E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	CIP-51 8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	Brown-out Detect/Reset, Cap Sense, POR, PWM, Temp Sensor, WDT
Number of I/O	17
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-SSOP (0.154", 3.90mm Width)
Supplier Device Package	24-QSOP
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f996-c-gur

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2. Electrical Characteristics

Table 4.2. Global Electrical Characteristics

-40 to +85 °C, 25 MHz system clock unless otherwise specified. See "AN358: Optimizing Low Power Operation of the 'F9xx" for details on how to achieve the supply current specifications listed in this table.

Parameter	Conditions	Min	Тур	Max	Units
Supply Voltage (V _{DD})		1.8	2.4	3.6	V
Minimum RAM Data	not in sleep mode	_	1.4		V
Retention Voltage ¹	in sleep mode	—	0.3	0.45	
SYSCLK (System Clock) ²		0	_	25	MHz
T _{SYSH} (SYSCLK High Time)		18	—	_	ns
T _{SYSL} (SYSCLK Low Time)		18	—	_	ns
Specified Operating Temperature Range		-40	—	+85	°C
Digital Supply Current—CP	U Active (Normal Mode, fetching instruct	tions fr	om Fla	sh)	
I _{DD} ^{3, 4, 5}	V _{DD} = 1.8–3.6 V, F = 24.5 MHz (includes precision oscillator current)		3.6	4.5	mA
	V _{DD} = 1.8–3.6 V, F = 20 MHz (includes low power oscillator current)		3.1	_	mA
	V_{DD} = 1.8 V, F = 1 MHz V_{DD} = 3.6 V, F = 1 MHz (includes external oscillator/GPIO current)		225 290		μΑ μΑ
	V _{DD} = 1.8–3.6 V, F = 32.768 kHz (includes SmaRTClock oscillator current)	_	84	_	μA
I _{DD} Frequency Sensitivity ^{1, 3, 5}	V_{DD} = 1.8–3.6 V, T = 25 °C, F < 14 MHz (Flash oneshot active, see Section 14.6)	_	174	—	µA/MHz
	V _{DD} = 1.8–3.6 V, T = 25 °C, F > 14 MHz (Flash oneshot bypassed, see Section 14.6)		88		µA/MHz

Mnemonic	Description	Bytes	Clock Cycles
	Arithmetic Operations		
ADD A, Rn	Add register to A	1	1
ADD A, direct	Add direct byte to A	2	2
ADD A, @Ri	Add indirect RAM to A	1	2
ADD A, #data	Add immediate to A	2	2
ADDC A, Rn	Add register to A with carry	1	1
ADDC A, direct	Add direct byte to A with carry	2	2
ADDC A, @Ri	Add indirect RAM to A with carry	1	2
ADDC A, #data	Add immediate to A with carry	2	2
SUBB A, Rn	Subtract register from A with borrow	1	1
SUBB A, direct	Subtract direct byte from A with borrow	2	2
SUBB A, @Ri	Subtract indirect RAM from A with borrow	1	2
SUBB A, #data	Subtract immediate from A with borrow	2	2
INC A	Increment A	1	1
INC Rn	Increment register	1	1
INC direct	Increment direct byte	2	2
INC @Ri	Increment indirect RAM	1	2
DEC A	Decrement A	1	1
DEC Rn	Decrement register	1	1
DEC direct	Decrement direct byte	2	2
DEC @Ri	Decrement indirect RAM	1	2
INC DPTR	Increment Data Pointer	1	1
MUL AB	Multiply A and B	1	4
DIV AB	Divide A by B	1	8
DAA	Decimal adjust A	1	1
	Logical Operations		·
ANL A, Rn	AND Register to A	1	1
ANL A, direct	AND direct byte to A	2	2
ANL A, @Ri	AND indirect RAM to A	1	2
ANL A, #data	AND immediate to A	2	2
ANL direct, A	AND A to direct byte	2	2
ANL direct, #data	AND immediate to direct byte	3	3
ORL A, Rn	OR Register to A	1	1
ORL A, direct	OR direct byte to A	2	2
ORL A, @Ri	OR indirect RAM to A	1	2
ORL A, #data	OR immediate to A	2	2
ORL direct, A	OR A to direct byte	2	2
ORL direct, #data	OR immediate to direct byte	3	3
XRL A, Rn	Exclusive-OR Register to A	1	1
XRL A, direct	Exclusive-OR direct byte to A	2	2
XRL A, @Ri	Exclusive-OR indirect RAM to A	1	2
XRL A, @RI XRL A, #data	Exclusive-OR immediate to A	2	2
XRL A, #data XRL direct, A	Exclusive-OR A to direct byte	2	2
XRL direct, #data	Exclusive-OR A to direct byte	3	3
ANE UIIECI, #Uala		3	3

Table 9.1. CIP-51 Instruction Set Summary

SFR Definition 12.1. SFR Page: SFR Page

Bit	7	6	5	4	3	2	1	0
Name		SFRPAGE[7:0]						
Туре		R/W						
Reset	0	0	0	0	0	0	0	0

SFR Page = All; SFR Address = 0xA7

Bit	Name	Function
7:0	SFRPAGE[7:0]	SFR Page.
		Specifies the SFR Page used when reading, writing, or modifying special function registers.

