
Silicon Labs - C8051F996-C-GDI Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor CIP-51 8051

Core Size 8-Bit

Speed 25MHz

Connectivity SMBus (2-Wire/I²C), SPI, UART/USART

Peripherals Brown-out Detect/Reset, Cap Sense, POR, PWM, Temp Sensor, WDT

Number of I/O 17

Program Memory Size 8KB (8K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 512 x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 3.6V

Data Converters A/D 10x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case Die

Supplier Device Package Die

Purchase URL https://www.e-xfl.com/product-detail/silicon-labs/c8051f996-c-gdi

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/c8051f996-c-gdi-4409900
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Rev. 1.2 3

C8051F99x-C8051F98x

6.2. IREF0 Specifications... 92
7. Comparator ... 93

7.1. Comparator Inputs .. 93
7.2. Comparator Outputs ... 94
7.3. Comparator Response Time... 94
7.4. Comparator Hysteresis ... 94
7.5. Comparator Register Descriptions.. 95
7.6. Comparator0 Analog Multiplexer .. 98

8. Capacitive Sense (CS0).. 100
8.1. Configuring Port Pins as Capacitive Sense Inputs ... 101
8.2. Initializing the Capacitive Sensing Peripheral ... 101
8.3. Capacitive Sense Start-Of-Conversion Sources... 101
8.4. CS0 Multiple Channel Enable ... 102
8.5. CS0 Gain Adjustment ... 102
8.6. Wake from Suspend ... 102
8.7. Using CS0 in Applications that Utilize Sleep Mode... 102
8.8. Automatic Scanning (Method 1—CS0SMEN = 0) .. 103
8.9. Automatic Scanning (Method 2—CS0SMEN = 1) .. 104
8.10.CS0 Comparator... 104
8.11.CS0 Conversion Accumulator .. 105
8.12.CS0 Pin Monitor ... 106
8.13.Adjusting CS0 For Special Situations... 106
8.14.Capacitive Sense Multiplexer ... 117

9. CIP-51 Microcontroller ... 119
9.1. Performance ... 119
9.2. Programming and Debugging Support ... 120
9.3. Instruction Set ... 120

9.3.1. Instruction and CPU Timing ... 120
9.4. CIP-51 Register Descriptions.. 125

10.Memory Organization... 128
10.1.Program Memory.. 129

10.1.1.MOVX Instruction and Program Memory ... 129
10.2.Data Memory.. 129

10.2.1.Internal RAM .. 129
10.2.2.External RAM... 130

11.On-Chip XRAM.. 131
11.1.Accessing XRAM.. 131

11.1.1.16-Bit MOVX Example ... 131
11.1.2.8-Bit MOVX Example ... 131

12.Special Function Registers ... 132
12.1.SFR Paging .. 133

13. Interrupt Handler .. 138
13.1.Enabling Interrupt Sources... 138
13.2.MCU Interrupt Sources and Vectors... 138
13.3.Interrupt Priorities ... 139

