E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	CIP-51 8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	Brown-out Detect/Reset, Cap Sense, POR, PWM, Temp Sensor, WDT
Number of I/O	17
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-SSOP (0.154", 3.90mm Width)
Supplier Device Package	24-QSOP
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f996-c-gu

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 22.1. SMBus Clock Source Selection	40
Table 22.2. Minimum SDA Setup and Hold Times	41
Table 22.3. Sources for Hardware Changes to SMB0CN	45
Table 22.4. Hardware Address Recognition Examples (EHACK = 1)24	46
Table 22.5. SMBus Status Decoding With Hardware ACK Generation Disabled	
(EHACK = 0)	53
Table 22.6. SMBus Status Decoding With Hardware ACK Generation Enabled	
(EHACK = 1)	55
Table 23.1. Timer Settings for Standard Baud Rates	
Using The Internal 24.5 MHz Oscillator	64
Table 23.2. Timer Settings for Standard Baud Rates	
Using an External 22.1184 MHz Oscillator	64
Table 24.1. SPI Slave Timing Parameters 2	77
Table 25.1. Timer 0 Running Modes 28	80
Table 26.1. PCA Timebase Input Options	01
Table 26.2. PCA0CPM and PCA0PWM Bit Settings for PCA Capture/Compare	
Modules	03
Table 26.3. Watchdog Timer Timeout Intervals1 3	12

Dimension	Min	Мах		
D	2.71	REF		
D2	1.60	1.80		
е	0.50	BSC		
Е	2.71	REF		
E2	1.60	1.80		
f	2.53 REF			
GD	2.10	—		
GE	2.10	—		
W	—	0.34		
Х	—	0.28		
Y	0.61 REF			
ZE	_	3.31		
ZD	_	3.31		

Table 3.3. PCB Land Pattern

Notes:

General

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.
- 3. This Land Pattern Design is based on IPC-SM-782 guidelines.
- **4.** All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm.

Solder Mask Design

1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be $60 \ \mu m$ minimum, all the way around the pad.

Stencil Design

- 1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.
- 2. The stencil thickness should be 0.125 mm (5 mils).
- 3. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.
- **4.** A 1.45 x 1.45 mm square aperture should be used for the center pad. This provides approximately 70% solder paste coverage on the pad, which is optimum to assure correct component stand-off.

Card Assembly

- 1. A No-Clean, Type-3 solder paste is recommended.
- 2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Option 1 Irregular Corner

Option 1 Edge Exposed

Option 2 Edge Pull-Back

Figure 3.9. QFN-24 Package Drawing

Dimension	Min	Тур	Max	Dimension	Min	Тур	Max
A	0.70	0.75	0.80	L	0.30	0.40	0.50
A1	0.00	0.02	0.05	L1	0.00	—	0.15
b	0.18	0.25	0.30	aaa	—	—	0.15
D	4.00 BSC		bbb	_	—	0.10	
D2	2.55	2.70	2.80	ddd	_	—	0.05
е	0.50 BSC			eee	—	—	0.08
E	4.00 BSC		Z	_	0.24		
E2	2.55	2.70	2.80	Y	_	0.18	

Table 3.4. QFN-24 Package Dimensions

Notes:

1. All dimensions shown are in millimeters (mm) unless otherwise noted.

2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.

3. This drawing conforms to the JEDEC Solid State Outline MO-220, variation WGGD except for custom features D2, E2, Z, Y, and L which are toleranced per supplier designation.

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

Table 4.5. Power Management Electrical Specifications

 V_{DD} = 1.8 to 3.6 V, -40 to +85 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
Idle Mode Wake-up Time		2	—	3	SYSCLKs
Suspend Mode Wake-up Time	CLKDIV = 0x00	—	400	—	ns
	Low Power or Precision Osc.				
Sleep Mode Wake-up Time		_	2	—	μs

Table 4.6. Flash Electrical Characteristics

 V_{DD} = 1.8 to 3.6 V, –40 to +85 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
Flash Size	C8051F980/1/6/7, C8051F990/1/6/7	8192		_	bytes
	C8051F982/3/8/9	4096	—	_	bytes
	C8051F985	2048	—	_	bytes
Endurance		20 k	100k	_	Erase/Write Cycles
Erase Cycle Time		28	32	36	ms
Write Cycle Time		57	64	71	μs

Table 4.7. Internal Precision Oscillator Electrical Characteristics

 V_{DD} = 1.8 to 3.6 V; T_A = -40 to +85 °C unless otherwise specified; Using factory-calibrated settings.