Table 12.3. Special Function Registers

SFRs are listed in alphabetical order. All undefined SFR locations are reserved.

Register	Address	SFR Page	Description	Page
ACC	0xE0	All	Accumulator	126
ADC0AC	0xBA	0x0	ADC0 Accumulator Configuration	76
ADC0CF	0x97	0x0	ADC0 Configuration	75
ADC0CN	0xE8	0x0	ADC0 Control	74
ADC0GTH	0xC4	0x0	ADC0 Greater-Than Compare High	80
ADC0GTL	0xC3	0x0	ADC0 Greater-Than Compare Low	80
ADC0H	0xBE	0x0	ADC0 High	79
ADC0L	0xBD	0x0	ADC0 Low	79
ADC0LTH	0xC6	0x0	ADC0 Less-Than Compare Word High	81
ADC0LTL	0xC5	0x0	ADC0 Less-Than Compare Word Low	81
ADC0MX	0x96	0x0	AMUX0 Channel Select	84
ADC0PWR	0xBB	All	ADC0 Burst Mode Power-Up Time	77
ADC0TK	0xBC	All	ADC0 Tracking Control	78
В	0xF0	All	B Register	126
CKCON	0x8E	0x0	Clock Control	279
CLKSEL	0xA9	All	Clock Select	193
CPT0CN	0x9B	0x0	Comparator0 Control	96
CPT0MD	0x9D	0x0	Comparator0 Mode Selection	97
CPT0MX	0x9F	0x0	Comparator0 Mux Selection	99
CRC0AUTO	0x9E	All	CRC0 Automatic Control	177
CRC0CN	0x84	All	CRC0 Control	175
CRC0CNT	0x9A	All	CRC0 Automatic Flash Sector Count	178
CRC0DAT	0x86	All	CRC0 Data	176
CRC0FLIP	0x9C	All	CRC0 Flip	179
CRC0IN	0x85	All	CRC0 Input	176
CS0CF	0xAA	0x0	CS0 Configuration	108
CS0CN	0xB0	0x0	CS0 Control	107

Register	Address	SFR Page	Description	Page
TCON	0x88	0x0	Timer/Counter Control	284
TH0	0x8C	0x0	Timer/Counter 0 High	287
TH1	0x8D	0x0	Timer/Counter 1 High	287
TL0	0x8A	0x0	Timer/Counter 0 Low	286
TL1	0x8B	0x0	Timer/Counter 1 Low	286
TMOD	0x89	0x0	Timer/Counter Mode	285
TMR2CN	0xC8	0x0	Timer/Counter 2 Control	291
TMR2H	0xCD	0x0	Timer/Counter 2 High	293
TMR2L	0xCC	0x0	Timer/Counter 2 Low	293
TMR2RLH	0xCB	0x0	Timer/Counter 2 Reload High	292
TMR2RLL	0xCA	0x0	Timer/Counter 2 Reload Low	292
TMR3CN	0x91	0x0	Timer/Counter 3 Control	297
TMR3H	0x95	0x0	Timer/Counter 3 High	299
TMR3L	0x94	0x0	Timer/Counter 3 Low	299
TMR3RLH	0x93	0x0	Timer/Counter 3 Reload High	298
TMR3RLL	0x92	0x0	Timer/Counter 3 Reload Low	298
TOFFH	0x8E	0xF	Temperature Offset High	87
TOFFL	0x8D	0xF	Temperature Offset Low	87
VDM0CN	0xFF	0x0	VDD Monitor Control	184
XBR0	0xE1	0x0	Port I/O Crossbar Control 0	222
XBR1	0xE2	0x0	Port I/O Crossbar Control 1	223
XBR2	0xE3	0x0	Port I/O Crossbar Control 2	224

Table 12.3. Special Function Registers (Continued)

SFRs are listed in alphabetical order. All undefined SFR locations are reserved.

