

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	CIP-51 8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I²C), SPI, UART/USART
Peripherals	Brown-out Detect/Reset, Cap Sense, POR, PWM, Temp Sensor, WDT
Number of I/O	17
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-WFQFN Exposed Pad
Supplier Device Package	24-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f996-gm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.5. SAR ADC with 16-bit Auto-Averaging Accumulator and Autonomous Low Power Burst Mode

C8051F99x-C8051F98x devices have a 300 ksps, 10-bit or 75 ksps 12-bit successive-approximationregister (SAR) ADC with integrated track-and-hold and programmable window detector. ADC0 also has an autonomous low power Burst Mode which can automatically enable ADC0, capture and accumulate samples, then place ADC0 in a low power shutdown mode without CPU intervention. It also has a 16-bit accumulator that can automatically average the ADC results, providing an effective 11, 12, or 13 bit ADC result without any additional CPU intervention.

The ADC can sample the voltage at select GPIO pins (see Figure 1.17) and has an on-chip attenuator that allows it to measure voltages up to twice the voltage reference. Additional ADC inputs include an on-chip temperature sensor, the VDD supply voltage, and the internal digital supply voltage.

*Note: Signal only available on 'F986, 'F988, and 'F996 devices.

Figure 3.3. QSOP-24 Pinout Diagram (Top View)

Figure 3.4. QFN-20 Package Marking Diagram

Figure 3.5. QFN-24 Package Marking Diagram

SFR Definition 8.12. CS0MD2: Capacitive Sense Mode 2

Bit	7	6	5 4 3 2 1 0						
Nam	e CS0C	R[1:0]		CS0DT[2:0]	I		CS0IA[2:0]		
Туре	e R/	W	/ R/W				R/W		
Rese	et 0	1	0	0	0	0	0	0	
SFR F	Page = 0x0; SF	R Address :	Address = 0xF3						
Bit	Name				Descriptio	n			
7:6	CS0CR[1:0]	CS0 Cor These bi ifications 00: Conv 01: Conv 10: Conv 11: Conv	 CS0 Conversion Rate. These bits control the conversion rate of the CS0 module. See the electr ifications table for specific timing. 00: Conversions last 12 internal CS0 clocks and are 12 bits in length. 01: Conversions last 13 internal CS0 clocks and are 13 bits in length. 10: Conversions last 14 internal CS0 clocks and are 14 bits in length. 11: Conversions last 16 internal CS0 clocks and are 16 bits in length. 					strical spec-	
5:3	CS0DT[2:0]	CS0 Dis These bi the defau informati 000: Disc 001: Disc 010: Disc 011: Disc 100: Disc 101: Disc 111: Disc	 Conversions last 16 internal CSU clocks and are 16 bits in length. CSO Discharge Time. These bits adjust the primary CSO reset time. For most touch-sensitive switches, the default (fastest) value is sufficient. See the discussion in Section 8.13 for more information. 000: Discharge time is 0.75 µs (recommended for most switches) 001: Discharge time is 1.0 µs 010: Discharge time is 1.2 µs 011: Discharge time is 2 µs 102: Discharge time is 3 µs 110: Discharge time is 6 µs 						
2:0	CS0IA[2:0]	CS0 Out These bi itive sens rent is su 000: Full 001: 1/8 010: 1/4 011: 3/8 100: 1/2 101: 5/8 110: 3/4 111: 7/8	put Current ts allow the us or element. ufficient. See Current Current Current Current Current Current Current Current Current	t Adjustmer user to adjus For most to the discuss	it. t the output o uch-sensitive ion in Sectio	current used e switches, tl n 8.13 for mo	to charge up ne default (hi ore informati) the capac- ighest) cur- on.	