Parameter	Conditions	Min	Тур	Max	Units		
Oscillator Frequency	−40 to +85 °C, V _{DD} = 1.8−3.6 V	24	24.5	25	MHz		
Oscillator Supply Current (from V _{DD})	25 °C; includes bias current of 90–100 μA	_	300*	_	μA		
*Note: Does not include clock divider or clock tree supply current.							

Table 4.8. Internal Low-Power Oscillator Electrical Characteristics

 V_{DD} = 1.8 to 3.6 V; T_A = -40 to +85 °C unless otherwise specified; Using factory-calibrated settings.

Parameter	Conditions	Min	Тур	Max	Units		
Oscillator Frequency	−40 to +85 °C, V _{DD} = 1.8−3.6 V	18	20	22	MHz		
Oscillator Supply Current (from V _{DD})	25 °C No separate bias current required	_	100*	_	μΑ		
*Note: Does not include clock divider or clock tree supply current.							

Table 4.10. ADC0 Electrical Characteristics (Continued)

 V_{DD} = 1.8 to 3.6 V, VREF = 1.65 V (REFSL[1:0] = 11), -40 to +85 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Max	Units
Analog Inputs					
ADC Input Voltage Range	Single Ended (AIN+ – GND)	0		VREF	V
Absolute Pin Voltage with respect to GND	Single Ended	0		VDD	V
Sampling Capacitance	1x Gain		16	—	pF
Sampling Capacitance	0.5x Gain		13		
Input Multiplexer Impedance		—	5	—	kΩ
Power Specifications					
	Normal Power Mode:				
	Conversion Mode (300 ksps)		650	—	μA
Power Supply Current	Tracking Mode (0 ksps)		740		
(V _{DD} supplied to ADC0)	Low Power Mode:				
	Conversion Mode (150 ksps)		370		
	Tracking Mode (0 ksps)		400	—	
Dower Supply Rejection	Internal High Speed VREF		67		dB
Power Supply Rejection	External VREF	—	74	—	
 INL and DNL specifications for The maximum code in 12-bit m 	12-bit mode do not include the first on the first of the second s	or last fou r is referer	r ADC code	es. he maxim	um code.

3. Performance in 8-bit mode is similar to 10-bit mode.

Table 4.11. Temperature Sensor Electrical Characteristics

 V_{DD} = 1.8 to 3.6 V, -40 to +85 °C unless otherwise specified.

Parameter	Conditions	Min	Тур	Мах	Units			
Linearity			±1	—	°C			
Slope			3.40	—	mV/°C			
Slope Error*			40	—	µV/°C			
Offset	Temp = 25 °C		1025	—	mV			
Offset Error*	Temp = 25 °C		18	—	mV			
Temperature Sensor Turn-On Time		—	1.7	—	μs			
Supply Current			35	_	μA			
*Note: Represents one standard deviation from the mean.								

Table 4.14. Comparator Electrical Characteristics V_{DD} = 1.8 to 3.6 V, -40 to +85 °C unless otherwise noted.