14.3. Security Options

The CIP-51 provides security options to protect the Flash memory from inadvertent modification by software as well as to prevent the viewing of proprietary program code and constants. The Program Store Write Enable (bit PSWE in register PSCTL) and the Program Store Erase Enable (bit PSEE in register PSCTL) bits protect the Flash memory from accidental modification by software. PSWE must be explicitly set to 1 before software can modify the Flash memory; both PSWE and PSEE must be set to 1 before software can erase Flash memory. Additional security features prevent proprietary program code and data constants from being read or altered across the C2 interface.

A Security Lock Byte located at the last byte of Flash user space offers protection of the Flash program memory from access (reads, writes, or erases) by unprotected code or the C2 interface. See **Section "10. Memory Organization" on page 128** for the location of the security byte. The Flash security mechanism allows the user to lock *n* 512-byte Flash pages, starting at page 0 (addresses 0x0000 to 0x01FF), where *n* is the 1s complement number represented by the Security Lock Byte. **The page containing the Flash Security Lock Byte is unlocked when no other Flash pages are locked (all bits of the Lock Byte are 1) and locked when any other Flash pages are locked (any bit of the Lock Byte is 0).**

Security Lock Byte:	1111 1011b
ones Complement:	0000 0100b
Flash pages locked:	5 (First four Flash pages + Lock Byte Page)

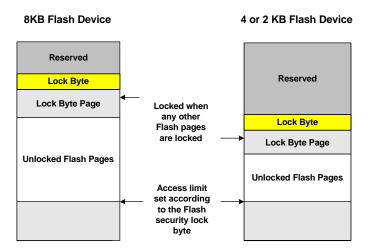


Figure 14.1. Flash Program Memory Map (8 kB and smaller devices)

The level of Flash security depends on the Flash access method. The three Flash access methods that can be restricted are reads, writes, and erases from the C2 debug interface, user firmware executing on unlocked pages, and user firmware executing on locked pages. Table 14.1 summarizes the Flash security features of the C8051F99x-C8051F98x devices.

SFR Definition 14.3. PSCTL: Program Store R/W Control

Bit	7	6	5	4	3	2	1	0
Name							PSEE	PSWE
Туре	R	R	R	R	R	R	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Page =All; SFR Address = 0x8F

Bit	Name	Function
7:2	Unused	Read = 000000b, Write = don't care.
1	PSEE	Program Store Erase Enable.
		 Setting this bit (in combination with PSWE) allows an entire page of Flash program memory to be erased. If this bit is logic 1 and Flash writes are enabled (PSWE is logic 1), a write to Flash memory using the MOVX instruction will erase the entire page that contains the location addressed by the MOVX instruction. The value of the data byte written does not matter. 0: Flash program memory erasure disabled. 1: Flash program memory erasure enabled.
0	PSWE	Program Store Write Enable.
		 Setting this bit allows writing a byte of data to the Flash program memory using the MOVX write instruction. The Flash location should be erased before writing data. 0: Writes to Flash program memory disabled. 1: Writes to Flash program memory enabled; the MOVX write instruction targets Flash memory.

SFR Definition 19.3. OSCICL: Internal Oscillator Calibration

Bit	7	6	5	4	3	2	1	0
Name	SSE				OSCICL[6:0]			
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	Varies	Varies	Varies	Varies	Varies	Varies	Varies

SFR Page = 0x0; SFR Address = 0xB3

Bit	Name	Function			
7	SSE	Spread Spectrum Enable.			
		0: Spread Spectrum clock dithering disabled.			
		1: Spread Spectrum clock dithering enabled.			
6:0	OSCICL	Internal Oscillator Calibration.			
		Factory calibrated to obtain a frequency of 24.5 MHz. Incrementing this register decreases the oscillator frequency and decrementing this register increases the oscillator frequency. The step size is approximately 1% of the calibrated frequency. The recommended calibration frequency range is between 16 and 24.5 MHz.			
 Note: If the Precision Internal Oscillator is selected as the system clock, the following procedure should be used when changing the value of the internal oscillator calibration bits. 1. Switch to a different clock source. 2. Disable the oscillator by writing OSCICN.7 to 0. 3. Change OSCICL to the desired setting. 4. Enable the oscillator by writing OSCICN.7 to 1. 					

20.1.5. RTC0ADR Autoincrement Feature

For ease of reading and writing the 32-bit CAPTURE and ALARM values, RTC0ADR automatically increments after each read or write to a CAPTUREn or ALARMn register. This speeds up the process of setting an alarm or reading the current SmaRTClock timer value. Autoincrement is always enabled.