Rev. 1.2 20

C8051F99x-C8051F98x

Figure 1.5. C8051F985 Block Diagram

Figure 1.6. C8051F986 Block Diagram

Port 0
Drivers

Digital Peripherals
UART

Timers 0,
1, 2, 3

PCA/
WDT

SMBus

Priority
Crossbar
Decoder

P0.0
P0.1
P0.2/XTAL1
P0.3/XTAL2
P0.4/TX
P0.5/RX
P0.6
P0.7/IREF0

Crossbar Control

Port I/O ConfigurationCIP-51 8051
Controller Core

2 kB ISP Flash
Program Memory

256 Byte SRAM

SFR
Bus

Port 1
Drivers

P1.0/CP0+
P1.1/CP0-
P1.2
P1.3
P1.5

SPI

Analog Peripherals

Comparator

+
-

VDD

XTAL1

SYSCLK

System Clock
Configuration

External
Oscillator

Circuit

Precision
24.5 MHz
Oscillator

Debug /
Programming

Hardware

Power On
Reset/PMU

Reset

C2D

C2CK/RST

Wake

XTAL2

Low Power
20 MHz

Oscillator

6-bit
IREF

GND

P1.6/XTAL3

IREF0

CP0

SmaRTClock
Oscillator

XTAL3

XTAL4

GND

VREG
Digital
Power

CRC
Engine

P1.7/XTAL4

Port 2
Drivers

P2.7/C2D

P1.0
P1.1

256 Byte XRAM

GND

Port 0
Drivers

Digital Peripherals
UART

Timers 0,
1, 2, 3

PCA/
WDT

SMBus

Priority
Crossbar
Decoder

P0.0/VREF
P0.1/AGND
P0.2/XTAL1
P0.3/XTAL2
P0.4/TX
P0.5/RX
P0.6/CNVSTR
P0.7/IREF0

Crossbar Control

Port I/O ConfigurationCIP-51 8051
Controller Core

8 kB ISP Flash
Program Memory

256 Byte SRAM

SFR
Bus

256 Byte XRAM

Port 1
Drivers

P1.0/CP0+
P1.1/CP0-
P1.2
P1.3
P1.4
P1.5

SPI

Analog Peripherals

Comparator

+
-

VDD

XTAL1

SYSCLK

System Clock
Configuration

External
Oscillator

Circuit

Precision
24.5 MHz
Oscillator

Debug /
Programming

Hardware

Power On
Reset/PMU

Reset

C2D

C2CK/RST

Wake

12-bit
ADC

A
M
U
X

Temp
Sensor

External

VREF

Internal

VREF VDD

XTAL2

Low Power
20 MHz

Oscillator

6-bit
IREF

VREF

GND

P1.6/XTAL3

IREF0

CP0

SmaRTClock
Oscillator

XTAL3

XTAL4

GND

VREG
Digital
Power

CRC
Engine

P1.7/XTAL4

Port 2
Drivers

P2.7/C2D

P1.0
P1.1

Rev. 1.2 28

C8051F99x-C8051F98x

1.5. SAR ADC with 16-bit Auto-Averaging Accumulator and Autonomous Low
Power Burst Mode

C8051F99x-C8051F98x devices have a 300 ksps, 10-bit or 75 ksps 12-bit successive-approximation-
register (SAR) ADC with integrated track-and-hold and programmable window detector. ADC0 also has an
autonomous low power Burst Mode which can automatically enable ADC0, capture and accumulate
samples, then place ADC0 in a low power shutdown mode without CPU intervention. It also has a 16-bit
accumulator that can automatically average the ADC results, providing an effective 11, 12, or 13 bit ADC
result without any additional CPU intervention.

The ADC can sample the voltage at select GPIO pins (see Figure 1.17) and has an on-chip attenuator that
allows it to measure voltages up to twice the voltage reference. Additional ADC inputs include an on-chip
temperature sensor, the VDD supply voltage, and the internal digital supply voltage.

Figure 1.16. ADC0 Functional Block Diagram

ADC0CF

A
M

P
0G

N

A
D

0
T

M

A
D

08
B

E

A
D

0
S

C
0

A
D

0
S

C
1

A
D

0
S

C
2

A
D

0
S

C
3

A
D

0
S

C
4

10/12-Bit
SAR

ADC

R
E

F

S
Y

S
C

LK A
D

C
0H

32

ADC0CN

A
D

0C
M

0

A
D

0C
M

1

A
D

0C
M

2

A
D

0W
IN

T

A
D

0B
U

S
Y

A
D

0
IN

T

B
U

R
S

T
E

N

A
D

0E
N

Timer 0 Overflow

Timer 2 Overflow

Timer 3 Overflow

Start
Conversion

000 AD0BUSY (W)VDD

ADC0LTH

AD0WINT

001

010

011

100 CNVSTR Input

Window
Compare

Logic
ADC0LTL

ADC0GTH ADC0GTL

A
D

C
0

L

AIN+From
AMUX0

Burst Mode Logic
ADC0TK

ADC0PWR

16-Bit Accumulator

Rev. 1.2 39

C8051F99x-C8051F98x

Figure 3.6. QSOP-24 Package Marking Diagram

First character of the
trace code identifies the
silicon revision

Rev. 1.2 84

C8051F99x-C8051F98x

SFR Page = 0x0; SFR Address = 0x96

SFR Definition 5.12. ADC0MX: ADC0 Input Channel Select

Bit 7 6 5 4 3 2 1 0

Name AD0MX

Type R R R R/W R/W R/W R/W R/W

Reset 0 0 0 1 1 1 1 1

Bit Name Function

7:5 Unused Read = 000b; Write = Don’t Care.

4:0 AD0MX AMUX0 Positive Input Selection.

Selects the positive input channel for ADC0.

00000: Reserved. 10000: Reserved.

00001: P0.1 10001: Reserved.

00010: P0.2 10010: Reserved.

00011: P0.3 10011: Reserved.

00100: P0.4 10100: Reserved.

00101: P0.5 10101: Reserved.

00110: P0.6 10110: Reserved.

00111: P0.7 10111: Reserved.

01000: Reserved. 11000: Reserved.

01001: Reserved. 11001: Reserved.

01010: P1.2 11010: Reserved.

01011: P1.3 11011: Temperature Sensor

01100: P1.4 (only available on
24-pin devices)

11100: VDD Supply Voltage

01101: Reserved. 11101: Digital Supply Voltage
(VREG0 Output, 1.7 V Typical)01110: Reserved.

01111: Reserved. 11110: VDD Supply Voltage

11111: Ground

C8051F99x-C8051F98x

121 Rev. 1.2

Table 9.1. CIP-51 Instruction Set Summary

Mnemonic Description Bytes Clock
Cycles

Arithmetic Operations
ADD A, Rn Add register to A 1 1
ADD A, direct Add direct byte to A 2 2
ADD A, @Ri Add indirect RAM to A 1 2
ADD A, #data Add immediate to A 2 2
ADDC A, Rn Add register to A with carry 1 1
ADDC A, direct Add direct byte to A with carry 2 2
ADDC A, @Ri Add indirect RAM to A with carry 1 2
ADDC A, #data Add immediate to A with carry 2 2
SUBB A, Rn Subtract register from A with borrow 1 1
SUBB A, direct Subtract direct byte from A with borrow 2 2
SUBB A, @Ri Subtract indirect RAM from A with borrow 1 2
SUBB A, #data Subtract immediate from A with borrow 2 2
INC A Increment A 1 1
INC Rn Increment register 1 1
INC direct Increment direct byte 2 2
INC @Ri Increment indirect RAM 1 2
DEC A Decrement A 1 1
DEC Rn Decrement register 1 1
DEC direct Decrement direct byte 2 2
DEC @Ri Decrement indirect RAM 1 2
INC DPTR Increment Data Pointer 1 1
MUL AB Multiply A and B 1 4
DIV AB Divide A by B 1 8
DA A Decimal adjust A 1 1