SFR Definition 8.14. CS0PM: Capacitive Sense Pin Monitor

Bit	7	6	5	4	3	2	1	0
Name	UAPM	SPIPM	SMBPM	PCAPM	PIOPM	CP0PM	CSPMMD[1:0]	
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0

SFR Page = 0xF; SFR Address = 0xDE;

Bit	Name	Description
7	UAPM	UART Pin Monitor Enable.
		Enables monitoring of the UART TX pin.
6	SPIPM	SPI Pin Monitor Enable.
		Enables monitoring SPI output pins.
5	SMBPM	SMBus Pin Monitor Enable.
		Enables monitoring of the SMBus pins.
4	PCAPM	PCA Pin Monitor Enable.
		Enables monitoring of PCA output pins.
3	PIOPM	Port I/O Pin Monitor Enable.
		Enables monitoring of writes to the port latch registers.
2	CP0PM	CP0 Pin Monitor Enable.
		Enables monitoring of the comparator CP0 output.
1:0	CSPMMD[1:0]	CS0 Pin Monitor Mode.
		Selects the operation to take when a monitored signal changes state.
		00: Always retry bit cycles on a pin state change.
		01: Retry up to twice on consecutive bit cycles.
		10: Retry up to four times on consecutive bit cycles.
		11: Reserved.

8.14. Capacitive Sense Multiplexer

The input multiplexer can be controlled through two methods. The CS0MX register can be written to through firmware, or the register can be configured automatically using the modules auto-scan functionality (see "8.8. Automatic Scanning (Method 1—CS0SMEN = 0)").

Figure 8.3. CS0 Multiplexer Block Diagram

SFR Definition 8.15. CS0MX: Capacitive Sense Mux Channel Select

Bit	7	6	5	4	3	2	1	0
Name	Reserved	Reserved	Reserved	Reserved	CS0MX[3:0]			
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Page = 0x0; SFR Address = 0xAB

Bit	Name		Description					
7:5	Reserved	Read = 0000b	ead = 0000b; Write = 0000b.					
4:0	CS0MX[4:0]	CS0 Mux Channel Select.						
		Selects one of the 14 input channels for Capacitive Sense conversion.						
		Value	Channel					
		0000	P0.0					
		0001	P0.1					
		0010	P0.2					
		0011	P0.3					
		0100	P0.4					
		0101	P0.5					
		0110	P0.6					
		0111	P0.7					
		1000	P1.0					
		1001	P1.1					
		1010	P1.2					
		1011	P1.3					
		1100	P1.4 (24-pin packages only)					
		1101	P1.5					
		1110	Reserved					
		1111	Reserved					

Mnemonic	Description	Bytes	Clock Cycles
CLR A	Clear A	1	1
CPL A	Complement A	1	1
RL A	Rotate A left	1	1
RLC A	Rotate A left through Carry	1	1
RR A	Rotate A right	1	1
RRC A	Rotate A right through Carry	1	1
SWAP A	Swap nibbles of A	1	1
	Data Transfer		
MOV A, Rn	Move Register to A	1	1
MOV A, direct	Move direct byte to A	2	2
MOV A, @Ri	Move indirect RAM to A	1	2
MOV A, #data	Move immediate to A	2	2
MOV Rn, A	Move A to Register	1	1
MOV Rn, direct	Move direct byte to Register	2	2
MOV Rn, #data	Move immediate to Register	2	2
MOV direct, A	Move A to direct byte	2	2
MOV direct, Rn	Move Register to direct byte	2	2
MOV direct, direct	Move direct byte to direct byte	3	3
MOV direct, @Ri	Move indirect RAM to direct byte	2	2
MOV direct, #data	Move immediate to direct byte	3	3
MOV @Ri, A	Move A to indirect RAM	1	2
MOV @Ri, direct	Move direct byte to indirect RAM	2	2
MOV @Ri, #data	Move immediate to indirect RAM	2	2
MOV DPTR, #data16	Load DPTR with 16-bit constant	3	3
MOVC A, @A+DPTR	Move code byte relative DPTR to A	1	3
MOVC A, @A+PC	Move code byte relative PC to A	1	3
MOVX A, @Ri	Move external data (8-bit address) to A	1	3
MOVX @Ri, A	Move A to external data (8-bit address)	1	3
MOVX A, @DPTR	Move external data (16-bit address) to A	1	3
MOVX @DPTR, A	Move A to external data (16-bit address)	1	3
PUSH direct	Push direct byte onto stack	2	2
POP direct	Pop direct byte from stack	2	2
XCH A, Rn	Exchange Register with A	1	1
XCH A, direct	Exchange direct byte with A	2	2
XCH A, @Ri	Exchange indirect RAM with A	1	2
XCHD A, @Ri	Exchange low nibble of indirect RAM with A	1	2
	Boolean Manipulation		
CLR C	Clear Carry	1	1
CLR bit	Clear direct bit	2	2
SETB C	Set Carry	1	1
SETB bit	Set direct bit	2	2
CPL C	Complement Carry	1	1
CPL bit	Complement direct bit	2	2
ANL C, bit	AND direct bit to Carry	2	2