Parameter	Conditions	Min	Тур	Мах	Units
Response Time:	CP0+ - CP0- = 100 mV		120		ns
Mode 0, V _{DD} = 2.4 V, V _{CM} [*] = 1.2 V	CP0+ - CP0- = -100 mV	_	110	—	ns
Response Time:	CP0+ - CP0- = 100 mV	_	180	—	ns
Mode 1, V _{DD} = 2.4 V, V _{CM} [*] = 1.2 V	CP0+ - CP0- = -100 mV	_	220	—	ns
Response Time:	CP0+ - CP0- = 100 mV		350	—	ns
Mode 2, V _{DD} = 2.4 V, V _{CM} * = 1.2 V	CP0+ - CP0- = -100 mV		600	—	ns
Response Time:	CP0+ - CP0- = 100 mV	_	1240	—	ns
Mode 3, $V_{DD} = 2.4 \text{ V}$, $V_{CM}^* = 1.2 \text{ V}$	CP0+ - CP0- = -100 mV	_	3200	—	ns
Common-Mode Rejection Ratio			1.5	—	mV/V
Inverting or Non-Inverting Input Voltage Range		-0.25	_	V _{DD} + 0.25	V
Input Capacitance		_	12	—	pF
Input Bias Current			1	—	nA
Input Offset Voltage		-7	_	+7	mV
Power Supply					
Power Supply Rejection		_	0.1	—	mV/V
	VDD = 3.6 V	_	0.6	—	μs
	VDD = 3.0 V	_	1.0	—	μs
rower-up nine	VDD = 2.4 V	_	1.8	—	μs
	VDD = 1.8 V	_	10	—	μs
	Mode 0	_	23	—	μA
Supply Current at DC	Mode 1	_	8.8	—	μA
Supply Current at DC	Mode 2		2.6	—	μA
	Mode 3	_	0.4	—	μA
*Note: Vcm is the common-mode voltage	ge on CP0+ and CP0–.				

SFR Definition 5.3. ADC0AC: ADC0 Accumulator Configuration

Bit	7	6	5	4	3	2	1	0
Name	AD012BE	AD0AE	Ą	D0SJST[2:0)]	,	AD0RPT[2:0]
Туре	R/W	W	R/W				R/W	
Reset	0	0	0	0	0	0	0	0

SFR Page = 0x0; SFR Address = 0xBA

Bit	Name	Function
7	AD012BE	ADC0 12-Bit Mode Enable. Enables 12-bit Mode on C8051F980/6 and C8051F990/6 devices. 0: 12-bit Mode Disabled. 1: 12-bit Mode Enabled.
6	AD0AE	ADC0 Accumulate Enable. Enables multiple conversions to be accumulated when burst mode is disabled. 0: ADC0H:ADC0L contain the result of the latest conversion when Burst Mode is disabled. 1: ADC0H:ADC0L contain the accumulated conversion results when Burst Mode is disabled. Software must write 0x0000 to ADC0H:ADC0L to clear the accumu- lated result. This bit is write-only. Always reads 0b.
5:3	AD0SJST[2:0]	ADC0 Accumulator Shift and Justify. Specifies the format of data read from ADC0H:ADC0L. 000: Right justified. No shifting applied. 001: Right justified. Shifted right by 1 bit. 010: Right justified. Shifted right by 2 bits. 011: Right justified. Shifted right by 3 bits. 100: Left justified. No shifting applied. All remaining bit combinations are reserved.
2:0	AD0RPT[2:0]	 ADC0 Repeat Count. Selects the number of conversions to perform and accumulate in Burst Mode. This bit field must be set to 000 if Burst Mode is disabled. 000: Perform and Accumulate 1 conversion. 001: Perform and Accumulate 4 conversions. 010: Perform and Accumulate 8 conversions. 011: Perform and Accumulate 16 conversions. 100: Perform and Accumulate 32 conversions. 101: Perform and Accumulate 64 conversions. All remaining bit combinations are reserved.

6. Programmable Current Reference (IREF0)

C8051F99x-C8051F98x devices include an on-chip programmable current reference (source or sink) with two output current settings: Low Power Mode and High Current Mode. The maximum current output in Low Power Mode is 63 μ A (1 μ A steps) and the maximum current output in High Current Mode is 504 μ A (8 μ A steps).

The current source/sink is controlled though the IREF0CN special function register. It is enabled by setting the desired output current to a non-zero value. It is disabled by writing 0x00 to IREF0CN. The port I/O pin associated with ISRC0 should be configured as an analog input and skipped in the Crossbar. See Section "21. Port Input/Output" on page 215 for more details.