Logical Operations
ANL A, Rn AND Register to A 1 1
ANL A, direct AND direct byte to A 2 2
ANL A, @Ri AND indirect RAM to A 1 2
ANL A, #data AND immediate to A 2 2
ANL direct, A AND A to direct byte 2 2
ANL direct, #data AND immediate to direct byte 3 3
ORL A, Rn OR Register to A 1 1
ORL A, direct OR direct byte to A 2 2
ORL A, @Ri OR indirect RAM to A 1 2
ORL A, #data OR immediate to A 2 2
ORL direct, A OR A to direct byte 2 2
ORL direct, #data OR immediate to direct byte 3 3
XRL A, Rn Exclusive-OR Register to A 1 1
XRL A, direct Exclusive-OR direct byte to A 2 2
XRL A, @Ri Exclusive-OR indirect RAM to A 1 2
XRL A, #data Exclusive-OR immediate to A 2 2
XRL direct, A Exclusive-OR A to direct byte 2 2
XRL direct, #data Exclusive-OR immediate to direct byte 3 3

C8051F99x-C8051F98x

132 Rev. 1.2

12. Special Function Registers
The direct-access data memory locations from 0x80 to 0xFF constitute the special function registers
(SFRs). The SFRs provide control and data exchange with the C8051F99x-C8051F98x's resources and
peripherals. The CIP-51 controller core duplicates the SFRs found in a typical 8051 implementation as well
as implementing additional SFRs used to configure and access the sub-systems unique to the
C8051F99x-C8051F98x. This allows the addition of new functionality while retaining compatibility with the
MCS-51™ instruction set. Table 12.1 and Table 12.2 list the SFRs implemented in the C8051F99x-
C8051F98x device family.

The SFR registers are accessed anytime the direct addressing mode is used to access memory locations
from 0x80 to 0xFF. SFRs with addresses ending in 0x0 or 0x8 (e.g., P0, TCON, SCON0, IE, etc.) are bit-
addressable as well as byte-addressable. All other SFRs are byte-addressable only. Unoccupied
addresses in the SFR space are reserved for future use. Accessing these areas will have an indeterminate
effect and should be avoided. Refer to the corresponding pages of the data sheet, as indicated in
Table 12.3, for a detailed description of each register.

Table 12.1. Special Function Register (SFR) Memory Map (Page 0x0)

F8 SPI0CN PCA0L PCA0H PCA0CPL0 PCA0CPH0 CS0THL CS0THH VDM0CN

F0 B P0MDIN P1MDIN CS0MD2 SMB0ADR SMB0ADM EIP1 EIP2

E8 ADC0CN PCA0CPL1 PCA0CPH1 PCA0CPL2 PCA0CPH2 CS0DL CS0DH RSTSRC

E0 ACC XBR0 XBR1 XBR2 IT01CF FLWR EIE1 EIE2

D8 PCA0CN PCA0MD PCA0CPM0 PCA0CPM1 PCA0CPM2 CS0SS CS0SE PCA0PWM

D0 PSW REF0CN CS0SCAN0 CS0SCAN1 P0SKIP P1SKIP IREF0CN P0MAT

C8 TMR2CN REG0CN TMR2RLL TMR2RLH TMR2L TMR2H PMU0FL P1MAT

C0 SMB0CN SMB0CF SMB0DAT ADC0GTL ADC0GTH ADC0LTL ADC0LTH P0MASK

B8 IP IREF0CN ADC0AC ADC0PWR ADC0TK ADC0L ADC0H P1MASK

B0 CS0CN OSCXCN OSCICN OSCICL PMU0CF FLSCL FLKEY

A8 IE CLKSEL CS0CF CS0MX RTC0ADR RTC0DAT RTC0KEY CS0MD1

A0 P2 SPI0CFG SPI0CKR SPI0DAT P0MDOUT P1MDOUT P2MDOUT SFRPAGE

98 SCON0 SBUF0 CRC0CNT CPT0CN CRC0FLIP CPT0MD CRC0AUTO CPT0MX

90 P1 TMR3CN TMR3RLL TMR3RLH TMR3L TMR3H ADC0MX ADC0CF

88 TCON TMOD TL0 TL1 TH0 TH1 CKCON PSCTL

80 P0 SP DPL DPH CRC0CN CRC0IN CRC0DAT PCON

0(8) 1(9) 2(A) 3(B) 4(C) 5(D) 6(E) 7(F)

(bit addressable)

C8051F99x-C8051F98x

138 Rev. 1.2

13. Interrupt Handler
The C8051F99x-C8051F98x microcontroller family includes an extended interrupt system supporting
multiple interrupt sources and two priority levels. The allocation of interrupt sources between on-chip
peripherals and external input pins varies according to the specific version of the device. Refer to
Table 13.1, “Interrupt Summary,” on page 140 for a detailed listing of all interrupt sources supported by the
device. Refer to the data sheet section associated with a particular on-chip peripheral for information
regarding valid interrupt conditions for the peripheral and the behavior of its interrupt-pending flag(s).