Table 9.1. CIP-51 Instruction Set Summary (Continued)

SFR Definition 13.5. EIE2: Extended Interrupt Enable 2

Bit	7	6	5	4	3	2	1	0
Name		ECSEOS	ECSDC	ECSCPT		ERTC0F	EMAT	EWARN
Туре	R/W	R/W	R/W	R/W	R	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Page = All;SFR Address = 0xE7

Bit	Name	Function
7	Unused	Read = 0b. Write = Don't care.
6	ECSEOS	Enable Capacitive Sense End of Scan Interrupt.0: Disable Capacitive Sense End of Scan interrupt.1: Enable interrupt requests generated by CS0EOS.
5	ECSDC	Enable Capacitive Sense Digital Comparator Interrupt. 0: Disable Capacitive Sense Digital Comparator interrupt. 1: Enable interrupt requests generated by CS0CMPF.
4	ECSCPT	 Enable Capacitive Sense Conversion Complete Interrupt. 0: Disable Capacitive Sense Conversion Complete interrupt. 1: Enable interrupt requests generated by CS0INT.
3	Unused	Read = 0b. Write = Don't care.
2	ERTC0F	Enable SmaRTClock Oscillator Fail Interrupt. This bit sets the masking of the SmaRTClock Alarm interrupt. 0: Disable SmaRTClock Alarm interrupts. 1: Enable interrupt requests generated by SmaRTClock Alarm.
1	EMAT	 Enable Port Match Interrupts. This bit sets the masking of the Port Match Event interrupt. 0: Disable all Port Match interrupts. 1: Enable interrupt requests generated by a Port Match.
0	EWARN	 Enable Supply Monitor Early Warning Interrupt. This bit sets the masking of the Supply Monitor Early Warning interrupt. 0: Disable the Supply Monitor Early Warning interrupt. 1: Enable interrupt requests generated by the Supply Monitor.

Action	C2 Debug	User Firmware executing from:			
	Interface	an unlocked page	a locked page		
Read, Write or Erase unlocked pages (except page with Lock Byte)	Permitted	Permitted	Permitted		
Read, Write or Erase locked pages (except page with Lock Byte)	Not Permitted	FEDR	Permitted		
Read or Write page containing Lock Byte (if no pages are locked)	Permitted	Permitted	Permitted		
Read or Write page containing Lock Byte (if any page is locked)	Not Permitted	FEDR	Permitted		
Read contents of Lock Byte (if no pages are locked)	Permitted	Permitted	Permitted		
Read contents of Lock Byte (if any page is locked)	Not Permitted	FEDR	Permitted		
Erase page containing Lock Byte (if no pages are locked)	Permitted	FEDR	FEDR		
Erase page containing Lock Byte—Unlock all pages (if any page is locked)	Only by C2DE	FEDR	FEDR		
Lock additional pages (change 1s to 0s in the Lock Byte)	Not Permitted	FEDR	FEDR		
Unlock individual pages (change 0s to 1s in the Lock Byte)	Not Permitted	FEDR	FEDR		
Read, Write or Erase Reserved Area	Not Permitted	FEDR	FEDR		

Table 14.1. Flash Security Summary

• C2DE—C2 Device Erase (Erases all Flash pages including the page containing the Lock Byte)

■ FEDR—Not permitted; Causes Flash Error Device Reset (FERROR bit in RSTSRC is 1 after reset)

 All prohibited operations that are performed via the C2 interface are ignored (do not cause device reset).

• Locking any Flash page also locks the page containing the Lock Byte.