SFR Definition 6.1. IREF0CN: Current Reference Control

Bit	7	6	5	4	3	2	1	0			
Name	SINK	MODE	IREFODAT								
Туре	R/W	R/W		R/W							
Reset	0	0	0	0	0	0	0	0			

SFR Page = 0x0; SFR Address = 0xD6

Bit	Name	Function
7	SINK	IREF0 Current Sink Enable.
		Selects if IREF0 is a current source or a current sink.
		0: IREF0 is a current source.
		1: IREF0 is a current sink.
6	MDSEL	IREF0 Output Mode Select.
		Selects Low Power or High Current Mode.
		0: Low Power Mode is selected (step size = 1 μ A).
		1: High Current Mode is selected (step size = $8 \mu A$).
5:0	IREF0DAT[5:0]	IREF0 Data Word.
		Specifies the number of steps required to achieve the desired output current. Output current = direction x step size x IREF0DAT. IREF0 is in a low power state when IREF0DAT is set to 0x00.

6.1. PWM Enhanced Mode

The precision of the current reference can be increased by fine tuning the IREF0 output using a PWM signal generated by the PCA. This mode allows the IREF0DAT bits to perform a course adjustment on the IREF0 output. Any available PCA channel can perform a fine adjustment on the IREF0 output. When enabled (PWMEN = 1), the CEX signal selected using the PWMSS bit field is internally routed to IREF0 to control the on time of a current source having the weight of 2 LSBs. With the two least significant bits of IREF0DAT set to 00b, applying a 100% duty cycle on the CEX signal will be equivalent to setting the two LSBs of IREF0DAT to 10b. PWM enhanced mode is enabled and setup using the IREF0CF register.

SFR Definition 8.3. CS0DH: Capacitive Sense Data High Byte

Bit	7	6	5	4	3	2	1	0			
Name	CS0DH[7:0]										
Туре	R	R	R	R	R	R	R	R			
Reset	0	0	0	0	0	0	0	0			

SFR Page = 0x0; SFR Address = 0xEE

Bit	Name	Description
7:0	CS0DH	CS0 Data High Byte.
		Stores the high byte of the last completed 16-bit Capacitive Sense conversion.

SFR Definition 8.4. CS0DL: Capacitive Sense Data Low Byte

Bit	7	6	5	4	3	2	1	0		
Name	CS0DL[7:0]									
Туре	R	R	R	R	R	R	R	R		
Reset	0	0	0	0	0	0	0	0		

SFR Page = 0x0; SFR Address = 0xED

Bit	Name	Description
7:0	CS0DL	CS0 Data Low Byte.
		Stores the low byte of the last completed 16-bit Capacitive Sense conversion.

20.2.2. Using the SmaRTClock Oscillator in Self-Oscillate Mode

When using Self-Oscillate Mode, the XTAL3 and XTAL4 pins are internally shorted together. The following steps show how to configure SmaRTClock for use in Self-Oscillate Mode:

- 1. Set SmaRTClock to Self-Oscillate Mode (XMODE = 0).
- Set the desired oscillation frequency: For oscillation at about 20 kHz, set BIASX2 = 0. For oscillation at about 40 kHz, set BIASX2 = 1.
- 3. The oscillator starts oscillating instantaneously.
- 4. Fine tune the oscillation frequency by adjusting the load capacitance (RTC0XCF).

20.2.3. Using the Low Frequency Oscillator (LFO)

The low frequency oscillator provides an ultra low power, on-chip clock source to the SmaRTClock. The typical frequency of oscillation is 16.4 kHz $\pm 20\%$. No external components are required to use the LFO and the XTAL3 and XTAL4 pins do not need to be shorted together.

The following steps show how to configure SmaRTClock for use with the LFO:

- 1. Enable and select the Low Frequency Oscillator (LFOEN = 1).
- 2. The LFO starts oscillating instantaneously.

When the LFO is enabled, the SmaRTClock oscillator increments bit 1 of the 32-bit timer (instead of bit 0). This effectively multiplies the LFO frequency by 2, making the RTC timebase behave as if a 32.768 kHz crystal is connected at the output.