Each interrupt source has one or more associated interrupt-pending flag(s) located in an SFR or an
indirect register. When a peripheral or external source meets a valid interrupt condition, the associated
interrupt-pending flag is set to logic 1. If both global interrupts and the specific interrupt source is enabled,
a CPU interrupt request is generated when the interrupt-pending flag is set.

As soon as execution of the current instruction is complete, the CPU generates an LCALL to a
predetermined address to begin execution of an interrupt service routine (ISR). Each ISR must end with an
RETI instruction, which returns program execution to the next instruction that would have been executed if
the interrupt request had not occurred. If interrupts are not enabled, the interrupt-pending flag is ignored by
the hardware and program execution continues as normal. (The interrupt-pending flag is set to logic 1
regardless of the interrupt's enable/disable state.)

Some interrupt-pending flags are automatically cleared by hardware when the CPU vectors to the ISR.
However, most are not cleared by the hardware and must be cleared by software before returning from the
ISR. If an interrupt-pending flag remains set after the CPU completes the return-from-interrupt (RETI)
instruction, a new interrupt request will be generated immediately and the CPU will re-enter the ISR after
the completion of the next instruction.

13.1. Enabling Interrupt Sources

Each interrupt source can be individually enabled or disabled through the use of an associated interrupt
enable bit in the Interrupt Enable and Extended Interrupt Enable SFRs. However, interrupts must first be
globally enabled by setting the EA bit (IE.7) to logic 1 before the individual interrupt enables are
recognized. Setting the EA bit to logic 0 disables all interrupt sources regardless of the individual interrupt-
enable settings. Note that interrupts which occur when the EA bit is set to logic 0 will be held in a pending
state, and will not be serviced until the EA bit is set back to logic 1.

13.2. MCU Interrupt Sources and Vectors

The CPU services interrupts by generating an LCALL to a predetermined address (the interrupt vector
address) to begin execution of an interrupt service routine (ISR). The interrupt vector addresses
associated with each interrupt source are listed in Table 13.1 on page 140. Software should ensure that
the interrupt vector for each enabled interrupt source contains a valid interrupt service routine.

Software can simulate an interrupt by setting any interrupt-pending flag to logic 1. If interrupts are enabled
for the flag, an interrupt request will be generated and the CPU will vector to the ISR address associated
with the interrupt-pending flag.

Rev. 1.2 151

C8051F99x-C8051F98x

14.1.2. Flash Erase Procedure

The Flash memory is organized in 512-byte pages. The erase operation applies to an entire page (setting
all bytes in the page to 0xFF). To erase an entire Flash page, perform the following steps:

1. Save current interrupt state and disable interrupts.

2. Set the PSEE bit (register PSCTL).

3. Set the PSWE bit (register PSCTL).

4. Write the first key code to FLKEY: 0xA5.

5. Write the second key code to FLKEY: 0xF1.

6. Using the MOVX instruction, write a data byte to any location within the page to be erased.

7. Clear the PSWE and PSEE bits.

8. Restore previous interrupt state.

Steps 4–6 must be repeated for each 512-byte page to be erased.

Notes:

1. Flash security settings may prevent erasure of some Flash pages, such as the reserved area and the page
containing the lock bytes. For a summary of Flash security settings and restrictions affecting Flash erase
operations, please see Section “14.3. Security Options” on page 152.

2. 8-bit MOVX instructions cannot be used to erase or write to Flash memory at addresses higher than 0x00FF.

14.1.3. Flash Write Procedure

A write to Flash memory can clear bits to logic 0 but cannot set them; only an erase operation can set bits
to logic 1 in Flash. A byte location to be programmed should be erased before a new value is written.

The recommended procedure for writing a single byte in Flash is as follows:

1. Save current interrupt state and disable interrupts.

2. Ensure that the Flash byte has been erased (has a value of 0xFF).

3. Set the PSWE bit (register PSCTL).

4. Clear the PSEE bit (register PSCTL).

5. Write the first key code to FLKEY: 0xA5.

6. Write the second key code to FLKEY: 0xF1.

7. Using the MOVX instruction, write a single data byte to the desired location within the 1024-byte sector.

8. Clear the PSWE bit.

9. Restore previous interrupt state.

Steps 5–7 must be repeated for each byte to be written.

Notes:

1. Flash security settings may prevent writes to some areas of Flash, such as the reserved area. For a summary
of Flash security settings and restrictions affecting Flash write operations, please see Section “14.3. Security
Options” on page 152.

2. 8-bit MOVX instructions cannot be used to erase or write to Flash memory at addresses higher than 0x00FF.

14.2. Non-volatile Data Storage

The Flash memory can be used for non-volatile data storage as well as program code. This allows data
such as calibration coefficients to be calculated and stored at run time. Data is written using the MOVX
write instruction and read using the MOVC instruction. MOVX read instructions always target XRAM.