- Once written to, the Lock Byte cannot be modified except by performing a C2 Device Erase.
- If user code writes to the Lock Byte, the Lock does not take effect until the next device reset.
- The scratchpad is locked when all other Flash pages are locked.
- The scratchpad is erased when a Flash Device Erase command is performed.

16.5. CRC0 Bit Reverse Feature

CRC0 includes hardware to reverse the bit order of each bit in a byte as shown in Figure 16.2. Each byte of data written to CRC0FLIP is read back bit reversed. For example, if 0xC0 is written to CRC0FLIP, the data read back is 0x03. Bit reversal is a useful mathematical function used in algorithms such as the FFT.

Figure 16.2. Bit Reverse Register

SFR Definition 16.6. CRC0FLIP: CRC0 Bit Flip

Bit	7	6	5	4	3	2	1	0
Name	CRC0FLIP[7:0]							
Туре	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Page = All; SFR Address = 0x9C

Bit	Name	Function
7:0	CRC0FLIP[7:0]	CRC0 Bit Flip.
		Any byte written to CRC0FLIP is read back in a bit-reversed order, i.e. the written LSB becomes the MSB. For example: If 0xC0 is written to CRC0FLIP, the data read back will be 0x03. If 0x05 is written to CRC0FLIP, the data read back will be 0xA0.

20.1.5. RTC0ADR Autoincrement Feature

For ease of reading and writing the 32-bit CAPTURE and ALARM values, RTC0ADR automatically increments after each read or write to a CAPTUREn or ALARMn register. This speeds up the process of setting an alarm or reading the current SmaRTClock timer value. Autoincrement is always enabled.

Recommended Instruction Timing for a multi-byte register read with short strobe and auto read enabled:

Recommended Instruction Timing for a multi-byte register write with short strobe enabled:

mov RTCOADR, #010h
mov RTCODAT, #05h
nop
mov RTCODAT, #06h
nop
mov RTCODAT, #07h
nop
mov RTCODAT, #08h
nop

SFR Definition 21.2. XBR1: Port I/O Crossbar Register 1

Bit	7	6	5	4	3	2	1	0
Name			T1E	T0E	ECIE	PCA0ME[2:0]		
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Page = 0x0; SFR Address = 0xE2

Bit	Name	Function
7:6	Unused	Read = 00b; Write = Don't Care.
5	T1E	Timer1 Input Enable.
		0: T1 input unavailable at Port pin.
		1: T1 input routed to Port pin.
4	T0E	Timer0 Input Enable.
		0: T0 input unavailable at Port pin.
		1: T0 input routed to Port pin.
3	ECIE	PCA0 External Counter Input (ECI) Enable.
		0: PCA0 external counter input unavailable at Port pin.
		1: PCA0 external counter input routed to Port pin.
2:0	PCA0ME	PCA0 Module I/O Enable.
		000: All PCA0 I/O unavailable at Port pin.
		001: CEX0 routed to Port pin.
		010: CEX0, CEX1 routed to Port pins.
		011: CEX0, CEX1, CEX2 routed to Port pins.
		100: Reserved.
		101: Keserved.
		110. Reserved

SFR Definition 21.8. P0: Port0

Bit	7	6	5	4	3	2	1	0		
Name	P0[7:0]									
Туре				R/	W					
Reset	1									

SFR Page = All; SFR Address = 0x80; Bit-Addressable

Bit	Name	Description	Write	Read
7:0	P0[7:0]	Port 0 Data. Sets the Port latch logic value or reads the Port pin logic state in Port cells con- figured for digital I/O.	0: Set output latch to logic LOW. 1: Set output latch to logic HIGH.	0: P0.n Port pin is logic LOW. 1: P0.n Port pin is logic HIGH.

SFR Definition 21.9. P0SKIP: Port0 Skip

Bit	7	6	5	4	3	2	1	0		
Name	P0SKIP[7:0]									
Туре		R/W								
Reset	0	0 0 0 0 0 0 0 0								

SFR Page= 0x0; SFR Address = 0xD4

Bit	Name	Function
7:0	P0SKIP[7:0]	Port 0 Crossbar Skip Enable Bits.
		These bits select Port 0 pins to be skipped by the Crossbar Decoder. Port pins used for analog, special functions or GPIO should be skipped by the Crossbar.0: Corresponding P0.n pin is not skipped by the Crossbar.1: Corresponding P0.n pin is skipped by the Crossbar.