Internal Register Definition 20.5. RTC0XCN: SmaRTClock Oscillator Control

Bit	7	6	5	4	3	2	1	0
Name	AGCEN	XMODE	BIASX2	CLKVLD	LFOEN			
Туре	R/W	R/W	R/W	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

SmaRTClock Address = 0x05

Bit	Name	Function
7	AGCEN	SmaRTClock Oscillator Automatic Gain Control (AGC) Enable.
		0: AGC disabled.
		1: AGC enabled.
6	XMODE	SmaRTClock Oscillator Mode.
		Selects Crystal or Self Oscillate Mode.
		0: Self-Oscillate Mode selected.
		1: Crystal Mode selected.
5	BIASX2	SmaRTClock Oscillator Bias Double Enable.
		Enables/disables the Bias Double feature.
		0: Bias Double disabled.
		1: Bias Double enabled.
4	CLKVLD	SmaRTClock Oscillator Crystal Valid Indicator.
		Indicates if oscillation amplitude is sufficient for maintaining oscillation.
		0: Oscillation has not started or oscillation amplitude is too low to maintain oscillation.
		1: Sufficient oscillation amplitude detected.
3	LFOEN	Low Frequency Oscillator Enable and Select.
		Overrides XMODE and selects the internal low frequency oscillator (LFO) as the
		SmaRTClock oscillator source.
		0: XMODE determines SmaR I Clock oscillator source.
		T: LFO enabled and selected as Smak I Clock oscillator source.
2:0	Unused	Read = 000b; Write = Don't Care.

SFR Definition 21.12. P0DRV: Port0 Drive Strength

Bit	7	6	5	4	3	2	1	0			
Name	e	P0DRV[7:0]									
Туре	•	R/W									
Rese	t 0	0	0	0	0	0	0	0			
SFR P	SFR Page = 0xF; SFR Address = 0x99										
Bit	Name	Name Function									

7:0	P0DRV[7:0]	Drive Strength Configuration Bits for P0.7–P0.0 (respectively).
		Configures digital I/O Port cells to high or low output drive strength. 0: Corresponding P0.n Output has low output drive strength. 1: Corresponding P0.n Output has high output drive strength.

SFR Definition 21.17. P1DRV: Port1 Drive Strength

Bit	7	6	5	4	3	2	1	0			
Name	P1DRV[7:0]										
Туре		R/W									
Reset	0	0	0	0	0	0	0	0			

SFR Page = 0xF; SFR Address = 0x9B

Bit	Name	Function
7:0	P1DRV[7:0]	Drive Strength Configuration Bits for P1.7–P1.0 (respectively).
		Configures digital I/O Port cells to high or low output drive strength. 0: Corresponding P1.n Output has low output drive strength. 1: Corresponding P1.n Output has high output drive strength.

SFR Definition 21.18. P2: Port2

Bit	7	6	5	4	3	2	1	0
Name	P2							
Туре	R/W	R	R	R	R	R	R	R
Reset	1	0	0	0	0	0	0	0

SFR Page = All; SFR Address = 0xA0; Bit-Addressable

Bit	Name	Description	Read	Write
7	P2	Port 2 Data. Sets the Port latch logic value or reads the Port pin logic state in Port cells con- figured for digital I/O.	 O: Set output latch to logic LOW. 1: Set output latch to logic HIGH. 	0: P2.7 Port pin is logic LOW. 1: P2.7 Port pin is logic HIGH.
6:0	Unused	Read = 0000000b; Write = D	on't Care.	

SFR Definition 22.3. SMB0ADR: SMBus Slave Address

Bit	7	6	5	4	3	2	1	0	
Name	SLV[6:0]								
Туре	R/W								
Reset	0	0	0	0	0	0	0	0	

SFR Page = 0x0; SFR Address = 0xF4

Bit	Name	Function
7:1	SLV[6:0]	SMBus Hardware Slave Address.
		Defines the SMBus Slave Address(es) for automatic hardware acknowledgement. Only address bits which have a 1 in the corresponding bit position in SLVM[6:0] are checked against the incoming address. This allows multiple addresses to be recognized.
0	GC	General Call Address Enable.
		 When hardware address recognition is enabled (EHACK = 1), this bit will determine whether the General Call Address (0x00) is also recognized by hardware. 0: General Call Address is ignored. 1: General Call Address is recognized.