C8051F99x-C8051F98x

158 Rev. 1.2

14.6. Minimizing Flash Read Current

The Flash memory in the C8051F99x-C8051F98x devices is responsible for a substantial portion of the
total digital supply current when the device is executing code. Below are suggestions to minimize Flash
read current.

1. Use idle, suspend, or sleep modes while waiting for an interrupt, rather than polling the interrupt flag.
Idle Mode is particularly well-suited for use in implementing short pauses, since the wake-up time is no
more than three system clock cycles. See the Power Management chapter for details on the various
low-power operating modes.

2. C8051F99x-C8051F98x devices have a one-shot timer that saves power when operating at system
clock frequencies of 14 MHz or less. The one-shot timer generates a minimum-duration enable signal
for the Flash sense amps on each clock cycle in which the Flash memory is accessed. This allows the
Flash to remain in a low power state for the remainder of the long clock cycle.
At clock frequencies above 14 MHz, the system clock cycle becomes short enough that the one-shot
timer no longer provides a power benefit. Disabling the one-shot timer at higher frequencies reduces
power consumption. The one-shot is enabled by default, and it can be disabled (bypassed) by setting
the BYPASS bit (FLSCL.6) to logic 1. To re-enable the one-shot, clear the BYPASS bit to logic 0.

3. Flash read current depends on the number of address lines that toggle between sequential Flash read
operations. In most cases, the difference in power is relatively small (on the order of 5%).

The Flash memory is organized in rows of 64 bytes. A substantial current increase can be detected
when the read address jumps from one row in the Flash memory to another. Consider a 3-cycle loop
(e.g., SJMP $, or while(1);) which straddles a Flash row boundary. The Flash address jumps from one
row to another on two of every three clock cycles. This can result in a current increase of up 30% when
compared to the same 3-cycle loop contained entirely within a single row.

To minimize the power consumption of small loops, it is best to locate them within a single row, if
possible. To check if a loop is contained within a Flash row, divide the starting address of the first
instruction in the loop by 64. If the remainder (result of modulo operation) plus the length of the loop is
less than 63, then the loop fits inside a single Flash row. Otherwise, the loop will be straddling two
adjacent Flash rows. If a loop executes in 20 or more clock cycles, then the transitions from one row to
another will occur on relatively few clock cycles, and any resulting increase in operating current will be
negligible.

Rev. 1.2 161

C8051F99x-C8051F98x

SFR Page = 0x0; SFR Address = 0xB6

SFR Page = All; SFR Address = 0xE5

SFR Definition 14.5. FLSCL: Flash Scale

Bit 7 6 5 4 3 2 1 0

Name BYPASS

Type R R/W R R R R R R

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7 Reserved Always Write to 0.

6 BYPASS Flash Read Timing One-Shot Bypass.

0: The one-shot determines the Flash read time. This setting should be used for oper-
ating frequencies less than 14 MHz.
1: The system clock determines the Flash read time. This setting should be used for
frequencies greater than 14 MHz.

5:0 Reserved Reserved. Always Write to 000000b.

Note: Operations which clear the BYPASS bit do not need to be immediately followed by a benign 3-byte instruction.
For code compatibility with C8051F930/31/20/21 devices, a benign 3-byte instruction whose third byte is a
don't care should follow the clear operation. See the C8051F93x-C8051F92x data sheet for more details.

SFR Definition 14.6. FLWR: Flash Write Only

Bit 7 6 5 4 3 2 1 0

Name FLWR[7:0]

Type W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 FLWR[7:0] Flash Write Only.

All writes to this register have no effect on system operation.

Rev. 1.2 165

C8051F99x-C8051F98x

15.4. Suspend Mode

Setting the Suspend Mode Select bit (PMU0CF.6) causes the system clock to be gated off and all internal
oscillators disabled. The system clock source must be set to the low power internal oscillator or the preci-
sion oscillator prior to entering Suspend Mode. All digital logic (timers, communication peripherals, inter-
rupts, CPU, etc.) stops functioning until one of the enabled wake-up sources occurs.

The following wake-up sources can be configured to wake the device from Suspend Mode:

 CS0 End of Conversion or End of Scan

 SmaRTClock Oscillator Fail

 SmaRTClock Alarm

 Port Match Event

 Comparator0 Rising Edge
Note: Upon wake-up from suspend mode, PMU0 requires two system clocks in order to update the PMU0CF wake-

up flags. All flags will read back a value of '0' during the first two system clocks following a wake-up from
suspend mode.

In addition, a noise glitch on RST that is not long enough to reset the device will cause the device to exit
suspend. In order for the MCU to respond to the pin reset event, software must not place the device back
into suspend mode for a period of 15 µs. The PMU0CF register may be checked to determine if the wake-
up was due to a falling edge on the /RST pin. If the wake-up source is not due to a falling edge on RST,
there is no time restriction on how soon software may place the device back into suspend mode. A 4.7 kW
pullup resistor to VDD is recommend for RST to prevent noise glitches from waking the device.

