled interrupt source contains a valid interrupt service routine.

Software can simulate an interrupt by setting any interrupt-pending flag to logic 1. If interrupts are enabled for the flag, an interrupt request will be generated and the CPU will vector to the ISR address associated with the interrupt-pending flag.

13.3. Interrupt Priorities

Each interrupt source can be individually programmed to one of two priority levels: low or high. A low priority interrupt service routine can be preempted by a high priority interrupt. A high priority interrupt cannot be preempted. If a high priority interrupt preempts a low priority interrupt, the low priority interrupt will finish execution after the high priority interrupt completes. Each interrupt has an associated interrupt priority bit in in the Interrupt Priority and Extended Interrupt Priority registers used to configure its priority level. Low priority is the default.

If two interrupts are recognized simultaneously, the interrupt with the higher priority is serviced first. If both interrupts have the same priority level, a fixed priority order is used to arbitrate. See Table 13.1 on page 140 to determine the fixed priority order used to arbitrate between simultaneously recognized interrupts.

13.4. Interrupt Latency

Interrupt response time depends on the state of the CPU when the interrupt occurs. Pending interrupts are sampled and priority decoded each system clock cycle. Therefore, the fastest possible response time is 7 system clock cycles: 1 clock cycle to detect the interrupt, 1 clock cycle to execute a single instruction, and 5 clock cycles to complete the LCALL to the ISR. If an interrupt is pending when a RETI is executed, a single instruction is executed before an LCALL is made to service the pending interrupt. Therefore, the maximum response time for an interrupt (when no other interrupt is currently being serviced or the new interrupt is of greater priority) occurs when the CPU is performing an RETI instruction followed by a DIV as the next instruction. In this case, the response time is 19 system clock cycles: 1 clock cycle to detect the interrupt, 5 clock cycles to execute the RETI, 8 clock cycles to complete the DIV instruction and 5 clock cycles to execute the LCALL to the ISR. If the CPU is executing an ISR for an interrupt with equal or higher priority, the new interrupt will not be serviced until the current ISR completes, including the RETI and following instruction.

14.1.2. Flash Erase Procedure

The Flash memory is organized in 512-byte pages. The erase operation applies to an entire page (setting all bytes in the page to 0xFF). To erase an entire Flash page, perform the following steps:

- 1. Save current interrupt state and disable interrupts.
- 2. Set the PSEE bit (register PSCTL).
- 3. Set the PSWE bit (register PSCTL).
- 4. Write the first key code to FLKEY: 0xA5.
- 5. Write the second key code to FLKEY: 0xF1.
- 6. Using the MOVX instruction, write a data byte to any location within the page to be erased.
- 7. Clear the PSWE and PSEE bits.
- 8. Restore previous interrupt state.

Steps 4–6 must be repeated for each 512-byte page to be erased.

Notes:

- 1. Flash security settings may prevent erasure of some Flash pages, such as the reserved area and the page containing the lock bytes. For a summary of Flash security settings and restrictions affecting Flash erase operations, please see Section "14.3. Security Options" on page 152.
- 2. 8-bit MOVX instructions cannot be used to erase or write to Flash memory at addresses higher than 0x00FF.

14.1.3. Flash Write Procedure

A write to Flash memory can clear bits to logic 0 but cannot set them; only an erase operation can set bits to logic 1 in Flash. A byte location to be programmed should be erased before a new value is written.

The recommended procedure for writing a single byte in Flash is as follows:

- 1. Save current interrupt state and disable interrupts.
- 2. Ensure that the Flash byte has been erased (has a value of 0xFF).
- 3. Set the PSWE bit (register PSCTL).
- 4. Clear the PSEE bit (register PSCTL).
- 5. Write the first key code to FLKEY: 0xA5.
- 6. Write the second key code to FLKEY: 0xF1.
- 7. Using the MOVX instruction, write a single data byte to the desired location within the 1024-byte sector.
- 8. Clear the PSWE bit.
- 9. Restore previous interrupt state.

Steps 5–7 must be repeated for each byte to be written.

Notes:

- 1. Flash security settings may prevent writes to some areas of Flash, such as the reserved area. For a summary of Flash security settings and restrictions affecting Flash write operations, please see Section "14.3. Security Options" on page 152.
- 2. 8-bit MOVX instructions cannot be used to erase or write to Flash memory at addresses higher than 0x00FF.

14.2. Non-volatile Data Storage

The Flash memory can be used for non-volatile data storage as well as program code. This allows data such as calibration coefficients to be calculated and stored at run time. Data is written using the MOVX write instruction and read using the MOVC instruction. MOVX read instructions always target XRAM.