Recommended Instruction Timing for a multi-byte register read with short strobe and auto read enabled:

Recommended Instruction Timing for a multi-byte register write with short strobe enabled:

mov RTCOADR, #010h mov RTCODAT, #05h nop mov RTCODAT, #06h nop mov RTCODAT, #07h nop mov RTCODAT, #08h nop

20.2.4. Programmable Load Capacitance

The programmable load capacitance has 16 values to support crystal oscillators with a wide range of recommended load capacitance. If Automatic Load Capacitance Stepping is enabled, the crystal load capacitors start at the smallest setting to allow a fast startup time, then slowly increase the capacitance until the final programmed value is reached. The final programmed loading capacitor value is specified using the LOADCAP bits in the RTC0XCF register. The LOADCAP setting specifies the amount of on-chip load capacitance and does not include any stray PCB capacitance. Once the final programmed loading capacitor value is reached, the LOADRDY flag will be set by hardware to logic 1.

When using the SmaRTClock oscillator in Self-Oscillate mode, the programmable load capacitance can be used to fine tune the oscillation frequency. In most cases, increasing the load capacitor value will result in a decrease in oscillation frequency. Table 20.2 shows the crystal load capacitance for various settings of LOADCAP.

LOADCAP	Crystal Load Capacitance	Equivalent Capacitance seen on XTAL3 and XTAL4
0000	4.0 pF	8.0 pF
0001	4.5 pF	9.0 pF
0010	5.0 pF	10.0 pF
0011	5.5 pF	11.0 pF
0100	6.0 pF	12.0 pF
0101	6.5 pF	13.0 pF
0110	7.0 pF	14.0 pF
0111	7.5 pF	15.0 pF
1000	8.0 pF	16.0 pF
1001	8.5 pF	17.0 pF
1010	9.0 pF	18.0 pF
1011	9.5 pF	19.0 pF
1100	10.5 pF	21.0 pF
1101	11.5 pF	23.0 pF
1110	12.5 pF	25.0 pF
1111	13.5 pF	27.0 pF

Table 20.2. SmaRTClock Load Capacitance Settings

20.3.2. Setting a SmaRTClock Alarm

The SmaRTClock alarm function compares the 32-bit value of SmaRTClock Timer to the value of the ALARMn registers. An alarm event is triggered if the SmaRTClock timer is **equal to** the ALARMn registers. If Auto Reset is enabled, the 32-bit timer will be cleared to zero one SmaRTClock cycle after the alarm event.

The SmaRTClock alarm event can be configured to reset the MCU, wake it up from a low power mode, or generate an interrupt. See Section "13. Interrupt Handler" on page 138, Section "15. Power Management" on page 162, and Section "18. Reset Sources" on page 181 for more information.

The following steps can be used to set up a SmaRTClock Alarm:

- 1. Disable SmaRTClock Alarm Events (RTC0AEN = 0).
- 2. Set the ALARMn registers to the desired value.
- 3. Enable SmaRTClock Alarm Events (RTC0AEN = 1).

Notes:

- 1. The ALRM bit, which is used as the SmaRTClock Alarm Event flag, is cleared by disabling SmaRTClock Alarm Events (RTC0AEN = 0).
- If AutoReset is disabled, disabling (RTC0AEN = 0) then Re-enabling Alarm Events (RTC0AEN = 1) after a SmaRTClock Alarm without modifying ALARMn registers will automatically schedule the next alarm after 2^32 SmaRTClock cycles (approximately 36 hours using a 32.768 kHz crystal).
- 3. The SmaRTClock Alarm Event flag will remain asserted for a maximum of one SmaRTClock cycle. See Section "15. Power Management" on page 162 for information on how to capture a SmaRTClock Alarm event using a flag which is not automatically cleared by hardware.

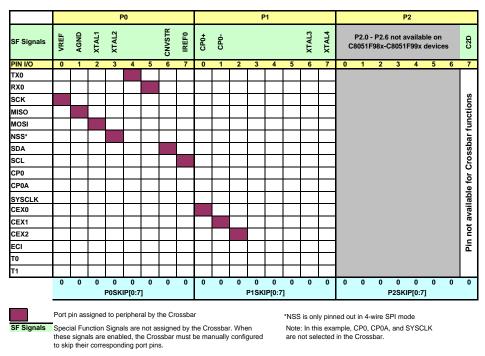


Figure 21.4. Crossbar Priority Decoder in Example Configuration (No Pins Skipped)