SFR Definition 22.4. SMB0ADM: SMBus Slave Address Mask

Bit	7	6	5	4	3	2	1	0		
Name	SLVM[6:0]									
Туре	R/W									
Reset	1	1	1	1	1	1	1	0		

SFR Page = 0x0; SFR Address = 0xF5

Bit	Name	Function
7:1	SLVM[6:0]	SMBus Slave Address Mask.
		Defines which bits of register SMB0ADR are compared with an incoming address byte, and which bits are ignored. Any bit set to 1 in SLVM[6:0] enables comparisons with the corresponding bit in SLV[6:0]. Bits set to 0 are ignored (can be either 0 or 1 in the incoming address).
0	EHACK	Hardware Acknowledge Enable.
		Enables hardware acknowledgement of slave address and received data bytes. 0: Firmware must manually acknowledge all incoming address and data bytes. 1: Automatic Slave Address Recognition and Hardware Acknowledge is Enabled.

Table 22.6.	SMBus Statu	s Decoding	With Hardware	ACK	Generation	Enabled
		(EHACK =	1) (Continued)			

	Valu	es l	Rea	d			Va V	lues Nrit	sto e	tus ected
Mode	Status Vector	ACKRQ	ARBLOST	ACK	Current SMbus State	Typical Response Options	STA	STO	ACK	Next Stat Vector Exp
L		0	0	0	A slave byte was transmitted; NACK received.	No action required (expecting STOP condition).	0	0	Х	0001
smitte	0100	0	0	1	A slave byte was transmitted; ACK received.	Load SMB0DAT with next data byte to transmit.	0	0	х	0100
'e Trar		0	1	х	A Slave byte was transmitted; error detected.	No action required (expecting Master to end transfer).	0	0	х	0001
Slav	0101	0	x	x	An illegal STOP or bus error was detected while a Slave Transmission was in progress.	Clear STO.	0	0	х	_
		0	0	v	A slave address + R/W was	If Write, Set ACK for first data byte.	0	0	1	0000
	0010	0	0		received; ACK sent.	If Read, Load SMB0DAT with data byte	0	0	х	0100
					Lost arbitration as master;	If Write, Set ACK for first data byte.	0	0	1	0000
eiver		0	1	Х	slave address + R/W received; ACK sent.	If Read, Load SMB0DAT with data byte	0	0	х	0100
Sece						Reschedule failed transfer	1	0	Х	1110
Slave F	0001	0	0	x	A STOP was detected while addressed as a Slave Trans- mitter or Slave Receiver.	Clear STO.	0	0	х	
		0	1	х	Lost arbitration while attempt- ing a STOP.	No action required (transfer complete/aborted).	0	0	0	_
	0000	0	0	x	A slave byte was received	Set ACK for next data byte; Read SMB0DAT.	0	0	1	0000
	0000		U	^	A slave byte was received.	Set NACK for next data byte; Read SMB0DAT.	0	0	0	0000
uo	0010	0	1	x	Lost arbitration while attempt-	Abort failed transfer.	0	0	Х	—
nditi	0010				ing a repeated START.	Reschedule failed transfer.	1	0	Х	1110
Col	0001	0	1	x	Lost arbitration due to a	Abort failed transfer.	0	0	Х	—
rror	0001				detected STOP.	Reschedule failed transfer.	1	0	Х	1110
ы S	0000	0	1	x	Lost arbitration while transmit-	Abort failed transfer.	0	0	Х	—
Bu	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ting a data byte as master.	Reschedule failed transfer.	1	0	Х	1110		

1 at the end of the transfer. If interrupts are enabled, an interrupt request is generated when the SPIF flag is set. While the SPI0 master transfers data to a slave on the MOSI line, the addressed SPI slave device simultaneously transfers the contents of its shift register to the SPI master on the MISO line in a full-duplex operation. Therefore, the SPIF flag serves as both a transmit-complete and receive-data-ready flag. The data byte received from the slave is transferred MSB-first into the master's shift register. When a byte is fully shifted into the register, it is moved to the receive buffer where it can be read by the processor by reading SPI0DAT.