16.2. Preparing for a CRC Calculation

To prepare CRC0 for a CRC calculation, software should set the initial value of the result. The polynomial used for the CRC computation is 0x1021. The CRC0 result may be initialized to one of two values: 0x0000 or 0xFFFF. The following steps can be used to initialize CRC0.

- 1. Select the initial result value (Set CRC0VAL to 0 for 0x0000 or 1 for 0xFFFF).
- 2. Set the result to its initial value (Write 1 to CRC0INIT).

16.3. Performing a CRC Calculation

Once CRC0 is initialized, the input data stream is sequentially written to CRC0IN, one byte at a time. The CRC0 result is automatically updated after each byte is written. The CRC engine may also be configured to automatically perform a CRC on one or more 256 byte blocks. The following steps can be used to automatically perform a CRC on Flash memory.

- 1. Prepare CRC0 for a CRC calculation as shown above.
- 2. Write the index of the starting page to CRC0AUTO.
- 3. Set the AUTOEN bit in CRC0AUTO.
- 4. Write the number of 256 byte blocks to perform in the CRC calculation to CRC0CNT.
- Write any value to CRC0CN (or OR its contents with 0x00) to initiate the CRC calculation. The CPU will
 not execute any additional code until the CRC operation completes. See the note in SFR
 Definition 16.1. CRC0CN: CRC0 Control for more information on how to properly initiate a CRC
 calculation.
- 6. Clear the AUTOEN bit in CRC0AUTO.
- 7. Read the CRC result using the procedure below.

16.4. Accessing the CRC0 Result

The internal CRC0 result is 16 bits. The CRC0PNT bits select the byte that is targeted by read and write operations on CRC0DAT and increment after each read or write. The calculation result will remain in the internal CR0 result register until it is set, overwritten, or additional data is written to CRC0IN.

18.1. Power-On Reset

During power-up, the device is held in a reset state and the \overline{RST} pin voltage tracks V_{DD} (through a weak pull-up) until the device is released from reset. After VDD settles above VPOR, a delay occurs before the device is released from reset; the delay decreases as the V_{DD} ramp time increases (V_{DD} ramp time is defined as how fast V_{DD} ramps from 0 V to V_{POR}). Figure 18.2 plots the power-on and V_{DD} monitor reset timing. For valid ramp times (less than 3 ms), the power-on reset delay (T_{PORDelay}) is typically 7 ms (V_{DD} = 1.8 V) or 15 ms (V_{DD} = 3.6 V).

Note: The maximum V_{DD} ramp time is 3 ms; slower ramp times may cause the device to be released from reset before V_{DD} reaches the V_{POR} level.

On exit from a power-on reset, the PORSF flag (RSTSRC.1) is set by hardware to logic 1. When PORSF is set, all of the other reset flags in the RSTSRC Register are indeterminate (PORSF is cleared by all other resets). Since all resets cause program execution to begin at the same location (0x0000), software can read the PORSF flag to determine if a power-up was the cause of reset. The contents of internal data memory should be assumed to be undefined after a power-on reset.

The POR supply monitor can be disabled to save power by writing 1 to the MONDIS (PMU0MD.5) bit. When the POR supply monitor is disabled, all reset sources will trigger a full POR and will re-enable the POR supply monitor.

Figure 18.2. Power-Fail Reset Timing Diagram

20.1.5. RTC0ADR Autoincrement Feature

For ease of reading and writing the 32-bit CAPTURE and ALARM values, RTC0ADR automatically increments after each read or write to a CAPTUREn or ALARMn register. This speeds up the process of setting an alarm or reading the current SmaRTClock timer value. Autoincrement is always enabled.

Recommended Instruction Timing for a multi-byte register read with short strobe and auto read enabled:

Recommended Instruction Timing for a multi-byte register write with short strobe enabled:

mov RTCOADR, #010h
mov RTCODAT, #05h
nop
mov RTCODAT, #06h
nop
mov RTCODAT, #07h
nop
mov RTCODAT, #08h
nop

SFR Definition 20.2. RTC0ADR: SmaRTClock Address

Bit	7	6	5	4	3	2	1	0
Name	BUSY	AUTORD		SHORT	ADDR[3:0]			
Туре	R/W	R/W	R	R/W	R/W			
Reset	0	0	0	0	0	0	0	0

SFR Page = 0x0; SFR Address = 0xAC

Bit	Name	Function
7	BUSY	SmaRTClock Interface Busy Indicator.
		Indicates SmaRTClock interface status. Writing 1 to this bit initiates an indirect read.
6	AUTORD	SmaRTClock Interface Autoread Enable.
		Enables/disables Autoread.
		0: Autoread Disabled.
		1: Autoread Enabled.
5	Unused	Read = 0b; Write = Don't Care.
4	SHORT	Short Strobe Enable.
		Enables/disables the Short Strobe Feature.
		0: Short Strobe disabled.
		1: Short Strobe enabled.
3:0	ADDR[3:0]	SmaRTClock Indirect Register Address.
		Sets the currently selected SmaRTClock register.
		See Table 20.1 for a listing of all SmaRTClock indirect registers.
Note:	The ADDR bits	increment after each indirect read/write operation that targets a CAPTUREn or ALARMn
	internal SmaR	I Clock register.