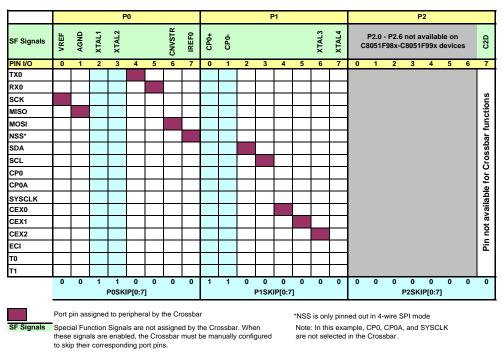


Figure 21.5. Crossbar Priority Decoder in Example Configuration (4 Pins Skipped)

SFR Definition 21.2. XBR1: Port I/O Crossbar Register 1

Bit	7	6	5	4	3	2	1	0				
Name			T1E	T0E	ECIE	PCA0ME[2:0]						
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Reset	0	0	0	0	0	0	0	0				

SFR Page = 0x0; SFR Address = 0xE2

Bit	Name	Function			
7:6	Unused	Read = 00b; Write = Don't Care.			
5	T1E	limer1 Input Enable.			
		0: T1 input unavailable at Port pin.			
		1: T1 input routed to Port pin.			
4	T0E	Timer0 Input Enable.			
		0: T0 input unavailable at Port pin.			
		1: T0 input routed to Port pin.			
3	ECIE	PCA0 External Counter Input (ECI) Enable.			
		0: PCA0 external counter input unavailable at Port pin.			
		1: PCA0 external counter input routed to Port pin.			
2:0	PCA0ME	PCA0 Module I/O Enable.			
		000: All PCA0 I/O unavailable at Port pin.			
		001: CEX0 routed to Port pin.			
		010: CEX0, CEX1 routed to Port pins.			
		011: CEX0, CEX1, CEX2 routed to Port pins.			
		100: Reserved.			
		101: Reserved. 110: Reserved.			
		111: Reserved.			

Setting the EXTHOLD bit extends the minimum setup and hold times for the SDA line. The minimum SDA setup time defines the absolute minimum time that SDA is stable before SCL transitions from low-to-high. The minimum SDA hold time defines the absolute minimum time that the current SDA value remains stable after SCL transitions from high-to-low. EXTHOLD should be set so that the minimum setup and hold times meet the SMBus Specification requirements of 250 ns and 300 ns, respectively. Table 22.2 shows the minimum setup and hold times for the two EXTHOLD settings. Setup and hold time extensions are typically necessary when SYSCLK is above 10 MHz.

EXTHOLD	Minimum SDA Setup Time	Minimum SDA Hold Time						
	T _{low} – 4 system clocks							
0	or	3 system clocks						
	1 system clock + s/w delay*							
1	11 system clocks	12 system clocks						
*Note: Setup Time for ACK bit transmissions and the MSB of all data transfers. When using software acknowledgement, the s/w delay occurs between the time SMB0DAT or ACK is written and when SI is cleared. Note that if SI is cleared in the same write that defines the outgoing ACK value, s/w delay is zero.								

Table 22.2. Minimum SDA Setup and Hold Times

With the SMBTOE bit set, Timer 3 should be configured to overflow after 25 ms in order to detect SCL low timeouts (see Section "22.3.4. SCL Low Timeout" on page 238). The SMBus interface will force Timer 3 to reload while SCL is high, and allow Timer 3 to count when SCL is low. The Timer 3 interrupt service routine should be used to reset SMBus communication by disabling and re-enabling the SMBus.

SMBus Free Timeout detection can be enabled by setting the SMBFTE bit. When this bit is set, the bus will be considered free if SDA and SCL remain high for more than 10 SMBus clock source periods (see Figure 22.4).

23.1. Enhanced Baud Rate Generation

The UART0 baud rate is generated by Timer 1 in 8-bit auto-reload mode. The TX clock is generated by TL1; the RX clock is generated by a copy of TL1 (shown as RX Timer in Figure 23.2), which is not useraccessible. Both TX and RX Timer overflows are divided by two to generate the TX and RX baud rates. The RX Timer runs when Timer 1 is enabled, and uses the same reload value (TH1). However, an RX Timer reload is forced when a START condition is detected on the RX pin. This allows a receive to begin any time a START is detected, independent of the TX Timer state.

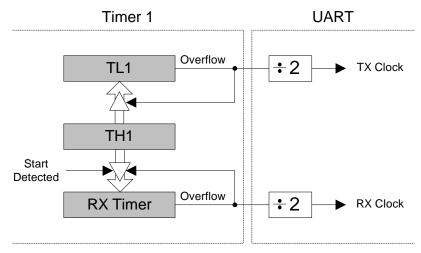


Figure 23.2. UART0 Baud Rate Logic

Timer 1 should be configured for Mode 2, 8-bit auto-reload (see Section "25.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload" on page 282). The Timer 1 reload value should be set so that overflows will occur at two times the desired UART baud rate frequency. Note that Timer 1 may be clocked by one of six sources: SYSCLK, SYSCLK / 4, SYSCLK / 12, SYSCLK / 48, the external oscillator clock / 8, or an external input T1. For any given Timer 1 clock source, the UART0 baud rate is determined by Equation 23.1-A and Equation 23.1-B.