22.4. Using the SMBus

The SMBus can operate in both Master and Slave modes. The interface provides timing and shifting control for serial transfers; higher level protocol is determined by user software. The SMBus interface provides the following application-independent features:

- Byte-wise serial data transfers
- Clock signal generation on SCL (Master Mode only) and SDA data synchronization
- Timeout/bus error recognition, as defined by the SMB0CF configuration register
- START/STOP timing, detection, and generation
- Bus arbitration
- Interrupt generation
- Status information
- Optional hardware recognition of slave address and automatic acknowledgement of address/data

SMBus interrupts are generated for each data byte or slave address that is transferred. When hardware acknowledgement is disabled, the point at which the interrupt is generated depends on whether the hardware is acting as a data transmitter or receiver. When a transmitter (i.e. sending address/data, receiving an ACK), this interrupt is generated after the ACK cycle so that software may read the received ACK value; when receiving data (i.e., receiving address/data, sending an ACK), this interrupt is generated before the ACK cycle so that software may define the outgoing ACK value. If hardware acknowledgement is enabled, these interrupts are always generated after the ACK cycle. See Section 22.5 for more details on transmission sequences.

Interrupts are also generated to indicate the beginning of a transfer when a master (START generated), or the end of a transfer when a slave (STOP detected). Software should read the SMB0CN (SMBus Control register) to find the cause of the SMBus interrupt. The SMB0CN register is described in Section 22.4.2; Table 22.5 provides a quick SMB0CN decoding reference.

SFR Definition 25.1. CKCON: Clock Control

Bit	7	6	5	4	3	2	1	0		
Nam	e T3MH	I T3ML	T2MH	T2ML	T1M	ТОМ	SCA	[1:0]		
Туре	PR/W	R/W	R/W	R/W	R/W	R/W	R/	W		
Rese	et 0	0	0	0	0	0	0	0		
SFR F	Page = 0x0;	; SFR Address =	= 0x8E				1			
Bit	Name				Function					
7	ТЗМН	Timer 3 High I Selects the clo 0: Timer 3 high 1: Timer 3 high	mer 3 High Byte Clock Select. elects the clock supplied to the Timer 3 high byte (split 8-bit timer mode only). Timer 3 high byte uses the clock defined by the T3XCLK bit in TMR3CN. Timer 3 high byte uses the system clock.							
6	T3ML	Timer 3 Low E Selects the clo in split 8-bit tim 0: Timer 3 low 1: Timer 3 low	mer 3 Low Byte Clock Select. elects the clock supplied to Timer 3. Selects the clock supplied to the lower 8-bit timer split 8-bit timer mode. Timer 3 low byte uses the clock defined by the T3XCLK bit in TMR3CN. Timer 3 low byte uses the system clock.							
5	T2MH	Timer 2 High I Selects the clo 0: Timer 2 high 1: Timer 2 high	Timer 2 High Byte Clock Select. Selects the clock supplied to the Timer 2 high byte (split 8-bit timer mode only). 0: Timer 2 high byte uses the clock defined by the T2XCLK bit in TMR2CN. 1: Timer 2 high byte uses the system clock.							
4	T2ML	Timer 2 Low E Selects the clo this bit selects 0: Timer 2 low 1: Timer 2 low	Byte Clock S ck supplied the clock su byte uses th byte uses th	Select. to Timer 2. It pplied to the le clock defir le system clo	Timer 2 is c lower 8-bit t ned by the T ock.	configured in imer. 2XCLK bit in	split 8-bit tim TMR2CN.	ier mode,		
3	T1M	Timer 1 Clock Selects the clo 0: Timer 1 uses 1: Timer 1 uses	Select. ck source su s the clock d s the system	upplied to Tir lefined by the n clock.	ner 1. Ignore e prescale b	ed when C/T its SCA[1:0].	1 is set to 1.			
2	ТОМ	Timer 0 Clock Selects the clo 0: Counter/Tim 1: Counter/Tim	Timer 0 Clock Select. Selects the clock source supplied to Timer 0. Ignored when C/T0 is set to 1. 0: Counter/Timer 0 uses the clock defined by the prescale bits SCA[1:0]. 1: Counter/Timer 0 uses the system clock.							
1:0	SCA[1:0]	Timer 0/1 Pres These bits con 00: System clo 01: System clo 10: System clo 11: External clo	scale Bits. trol the Time ck divided b ck divided b ck divided b ock divided b	er 0/1 Clock y 12 y 4 y 48 by 8 (synchro	Prescaler:	he system cl	ock)			