15.5. Sleep Mode

Setting the Sleep Mode Select bit (PMU0CF.7) turns off the internal 1.8 V regulator (VREG0) and switches
the power supply of all on-chip RAM to the VDD pin (see Figure 15.1). Power to most digital logic on the
chip is disconnected; only PMU0 and the SmaRTClock remain powered. Analog peripherals remain pow-
ered in two-cell mode. Only the Comparators remain functional when the device enters Sleep Mode. All
other analog peripherals (CS0, ADC0, IREF0, External Oscillator, etc.) should be disabled prior to entering
Sleep Mode. The system clock source must be set to the low power internal oscillator prior to entering
Sleep Mode.

Important Note: The precision internal oscillator may potentially lock up after exiting Sleep mode. Sys-
tems using Sleep Mode should switch to the low power oscillator prior to entering Sleep Mode:

1. Switch the system clock to the low power oscillator (CLKSEL = 0x04).

2. Turn off the Precision Oscillator (OSCICN &= ~0x80).

3. Enter Sleep.

4. Exit Sleep.

5. Turn on the Precision Oscillator (OSCICN |= 0x80).

6. Switch the system clock to the Precision Oscillator (CLKSEL = 0x00).

GPIO pins configured as digital outputs will retain their output state during sleep mode. In two-cell mode,
they will maintain the same current drive capability in sleep mode as they have in normal mode.

GPIO pins configured as digital inputs can be used during sleep mode as wakeup sources using the port
match feature. In two-cell mode, they will maintain the same input level specs in sleep mode as they have
in normal mode.

C8051F99x-C8051F98x devices support a wakeup request for external devices. Upon exit from sleep
mode, the wake-up request signal is driven low, allowing other devices in the system to wake up from their
low power modes.

C8051F99x-C8051F98x

168 Rev. 1.2

SFR Page = 0x0; SFR Address = 0xB5

SFR Definition 15.1. PMU0CF: Power Management Unit Configuration1,2,3

Bit 7 6 5 4 3 2 1 0

Name SLEEP SUSPEND CLEAR RSTWK RTCFWK RTCAWK PMATWK CPT0WK

Type W W W R R/W R/W R/W R/W

Reset 0 0 0 Varies Varies Varies Varies Varies

Bit Name Description Write Read

7 SLEEP Sleep Mode Select Writing 1 places the
device in Sleep Mode.

N/A

6 SUSPEND Suspend Mode Select Writing 1 places the
device in Suspend Mode.

N/A

5 CLEAR Wake-up Flag Clear Writing 1 clears all wake-
up flags.

N/A

4 RSTWK Reset Pin Wake-up Flag N/A Set to 1 if a glitch has
been detected on RST.

3 RTCFWK SmaRTClock Oscillator
Fail Wake-up Source
Enable and Flag

0: Disable wake-up on
SmaRTClock Osc. Fail.
1: Enable wake-up on
SmaRTClock Osc. Fail.

Set to 1 if the SmaRT-
Clock Oscillator has failed.

2 RTCAWK SmaRTClock Alarm
Wake-up Source Enable
and Flag

0: Disable wake-up on
SmaRTClock Alarm.
1: Enable wake-up on
SmaRTClock Alarm.

Set to 1 if a SmaRTClock
Alarm has occurred.

1 PMATWK Port Match Wake-up
Source Enable and Flag

0: Disable wake-up on
Port Match Event.
1: Enable wake-up on
Port Match Event.

Set to 1 if a Port Match
Event has occurred.

0 CPT0WK Comparator0 Wake-up
Source Enable and Flag

0: Disable wake-up on
Comparator0 rising edge.
1: Enable wake-up on
Comparator0 rising edge.

Set to 1 if Comparator0
rising edge caused the last
wake-up.

Notes:
1. Read-modify-write operations (ORL, ANL, etc.) should not be used on this register. Wake-up sources must

be re-enabled each time the SLEEP or SUSPEND bits are written to 1.
2. The Low Power Internal Oscillator cannot be disabled and the MCU cannot be placed in Suspend or Sleep

Mode if any wake-up flags are set to 1. Software should clear all wake-up sources after each reset and after
each wake-up from Suspend or Sleep Modes.

3. PMU0 requires two system clocks to update the wake-up source flags after waking from Suspend mode. The
wake-up source flags will read ‘0’ during the first two system clocks following the wake from Suspend mode.

Rev. 1.2 200

C8051F99x-C8051F98x

20.1.5. RTC0ADR Autoincrement Feature

For ease of reading and writing the 32-bit CAPTURE and ALARM values, RTC0ADR automatically incre-
ments after each read or write to a CAPTUREn or ALARMn register. This speeds up the process of setting
an alarm or reading the current SmaRTClock timer value. Autoincrement is always enabled.

Recommended Instruction Timing for a multi-byte register read with short strobe and auto read enabled:

mov RTC0ADR, #0d0h
nop
nop
nop
mov A, RTC0DAT
nop
nop
mov A, RTC0DAT
nop
nop
mov A, RTC0DAT
nop
nop
mov A, RTC0DAT

Recommended Instruction Timing for a multi-byte register write with short strobe enabled:

mov RTC0ADR, #010h
mov RTC0DAT, #05h
nop
mov RTC0DAT, #06h
nop
mov RTC0DAT, #07h
nop
mov RTC0DAT, #08h
nop

Rev. 1.2 204

C8051F99x-C8051F98x

20.2.2. Using the SmaRTClock Oscillator in Self-Oscillate Mode

When using Self-Oscillate Mode, the XTAL3 and XTAL4 pins are internally shorted together. The following
steps show how to configure SmaRTClock for use in Self-Oscillate Mode:

1. Set SmaRTClock to Self-Oscillate Mode (XMODE = 0).

2. Set the desired oscillation frequency:
For oscillation at about 20 kHz, set BIASX2 = 0.
For oscillation at about 40 kHz, set BIASX2 = 1.