A) UartBaudRate =
$$\frac{1}{2} \times T1_Overflow_Rate$$

B) T1_Overflow_Rate = $\frac{T1_{CLK}}{256 - TH1}$

Equation 23.1. UART0 Baud Rate

Where $T1_{CLK}$ is the frequency of the clock supplied to Timer 1, and T1H is the high byte of Timer 1 (reload value). Timer 1 clock frequency is selected as described in Section "25.1. Timer 0 and Timer 1" on page 280. A quick reference for typical baud rates and system clock frequencies is given in Table 23.1 through Table 23.2. Note that the internal oscillator may still generate the system clock when the external oscillator is driving Timer 1.

23.2. Operational Modes

UART0 provides standard asynchronous, full duplex communication. The UART mode (8-bit or 9-bit) is selected by the S0MODE bit (SCON0.7). Typical UART connection options are shown below.

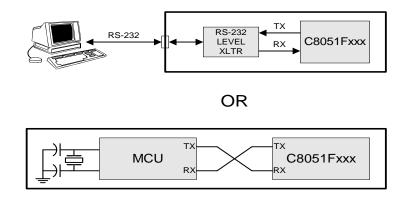


Figure 23.3. UART Interconnect Diagram

23.2.1. 8-Bit UART

8-Bit UART mode uses a total of 10 bits per data byte: one start bit, eight data bits (LSB first), and one stop bit. Data are transmitted LSB first from the TX0 pin and received at the RX0 pin. On receive, the eight data bits are stored in SBUF0 and the stop bit goes into RB80 (SCON0.2).

Data transmission begins when software writes a data byte to the SBUF0 register. The TI0 Transmit Interrupt Flag (SCON0.1) is set at the end of the transmission (the beginning of the stop-bit time). Data reception can begin any time after the REN0 Receive Enable bit (SCON0.4) is set to logic 1. After the stop bit is received, the data byte will be loaded into the SBUF0 receive register if the following conditions are met: RI0 must be logic 0, and if MCE0 is logic 1, the stop bit must be logic 1. In the event of a receive data overrun, the first received 8 bits are latched into the SBUF0 receive register and the following overrun data bits are lost.

If these conditions are met, the eight bits of data is stored in SBUF0, the stop bit is stored in RB80 and the RI0 flag is set. If these conditions are not met, SBUF0 and RB80 will not be loaded and the RI0 flag will not be set. An interrupt will occur if enabled when either TI0 or RI0 is set.

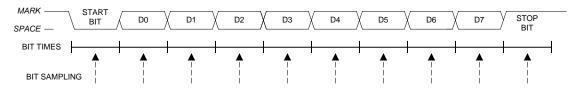


Figure 23.4. 8-Bit UART Timing Diagram

SFR Definition 24.2. SPI0CN: SPI0 Control

Bit	7	6	5	4	3	2	1	0		
Name	SPIF	WCOL	MODF	RXOVRN	NSSM	ID[1:0]	TXBMT	SPIEN		
Туре	R/W	R/W	R/W	R/W	R/	W	R	R/W		
Reset	0	0	0	0	0 1		0 1		1	0

SFR Page = 0x0; SFR Address = 0xF8; Bit-Addressable

Bit	Name	Function
7	SPIF	SPI0 Interrupt Flag.
		This bit is set to logic 1 by hardware at the end of a data transfer. If SPI interrupts are enabled, an interrupt will be generated. This bit is not automatically cleared by hardware, and must be cleared by software.
6	WCOL	Write Collision Flag.
		This bit is set to logic 1 if a write to SPI0DAT is attempted when TXBMT is 0. When this occurs, the write to SPI0DAT will be ignored, and the transmit buffer will not be written. If SPI interrupts are enabled, an interrupt will be generated. This bit is not automatically cleared by hardware, and must be cleared by software.
5	MODF	Mode Fault Flag.
		This bit is set to logic 1 by hardware when a master mode collision is detected (NSS is low, MSTEN = 1, and NSSMD[1:0] = 01). If SPI interrupts are enabled, an interrupt will be generated. This bit is not automatically cleared by hardware, and must be cleared by software.
4	RXOVRN	Receive Overrun Flag (valid in slave mode only).
		This bit is set to logic 1 by hardware when the receive buffer still holds unread data from a previous transfer and the last bit of the current transfer is shifted into the SPI0 shift register. If SPI interrupts are enabled, an interrupt will be generated. This bit is not automatically cleared by hardware, and must be cleared by software.
3:2	NSSMD[1:0]	Slave Select Mode.
		Selects between the following NSS operation modes: (See Section 24.2 and Section 24.3). 00: 3-Wire Slave or 3-Wire Master Mode. NSS signal is not routed to a port pin. 01: 4-Wire Slave or Multi-Master Mode (Default). NSS is an input to the device. 1x: 4-Wire Single-Master Mode. NSS signal is mapped as an output from the device and will assume the value of NSSMD0.
1	TXBMT	Transmit Buffer Empty.
		This bit will be set to logic 0 when new data has been written to the transmit buffer. When data in the transmit buffer is transferred to the SPI shift register, this bit will be set to logic 1, indicating that it is safe to write a new byte to the transmit buffer.
0	SPIEN	SPI0 Enable.
		0: SPI disabled. 1: SPI enabled.