SFR Definition 25.13. TMR3CN: Timer 3 Control

Bit	7	6	5	4	3	2	1	0
Name	TF3H	TF3L	TF3LEN	TF3CEN	T3SPLIT	TR3	T3XCLK[1:0]	
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0

SFR Page = 0x0; SFR Address = 0x91

Bit	Name	Function
7	TF3H	Timer 3 High Byte Overflow Flag. Set by hardware when the Timer 3 high byte overflows from 0xFF to 0x00. In 16 bit mode, this will occur when Timer 3 overflows from 0xFFFF to 0x0000. When the Timer 3 interrupt is enabled, setting this bit causes the CPU to vector to the Timer 3 interrupt service routine. This bit is not automatically cleared by hardware.
6	TF3L	Timer 3 Low Byte Overflow Flag. Set by hardware when the Timer 3 low byte overflows from 0xFF to 0x00. TF3L will be set when the low byte overflows regardless of the Timer 3 mode. This bit is not automatically cleared by hardware.
5	TF3LEN	Timer 3 Low Byte Interrupt Enable. When set to 1, this bit enables Timer 3 Low Byte interrupts. If Timer 3 interrupts are also enabled, an interrupt will be generated when the low byte of Timer 3 overflows.
4	TF3CEN	Timer 3 SmaRTClock/External Oscillator Capture Enable. When set to 1, this bit enables Timer 3 Capture Mode.
3	T3SPLIT	 Timer 3 Split Mode Enable. When this bit is set, Timer 3 operates as two 8-bit timers with auto-reload. 0: Timer 3 operates in 16-bit auto-reload mode. 1: Timer 3 operates as two 8-bit auto-reload timers.
2	TR3	Timer 3 Run Control. Timer 3 is enabled by setting this bit to 1. In 8-bit mode, this bit enables/disables TMR3H only; TMR3L is always enabled in split mode.
1:0	T3XCLK[1:0]	Timer 3 External Clock Select.This bit selects the "external" and "capture trigger" clock sources for Timer 3. IfTimer 3 is in 8-bit mode, this bit selects the "external" clock source for both timerbytes. Timer 3 Clock Select bits (T3MH and T3ML in register CKCON) may still beused to select between the "external" clock and the system clock for either timer.Note: External clock sources are synchronized with the system clock.00: External Clock is SYSCLK /12. Capture trigger is SmaRTClock.01: External Clock is External Oscillator/8. Capture trigger is SmaRTClock.10: External Clock is SYSCLK/12. Capture trigger is External Oscillator/8.11: External Clock is SmaRTClock. Capture trigger is External Oscillator/8.

26.5. Register Descriptions for PCA0

Following are detailed descriptions of the special function registers related to the operation of the PCA.

SFR Definition 26.1. PCA0CN: PCA Control

Bit	7	6	5	4	3	2	1	0
Name	CF	CR				CCF2	CCF1	CCF0
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Page = 0x0; SFR Address = 0xD8; Bit-Addressable

Bit	Name	Function
7	CF	PCA Counter/Timer Overflow Flag.
		Set by hardware when the PCA Counter/Timer overflows from 0xFFFF to 0x0000. When the Counter/Timer Overflow (CF) interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service routine. This bit is not automatically cleared by hardware and must be cleared by software.
6	CR	PCA Counter/Timer Run Control.
		This bit enables/disables the PCA Counter/Timer.
		0: PCA Counter/Timer disabled.
		1: PCA Counter/Timer enabled.
5:3	Unused	Read = 000b, Write = don't care.
2:0	CCF[2:0]	PCA Module n Capture/Compare Flag.
		These bits are set by hardware when a match or capture occurs in the associated PCA Module n. When the CCFn interrupt is enabled, setting this bit causes the CPU to vector to the PCA interrupt service routine. This bit is not automatically cleared by hardware and must be cleared by software.