SFR Definition 20.3. RTC0DAT: SmaRTClock Data

Bit	7	6	5	4	3	2	1	0
Name	RTC0DAT[7:0]							
Туре	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Page= 0x0; SFR Address = 0xAD

Bit	Name	Function
7:0	RTC0DAT	SmaRTClock Data Bits.
		Holds data transferred to/from the internal SmaRTClock register selected by RTC0ADR.
Note: F	Read-modify-w	vrite instructions (orl, anl, etc.) should not be used on this register.

SFR Definition 21.6. P1MASK: Port1 Mask Register

Bit	7	6	5	4	3	2	1	0
Name	P1MASK[7:0]							
Туре	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Page= 0x0; SFR Address = 0xBF

Bit	Name	Function
7:0	P1MASK[7:0]	Port 1 Mask Value.
		Selects P1 pins to be compared to the corresponding bits in P1MAT. 0: P1.n pin logic value is ignored and cannot cause a Port Mismatch event. 1: P1.n pin logic value is compared to P1MAT.n.

SFR Definition 21.7. P1MAT: Port1 Match Register

Bit	7	6	5	4	3	2	1	0
Name	P1MAT[7:0]							
Туре	R/W							
Reset	1	1	1	1	1	1	1	1

SFR Page = 0x0; SFR Address = 0xCF

Bit	Name	Function
7:0	P1MAT[7:0]	Port 1 Match Value.
		Match comparison value used on Port 1 for bits in P1MASK which are set to 1. 0: P1.n pin logic value is compared with logic LOW. 1: P1.n pin logic value is compared with logic HIGH.

SFR Definition 24.1. SPI0CFG: SPI0 Configuration

Bit	7	6	5	4	3	2	1	0
Name	SPIBSY	MSTEN	СКРНА	CKPOL	SLVSEL	NSSIN	SRMT	RXBMT
Туре	R	R/W	R/W	R/W	R	R	R	R
Reset	0	0	0	0	0	1	1	1

SFR Page = 0x0; SFR Address = 0xA1

Bit	Name	Function
7	SPIBSY	SPI Busy.
		This bit is set to logic 1 when a SPI transfer is in progress (master or slave mode).
6	MSTEN	Master Mode Enable.
		0: Disable master mode. Operate in slave mode.
		1: Enable master mode. Operate as a master.
5	CKPHA	SPI0 Clock Phase.
		0: Data centered on first edge of SCK period.*
		1: Data centered on second edge of SCK period.*
4	CKPOL	SPI0 Clock Polarity.
		0: SCK line low in idle state.
		1: SCK line high in idle state.
3	SLVSEL	Slave Selected Flag.
		This bit is set to logic 1 whenever the NSS pin is low indicating SPI0 is the selected
		slave. It is cleared to logic 0 when NSS is high (slave not selected). This bit does
		sion of the pin input.
2	NSSIN	NSS Instantaneous Pin Input.
		This bit mimics the instantaneous value that is present on the NSS port pin at the
		time that the register is read. This input is not de-glitched.
1	SRMT	Shift Register Empty (valid in slave mode only).
		This bit will be set to logic 1 when all data has been transferred in/out of the shift
		register, and there is no new information available to read from the transmit buffer
		or write to the receive buffer. It returns to logic 0 when a data byte is transferred to the shift register from the transmit buffer or by a transition on SCK. SPMT $= 1$ when
		in Master Mode.
0	RXBMT	Receive Buffer Empty (valid in slave mode only).
		This bit will be set to logic 1 when the receive buffer has been read and contains no
		new information. If there is new information available in the receive buffer that has
		not been read, this bit will return to logic 0. RXBMT = 1 when in Master Mode.
Note:	In slave mode, o	data on MOSI is sampled in the center of each data bit. In master mode, data on MISO is
	See Table 24.1 f	for timing parameters.