SFR Definition 25.13. TMR3CN: Timer 3 Control

Bit	7	6	5	4	3	2	1	0		
Name	TF3H	TF3L	TF3LEN	TF3CEN	T3SPLIT	TR3	T3XCLK[1:0]			
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0		

SFR Page = 0x0; SFR Address = 0x91

Bit	Name	Function
7	TF3H	Timer 3 High Byte Overflow Flag.
		Set by hardware when the Timer 3 high byte overflows from 0xFF to 0x00. In 16 bit mode, this will occur when Timer 3 overflows from 0xFFFF to 0x0000. When the Timer 3 interrupt is enabled, setting this bit causes the CPU to vector to the Timer 3 interrupt service routine. This bit is not automatically cleared by hardware.
6	TF3L	Timer 3 Low Byte Overflow Flag.
		Set by hardware when the Timer 3 low byte overflows from 0xFF to 0x00. TF3L will be set when the low byte overflows regardless of the Timer 3 mode. This bit is not automatically cleared by hardware.
5	TF3LEN	Timer 3 Low Byte Interrupt Enable.
		When set to 1, this bit enables Timer 3 Low Byte interrupts. If Timer 3 interrupts are also enabled, an interrupt will be generated when the low byte of Timer 3 overflows.
4	TF3CEN	Timer 3 SmaRTClock/External Oscillator Capture Enable.
		When set to 1, this bit enables Timer 3 Capture Mode.
3	T3SPLIT	Timer 3 Split Mode Enable.
		When this bit is set, Timer 3 operates as two 8-bit timers with auto-reload.
		0: Timer 3 operates in 16-bit auto-reload mode.
		1: Timer 3 operates as two 8-bit auto-reload timers.
2	TR3	Timer 3 Run Control.
		Timer 3 is enabled by setting this bit to 1. In 8-bit mode, this bit enables/disables TMR3H only; TMR3L is always enabled in split mode.
1:0	T3XCLK[1:0]	Timer 3 External Clock Select.
		This bit selects the "external" and "capture trigger" clock sources for Timer 3. If Timer 3 is in 8-bit mode, this bit selects the "external" clock source for both timer bytes. Timer 3 Clock Select bits (T3MH and T3ML in register CKCON) may still be used to select between the "external" clock and the system clock for either timer. Note: External clock sources are synchronized with the system clock. 00: External Clock is SYSCLK /12. Capture trigger is SmaRTClock. 01: External Clock is External Oscillator/8. Capture trigger is SmaRTClock. 10: External Clock is SYSCLK/12. Capture trigger is External Oscillator/8. 11: External Clock is SmaRTClock. Capture trigger is External Oscillator/8.

26.3. Capture/Compare Modules

Each module can be configured to operate independently in one of six operation modes: edge-triggered capture, software timer, high-speed output, frequency output, 8 to 11-bit pulse width modulator, or 16-bit pulse width modulator. Each module has Special Function Registers (SFRs) associated with it in the CIP-51 system controller. These registers are used to exchange data with a module and configure the module's mode of operation. Table 26.2 summarizes the bit settings in the PCA0CPMn and PCA0PWM registers used to select the PCA capture/compare module's operating mode. Note that all modules set to use 8, 9, 10, or 11-bit PWM mode must use the same cycle length (8–11 bits). Setting the ECCFn bit in a PCA0CPMn register enables the module's CCFn interrupt.