C2 Register Definition 27.2. DEVICEID: C2 Device ID

Bit	7	6	5	4	3	2	1	0		
Name	DEVICEID[7:0]									
Туре				R/	W					
Reset	0	0 0 0 1 0 1 0 0								

C2 Address: 0x00

Bit	Name	Function
7:0	DEVICEID[7:0]	Device ID. This read-only register returns the 8-bit device ID: 0x25.

C2 Register Definition 27.3. REVID: C2 Revision ID

ы	7	6	5	4	3	2	1	0
Name	REVID[7:0]							
Туре	R/W							
Reset	Varies	Varies	Varies	Varies	Varies	Varies	Varies	Varies

C2 Address: 0x01

Bit	Name	Function
7:0	REVID[7:0]	Revision ID.
		This read-only register returns the 8-bit revision ID. For example: $0x00 = $ Revision A, $0x01 = $ Revision B, $0x02 = $ Revision C.

DOCUMENT CHANGE LIST

Revision 0.3 to Revision 0.4

• QFN-20 package and landing diagram updated.

Revision 0.4 to Revision 1.0

- IREF0CF register description updated.
- Updated ADC0 Chapter Text.
- Corrected an error in the Product Selector Guide.
- Updated SmaRTClock chapter to indicate how the Alarm value should be set when using Auto Reset and the LFO.
- Updated electrical specifications to fill TBDs and updated power specifications based on Rev B characterization data.
- Added a note to the OSCICL register description.
- Added a note to the CRC0CN register description.
- Updated equation in the CRC0CNT register description.
- Updated Power On Reset description.

Revision 1.0 to Revision 1.1

Removed references to AN338.

Revision 1.1 to Revision 1.2

- Removed QuickSense references.
- Updated part numbers to Revision C in "Ordering Information" on page 31 and added Figure 3.4, Figure 3.5, and Figure 3.6 to identify the silicon revision.
- Updated REVID register (SFR Definition 14.2) and REVID C2 register (C2 Register Definition 27.3) with the 0x02 value for Revision C.
- Updated Figure "7.3 CP0 Multiplexer Block Diagram" on page 98 to remove the bar over the CPnOUT signals.
- Updated the "Reset Sources" on page 181 chapter to reflect the correct state of the RST pin during power-on reset.
- Updated Figure "1.14 Port I/O Functional Block Diagram" on page 26 and Figure "21.1 Port I/O Functional Block Diagram" on page 215 to mention P1.4 is not available on 20-pin devices.
- Removed references to the EMI0CN register, which does not exist.
- Updated Figure "8.2 Auto-Scan Example" on page 103 to refer to the correct pins.
- Updated POR Monitor Threshold (V_{POR}) Brownout Condition (VDD Falling) specification minimum, typical, and maximum values.
- Updated the reset value of the CLKSEL register (SFR Definition 19.1).
- Updated description of WEAKPUD in SFR Definition 21.3.
- Corrected SFR addresses for P0DRV (SFR Definition 21.12), P1DRV (SFR Definition 21.17), P2DRV (SFR Definition 21.20), PMU0MD (SFR Definition 15.3), FLSCL (SFR Definition 14.5), REF0CN (SFR Definition 5.15), CS0SCAN0 (SFR Definition 8.5), and CS0SCAN1 (SFR Definition 8.6).
- Replaced all instances of V_{BAT} with V_{DD}.
- Added a note to "11.1. Accessing XRAM", "15.5. Sleep Mode", and "18. Reset Sources" regarding an issue with the first address of XRAM.
- Added a note to "15.5. Sleep Mode" and "19. Clocking Sources" regarding using the internal low power