SFR Definition 24.2. SPI0CN: SPI0 Control

Bit	7	6	5	4	3	2	1	0
Name	SPIF	WCOL	MODF	RXOVRN	NSSM	ID[1:0]	TXBMT	SPIEN
Туре	R/W	R/W	R/W	R/W	R/	W	R	R/W
Reset	0	0	0	0	0	1	1	0

SFR Page = 0x0; SFR Address = 0xF8; Bit-Addressable

Bit	Name	Function
7	SPIF	SPI0 Interrupt Flag.
		This bit is set to logic 1 by hardware at the end of a data transfer. If SPI interrupts are enabled, an interrupt will be generated. This bit is not automatically cleared by hardware, and must be cleared by software.
6	WCOL	Write Collision Flag.
		This bit is set to logic 1 if a write to SPI0DAT is attempted when TXBMT is 0. When this occurs, the write to SPI0DAT will be ignored, and the transmit buffer will not be written. If SPI interrupts are enabled, an interrupt will be generated. This bit is not automatically cleared by hardware, and must be cleared by software.
5	MODF	Mode Fault Flag.
		This bit is set to logic 1 by hardware when a master mode collision is detected (NSS is low, MSTEN = 1, and NSSMD[1:0] = 01). If SPI interrupts are enabled, an interrupt will be generated. This bit is not automatically cleared by hardware, and must be cleared by software.
4	RXOVRN	Receive Overrun Flag (valid in slave mode only).
		This bit is set to logic 1 by hardware when the receive buffer still holds unread data from a previous transfer and the last bit of the current transfer is shifted into the SPI0 shift register. If SPI interrupts are enabled, an interrupt will be generated. This bit is not automatically cleared by hardware, and must be cleared by software.
3:2	NSSMD[1:0]	Slave Select Mode.
		 Selects between the following NSS operation modes: (See Section 24.2 and Section 24.3). 00: 3-Wire Slave or 3-Wire Master Mode. NSS signal is not routed to a port pin. 01: 4-Wire Slave or Multi-Master Mode (Default). NSS is an input to the device. 1x: 4-Wire Single-Master Mode. NSS signal is mapped as an output from the device and will assume the value of NSSMD0.
1	TXBMT	Transmit Buffer Empty.
		This bit will be set to logic 0 when new data has been written to the transmit buffer. When data in the transmit buffer is transferred to the SPI shift register, this bit will be set to logic 1, indicating that it is safe to write a new byte to the transmit buffer.
0	SPIEN	SPI0 Enable.
		0: SPI disabled. 1: SPI enabled.

25.3.3. SmaRTClock/External Oscillator Capture Mode

The Capture Mode in Timer 3 allows either SmaRTClock or the external oscillator period to be measured against the system clock or the system clock divided by 12. SmaRTClock and the external oscillator period can also be compared against each other.

Setting TF3CEN to 1 enables the SmaRTClock/External Oscillator Capture Mode for Timer 3. In this mode, T3SPLIT should be set to 0, as the full 16-bit timer is used.

When Capture Mode is enabled, a capture event will be generated either every SmaRTClock rising edge or every 8 external clock cycles, depending on the T3XCLK1 setting. When the capture event occurs, the contents of Timer 3 (TMR3H:TMR3L) are loaded into the Timer 3 reload registers (TMR3RLH:TMR3RLL) and the TF3H flag is set (triggering an interrupt if Timer 3 interrupts are enabled). By recording the difference between two successive timer capture values, the SmaRTClock or external clock period can be determined with respect to the Timer 3 clock. The Timer 3 clock should be much faster than the capture clock to achieve an accurate reading.

For example, if T3ML = 1b, T3XCLK1 = 0b, and TF3CEN = 1b, Timer 3 will clock every SYSCLK and capture every SmaRTClock rising edge. If SYSCLK is 24.5 MHz and the difference between two successive captures is 350 counts, then the SmaRTClock period is as follows:

350 x (1 / 24.5 MHz) = 14.2 μs.

This mode allows software to determine the exact frequency of the external oscillator in C and RC mode or the time between consecutive SmaRTClock rising edges, which is useful for determining the SmaRTClock frequency.

Figure 25.9. Timer 3 Capture Mode Block Diagram

27.2. C2 Pin Sharing

The C2 protocol allows the C2 pins to be shared with user functions so that in-system debugging and Flash programming may be performed. This is possible because C2 communication is typically performed when the device is in the halt state, where all on-chip peripherals and user software are stalled. In this halted state, the C2 interface can safely "borrow" the C2CK (RST) and C2D pins. In most applications, external resistors are required to isolate C2 interface traffic from the user application. A typical isolation configuration is shown in Figure 27.1.

Figure 27.1. Typical C2 Pin Sharing

The configuration in Figure 27.1 assumes the following:

- 1. The <u>user input</u> (b) cannot change state while the target device is halted.
- 2. The \overline{RST} pin on the target device is used as an input only.

Additional resistors may be necessary depending on the specific application.

oscillator while in Sleep mode.

- Added a note to "15.5. Sleep Mode" and SFR Definition "15.3. Stop Mode" regarding not disabling the POR Supply Monitor while operating above 2.4 V.
- Adjusted QFN20 c, D2, and E2 package specifications in Table 3.2.