3. The oscillator starts oscillating instantaneously.

4. Fine tune the oscillation frequency by adjusting the load capacitance (RTC0XCF).

20.2.3. Using the Low Frequency Oscillator (LFO)

The low frequency oscillator provides an ultra low power, on-chip clock source to the SmaRTClock. The
typical frequency of oscillation is 16.4 kHz ±20%. No external components are required to use the LFO and
the XTAL3 and XTAL4 pins do not need to be shorted together.

The following steps show how to configure SmaRTClock for use with the LFO:

1. Enable and select the Low Frequency Oscillator (LFOEN = 1).

2. The LFO starts oscillating instantaneously.

When the LFO is enabled, the SmaRTClock oscillator increments bit 1 of the 32-bit timer (instead of bit 0).
This effectively multiplies the LFO frequency by 2, making the RTC timebase behave as if a 32.768 kHz
crystal is connected at the output.

Rev. 1.2 226

C8051F99x-C8051F98x

SFR Page= 0x0; SFR Address = 0xBF

SFR Page = 0x0; SFR Address = 0xCF

SFR Definition 21.6. P1MASK: Port1 Mask Register

Bit 7 6 5 4 3 2 1 0

Name P1MASK[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 P1MASK[7:0] Port 1 Mask Value.

Selects P1 pins to be compared to the corresponding bits in P1MAT.
0: P1.n pin logic value is ignored and cannot cause a Port Mismatch event.
1: P1.n pin logic value is compared to P1MAT.n.

SFR Definition 21.7. P1MAT: Port1 Match Register

Bit 7 6 5 4 3 2 1 0

Name P1MAT[7:0]

Type R/W

Reset 1 1 1 1 1 1 1 1

Bit Name Function

7:0 P1MAT[7:0] Port 1 Match Value.

Match comparison value used on Port 1 for bits in P1MASK which are set to 1.
0: P1.n pin logic value is compared with logic LOW.
1: P1.n pin logic value is compared with logic HIGH.

Rev. 1.2 232

C8051F99x-C8051F98x

SFR Page = 0x0; SFR Address = 0xF2

SFR Page = 0x0; SFR Address = 0xA5

SFR Definition 21.15. P1MDIN: Port1 Input Mode

Bit 7 6 5 4 3 2 1 0

Name P1MDIN[7:0]

Type R/W

Reset 1 1 1 1 1 1 1 1

Bit Name Function

7:0 P1MDIN[7:0] Analog Configuration Bits for P1.7–P1.0 (respectively).

Port pins configured for analog mode have their weak pullup and digital receiver
disabled. The digital driver is not explicitly disabled.
0: Corresponding P1.n pin is configured for analog mode.
1: Corresponding P1.n pin is not configured for analog mode.

SFR Definition 21.16. P1MDOUT: Port1 Output Mode

Bit 7 6 5 4 3 2 1 0

Name P1MDOUT[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 P1MDOUT[7:0] Output Configuration Bits for P1.7–P1.0 (respectively).

These bits control the digital driver even when the corresponding bit in register
P1MDIN is logic 0.
0: Corresponding P1.n Output is open-drain.
1: Corresponding P1.n Output is push-pull.

Rev. 1.2 234

C8051F99x-C8051F98x

SFR Page = 0x0; SFR Address = 0xA6

SFR Page = 0xF; SFR Address = 0x9D

SFR Definition 21.19. P2MDOUT: Port2 Output Mode

Bit 7 6 5 4 3 2 1 0

Name P2MDOUT

Type R/W R R R R R R R

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7 P2MDOUT Output Configuration Bits for P2.7.

These bits control the digital driver.
0: P2.7 Output is open-drain.
1: P2.7 Output is push-pull.

6:0 Unused Read = 0000000b; Write = Don’t Care.

SFR Definition 21.20. P2DRV: Port2 Drive Strength

Bit 7 6 5 4 3 2 1 0

Name P2DRV

Type R/W R R R R R R R

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7 P2DRV Drive Strength Configuration Bits for P2.7.

Configures digital I/O Port cells to high or low output drive strength.
0: P2.7 Output has low output drive strength.
1: P2.7 Output has high output drive strength.

6:0 Unused Read = 0000000b; Write = Don’t Care.

C8051F99x-C8051F98x

265 Rev. 1.2

24. Enhanced Serial Peripheral Interface (SPI0)
The Enhanced Serial Peripheral Interface (SPI0) provides access to a flexible, full-duplex synchronous
serial bus. SPI0 can operate as a master or slave device in both 3-wire or 4-wire modes, and supports
multiple masters and slaves on a single SPI bus. The slave-select (NSS) signal can be configured as an
input to select SPI0 in slave mode, or to disable Master Mode operation in a multi-master environment,
avoiding contention on the SPI bus when more than one master attempts simultaneous data transfers.
NSS can also be configured as a chip-select output in master mode, or disabled for 3-wire operation.
Additional general purpose port I/O pins can be used to select multiple slave devices in master mode.