Operational Mode	Γ		PC	:A0	СР	Mn				Ρ	CA	0PWN	1
Bit Number	7	6	5	4	3	2	1	0	7	6	5	4–2	1–0
Capture triggered by positive edge on CEXn	Х	Х	1	0	0	0	0	А	0	Х	В	XXX	XX
Capture triggered by negative edge on CEXn	Х	Х	0	1	0	0	0	А	0	Х	В	XXX	XX
Capture triggered by any transition on CEXn	Х	Х	1	1	0	0	0	А	0	Х	В	XXX	XX
Software Timer	Х	С	0	0	1	0	0	А	0	Х	В	XXX	XX
High Speed Output	Х	С	0	0	1	1	0	А	0	Х	В	XXX	XX
Frequency Output	Х	С	0	0	0	1	1	А	0	Х	В	XXX	XX
8-Bit Pulse Width Modulator (Note 7)	0	С	0	0	Е	0	1	А	0	Х	В	XXX	00
9-Bit Pulse Width Modulator (Note 7)	0	С	0	0	Е	0	1	А	D	Х	В	XXX	01
10-Bit Pulse Width Modulator (Note 7)	0	С	0	0	Е	0	1	А	D	Х	В	XXX	10
11-Bit Pulse Width Modulator (Note 7)	0	С	0	0	Е	0	1	А	D	Х	В	XXX	11
16-Bit Pulse Width Modulator	1	С	0	0	Е	0	1	А	0	Х	В	XXX	XX
Notes:	-	•	-	-	-		-	·					

Table 26.2. PCA0CPM and PCA0PWM Bit Settings for PCA Capture/Compare Modules

1. X = Don't Care (no functional difference for individual module if 1 or 0).

2. A = Enable interrupts for this module (PCA interrupt triggered on CCFn set to 1).

3. B = Enable 8th, 9th, 10th or 11th bit overflow interrupt (Depends on setting of CLSEL[1:0]).

4. C = When set to 0, the digital comparator is off. For high speed and frequency output modes, the associated pin will not toggle. In any of the PWM modes, this generates a 0% duty cycle (output = 0).

5. D = Selects whether the Capture/Compare register (0) or the Auto-Reload register (1) for the associated channel is accessed via addresses PCA0CPHn and PCA0CPLn.

6. E = When set, a match event will cause the CCFn flag for the associated channel to be set.

7. All modules set to 8, 9, 10 or 11-bit PWM mode use the same cycle length setting.

SFR Definition 26.2. PCA0MD: PCA Mode

Bit	7	6	5	4	3	2	1	0					
Name	e CIDL	WDTE	WDLCK		CPS2	CPS1	CPS0	ECF					
Туре	R/W	R/W	R/W R/W R R/W R/W R/W										
Reset 0 1 0 <th>0</th>								0					
SFR P	SFR Page = 0x0; SFR Address = 0xD9												
Bit	Name	Function											
7	CIDL	Specifies PCA 0: PCA contin	PCA Counter/Timer Idle Control. Specifies PCA behavior when CPU is in Idle Mode. 0: PCA continues to function normally while the system controller is in Idle Mode. 1: PCA operation is suspended while the system controller is in Idle Mode.										
6	WDTE	Watchdog Timer Enable. If this bit is set, PCA Module 2 is used as the watchdog timer. 0: Watchdog Timer disabled. 1: PCA Module 2 enabled as Watchdog Timer.											
5	WDLCK	Watchdog Tin This bit locks/ Timer may no 0: Watchdog ⁻ 1: Watchdog ⁻	unlocks the V t be disabled Fimer Enable	l until the ne unlocked.			CK is set, the	Watchdog					
4	Unused	Read = 0b, W	rite = don't c	are.									
3:1	CPS[2:0]	PCA Counter/Timer Pulse Select. These bits select the timebase source for the PCA counter 000: System clock divided by 12 001: System clock divided by 4 010: Timer 0 overflow 011: High-to-low transitions on ECI (max rate = system clock divided by 4) 100: System clock 101: External clock divided by 8 (synchronized with the system clock) 110: SmaRTClock divided by 8 (synchronized with the system clock) 111: Reserved											
0	ECF	 PCA Counter/Timer Overflow Interrupt Enable. This bit sets the masking of the PCA Counter/Timer Overflow (CF) interrupt. 0: Disable the CF interrupt. 1: Enable a PCA Counter/Timer Overflow interrupt request when CF (PCA0CN.7) is set. 											
Note:		VDTE bit is set to the PCA0MD reg					odified. To cha	ange the					

oscillator while in Sleep mode.

- Added a note to "15.5. Sleep Mode" and SFR Definition "15.3. Stop Mode" regarding not disabling the POR Supply Monitor while operating above 2.4 V.
- Adjusted QFN20 c, D2, and E2 package specifications in Table 3.2.