When configured as a master, SPI0 can operate in one of three different modes: multi-master mode, 3-wire single-master mode, and 4-wire single-master mode. The default, multi-master mode is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 1. In this mode, NSS is an input to the device, and is used to disable the master SPI0 when another master is accessing the bus. When NSS is pulled low in this mode, MSTEN (SPI0CN.6) and SPIEN (SPI0CN.0) are set to 0 to disable the SPI master device, and a Mode Fault is generated (MODF, SPI0CN.5 = 1). Mode Fault will generate an interrupt if enabled. SPI0 must be manually re-enabled in software under these circumstances. In multi-master systems, devices will typically default to being slave devices while they are not acting as the system master device. In multi-master mode, slave devices can be addressed individually (if needed) using general-purpose I/O pins. Figure 24.2 shows a connection diagram between two master devices in multiple-master mode.

3-wire single-master mode is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 0. In this mode, NSS is not used, and is not mapped to an external port pin through the crossbar. Any slave devices that must be addressed in this mode should be selected using general-purpose I/O pins. Figure 24.3 shows a connection diagram between a master device in 3-wire master mode and a slave device.

4-wire single-master mode is active when NSSMD1 (SPI0CN.3) = 1. In this mode, NSS is configured as an output pin, and can be used as a slave-select signal for a single SPI device. In this mode, the output value of NSS is controlled (in software) with the bit NSSMD0 (SPI0CN.2). Additional slave devices can be addressed using general-purpose I/O pins. Figure 24.4 shows a connection diagram for a master device in 4-wire master mode and two slave devices.

Figure 24.2. Multiple-Master Mode Connection Diagram

Figure 24.3. 3-Wire Single Master and 3-Wire Single Slave Mode Connection Diagram

25.3.3. SmaRTClock/External Oscillator Capture Mode

The Capture Mode in Timer 3 allows either SmaRTClock or the external oscillator period to be measured against the system clock or the system clock divided by 12. SmaRTClock and the external oscillator period can also be compared against each other.

Setting TF3CEN to 1 enables the SmaRTClock/External Oscillator Capture Mode for Timer 3. In this mode, T3SPLIT should be set to 0, as the full 16-bit timer is used.

When Capture Mode is enabled, a capture event will be generated either every SmaRTClock rising edge or every 8 external clock cycles, depending on the T3XCLK1 setting. When the capture event occurs, the contents of Timer 3 (TMR3H:TMR3L) are loaded into the Timer 3 reload registers (TMR3RLH:TMR3RLL) and the TF3H flag is set (triggering an interrupt if Timer 3 interrupts are enabled). By recording the difference between two successive timer capture values, the SmaRTClock or external clock period can be determined with respect to the Timer 3 clock. The Timer 3 clock should be much faster than the capture clock to achieve an accurate reading.

For example, if T3ML = 1b, T3XCLK1 = 0b, and TF3CEN = 1b, Timer 3 will clock every SYSCLK and capture every SmaRTClock rising edge. If SYSCLK is 24.5 MHz and the difference between two successive captures is 350 counts, then the SmaRTClock period is as follows:

350 x (1 / 24.5 MHz) = 14.2 μs.

This mode allows software to determine the exact frequency of the external oscillator in C and RC mode or the time between consecutive SmaRTClock rising edges, which is useful for determining the SmaRTClock frequency.

Figure 25.9. Timer 3 Capture Mode Block Diagram

SFR Definition 25.14. TMR3RLL: Timer 3 Reload Register Low Byte

Bit	7	6	5	4	3	2	1	0		
Name	TMR3RLL[7:0]									
Туре		R/W								
Reset	0 0 0 0 0 0 0 0									
SFR Pa	SFR Page = 0x0; SFR Address = 0x92									
D ''										

Bit	Name	Function					
7:0	TMR3RLL[7:0]	Timer 3 Reload Register Low Byte.					
		TMR3RLL holds the low byte of the reload value for Timer 3.					

SFR Definition 25.15. TMR3RLH: Timer 3 Reload Register High Byte

Bit	7	6	5	4	3	2	1	0		
Nam	е	TMR3RLH[7:0]								
Тур	Type R/W									
Rese	et O	0	0	0	0	0	0	0		
SFR F	Page = 0x0; SF	R Address :	= 0x93							
Bit	Name	Name Function								
7:0	TMR3RLH[7:0	R3RLH[7:0] Timer 3 Reload Register High Byte.								
	TMR3RLH holds the high byte of the reload value for Timer 3.									

298