Figure 24.1. SPI Block Diagram

SFR Bus

Data Path
Control

SFR Bus

Write
SPI0DAT

Receive Data Buffer

SPI0DAT

01234567
Shift Register

SPI CONTROL LOGIC

SPI0CKR

S
C

R
7

S
C

R
6

S
C

R
5

S
C

R
4

S
C

R
3

S
C

R
2

S
C

R
1

S
C

R
0

SPI0CFG SPI0CN

Pin Interface
Control

Pin
Control
Logic

C
R
O
S
S
B
A
R

Port I/O

Read
SPI0DAT

SPI IRQ

Tx Data

Rx Data

SCK

MOSI

MISO

NSS

Transmit Data Buffer

Clock Divide
Logic

SYSCLK

C
K

P
H

A
C

K
P

O
L

S
LV

S
E

L

N
S

S
M

D
1

N
S

S
M

D
0

S
P

IB
S

Y
M

S
T

E
N

N
S

S
IN

S
R

M
T

R
X

B
M

T

S
P

IF
W

C
O

L
M

O
D

F
R

X
O

V
R

N

T
X

B
M

T
S

P
IE

N

Rev. 1.2 266

C8051F99x-C8051F98x

24.1. Signal Descriptions

The four signals used by SPI0 (MOSI, MISO, SCK, NSS) are described below.

24.1.1. Master Out, Slave In (MOSI)

The master-out, slave-in (MOSI) signal is an output from a master device and an input to slave devices. It
is used to serially transfer data from the master to the slave. This signal is an output when SPI0 is
operating as a master and an input when SPI0 is operating as a slave. Data is transferred most-significant
bit first. When configured as a master, MOSI is driven by the MSB of the shift register in both 3- and 4-wire
mode.

24.1.2. Master In, Slave Out (MISO)

The master-in, slave-out (MISO) signal is an output from a slave device and an input to the master device.
It is used to serially transfer data from the slave to the master. This signal is an input when SPI0 is
operating as a master and an output when SPI0 is operating as a slave. Data is transferred most-
significant bit first. The MISO pin is placed in a high-impedance state when the SPI module is disabled and
when the SPI operates in 4-wire mode as a slave that is not selected. When acting as a slave in 3-wire
mode, MISO is always driven by the MSB of the shift register.

24.1.3. Serial Clock (SCK)

The serial clock (SCK) signal is an output from the master device and an input to slave devices. It is used
to synchronize the transfer of data between the master and slave on the MOSI and MISO lines. SPI0
generates this signal when operating as a master. The SCK signal is ignored by a SPI slave when the
slave is not selected (NSS = 1) in 4-wire slave mode.

24.1.4. Slave Select (NSS)

The function of the slave-select (NSS) signal is dependent on the setting of the NSSMD1 and NSSMD0
bits in the SPI0CN register. There are three possible modes that can be selected with these bits:

1. NSSMD[1:0] = 00: 3-Wire Master or 3-Wire Slave Mode: SPI0 operates in 3-wire mode, and NSS is
disabled. When operating as a slave device, SPI0 is always selected in 3-wire mode. Since no select
signal is present, SPI0 must be the only slave on the bus in 3-wire mode. This is intended for point-to-
point communication between a master and one slave.

2. NSSMD[1:0] = 01: 4-Wire Slave or Multi-Master Mode: SPI0 operates in 4-wire mode, and NSS is
enabled as an input. When operating as a slave, NSS selects the SPI0 device. When operating as a
master, a 1-to-0 transition of the NSS signal disables the master function of SPI0 so that multiple
master devices can be used on the same SPI bus.

3. NSSMD[1:0] = 1x: 4-Wire Master Mode: SPI0 operates in 4-wire mode, and NSS is enabled as an
output. The setting of NSSMD0 determines what logic level the NSS pin will output. This configuration
should only be used when operating SPI0 as a master device.

See Figure 24.2, Figure 24.3, and Figure 24.4 for typical connection diagrams of the various operational
modes. Note that the setting of NSSMD bits affects the pinout of the device. When in 3-wire master or
3-wire slave mode, the NSS pin will not be mapped by the crossbar. In all other modes, the NSS signal will
be mapped to a pin on the device. See Section “21. Port Input/Output” on page 215 for general purpose
port I/O and crossbar information.

24.2. SPI0 Master Mode Operation

A SPI master device initiates all data transfers on a SPI bus. SPI0 is placed in master mode by setting the
Master Enable flag (MSTEN, SPI0CN.6). Writing a byte of data to the SPI0 data register (SPI0DAT) when
in master mode writes to the transmit buffer. If the SPI shift register is empty, the byte in the transmit buffer
is moved to the shift register, and a data transfer begins. The SPI0 master immediately shifts out the data
serially on the MOSI line while providing the serial clock on SCK. The SPIF (SPI0CN.7) flag is set to logic

