E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	CIP-51 8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	Brown-out Detect/Reset, Cap Sense, POR, PWM, Temp Sensor, WDT
Number of I/O	17
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-SSOP (0.154", 3.90mm Width)
Supplier Device Package	24-QSOP
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f996-gur

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.	System Overview	17
	1.1. CIP-51 [™] Microcontroller Core	25
	1.1.1. Fully 8051 Compatible	25
	1.1.2. Improved Throughput	25
	1.1.3. Additional Features	25
	1.2. Port Input/Output	26
	1.3. Serial Ports	27
	1.4. Programmable Counter Array	27
	1.5. SAR ADC with 16-bit Auto-Averaging Accumulator and Autonomous Low Pow	/er
	Burst Mode	28
	1.6. Programmable Current Reference (IREF0)	29
	1.7. Comparator	29
2.	Ordering Information	31
3.	Pinout and Package Definitions	32
4.	Electrical Characteristics	48
	4.1. Absolute Maximum Specifications	48
	4.2. Electrical Characteristics	49
5.	SAR ADC with 16-bit Auto-Averaging Accumulator and Autonomous Low Pow	/er
	Burst Mode	66
	5.1. Output Code Formatting	67
	5.2. Modes of Operation	68
	5.2.1. Starting a Conversion	68
	5.2.2. Tracking Modes	69
	5.2.3. Burst Mode	70
	5.2.4. Settling Time Requirements	71
	5.2.5. Gain Setting	72
	5.3. 8-Bit Mode	72
	5.4. 12-Bit Mode (C8051F980/6 and C8051F990/6 devices only)	72
	5.5. Low Power Mode	72
	5.6. Programmable Window Detector	80
	5.6.1. Window Detector In Single-Ended Mode	82
	5.6.2. ADC0 Specifications	82
	5.7. ADC0 Analog Multiplexer	83
	5.8. Temperature Sensor	85
	5.8.1. Calibration	86
	5.9. Voltage and Ground Reference Options	88
	5.10.External Voltage Reference	89
	5.11.Internal Voltage Reference	89
	5.12.Analog Ground Reference	89
	5.13.Temperature Sensor Enable	89
	5.14.Voltage Reference Electrical Specifications	90
6.	Programmable Current Reference (IREF0)	91
	6.1. PWM Enhanced Mode	91

Figure 5.10 Voltage Reference Functional Block Diagram	00
Figure 3.10. Voltage Reference Functional Block Diagram	00
Figure 7.1. Comparator Unctional Block Diagram	93
Figure 7.2. Comparator Hysteresis Piot	95
Figure 7.3. CP0 Multiplexer Block Diagram	98
Figure 8.1. CS0 Block Diagram	100
Figure 8.2. Auto-Scan Example	103
Figure 8.3. CS0 Multiplexer Block Diagram	117
Figure 9.1. CIP-51 Block Diagram	119
Figure 10.1. C8051F99x-C8051F98x Memory Map	128
Figure 10.2. Flash Program Memory Map	129
Figure 14.1. Flash Program Memory Map (8 kB and smaller devices)	152
Figure 15.1. C8051F99x-C8051F98x Power Distribution	163
Figure 16.1. CRC0 Block Diagram	172
Figure 16.2. Bit Reverse Register	179
Figure 18.1. Reset Sources	181
Figure 18.2. Power-Fail Reset Timing Diagram	182
Figure 19.1. Clocking Sources Block Diagram	188
Figure 19.2. 25 MHz External Crystal Example	190
Figure 20.1. SmaRTClock Block Diagram	197
Figure 20.2. Interpreting Oscillation Robustness (Duty Cycle) Test Results	206
Figure 21.1. Port I/O Functional Block Diagram	215
Figure 21.2. Port I/O Cell Block Diagram	216
Figure 21.3. Peripheral Availability on Port I/O Pins	219
Figure 21.4. Crossbar Priority Decoder in Example Configuration (No Pins Skippe	ed).
220	,
Figure 21.5. Crossbar Priority Decoder in Example Configuration (4 Pins Skipped	3)
· · · · · · · · · · · · · · · · · · ·	220
Figure 22.1. SMBus Block Diagram	235
Figure 22.2. Typical SMBus Configuration	236
Figure 22.3. SMBus Transaction	237
Figure 22.4 Typical SMBus SCI Generation	240
Figure 22.5. Typical Master Write Sequence	249
Figure 22.6. Typical Master Read Sequence	250
Figure 22.7. Typical Slave Write Sequence	251
Figure 22.8. Typical Slave Read Sequence	252
Figure 23.1. UARTO Block Diagram	257
Figure 23.2. UARTO Baud Rate Logic	258
Figure 23.3. UART Interconnect Diagram	259
Figure 23.4 8-Bit UART Timing Diagram	259
Figure 23.5. 9-Bit UART Timing Diagram	260
Figure 23.6 UART Multi-Processor Mode Interconnect Diagram	261
Figure 24.1 SPI Block Diagram	265
Figure 24.2 Multiple-Master Mode Connection Diagram	267
Figure 24.3. 3-Wire Single Master and 3-Wire Single Slave Mode Connection Diag	iram
267	num

Table 4.14. Comparator Electrical Characteristics V_{DD} = 1.8 to 3.6 V, -40 to +85 °C unless otherwise noted.

Parameter	Conditions	Min	Тур	Max	Units
Response Time:	CP0+ - CP0- = 100 mV		120		ns
Mode 0, V _{DD} = 2.4 V, V _{CM} [*] = 1.2 V	CP0+ - CP0- = -100 mV	_	110	—	ns
Response Time:	CP0+ - CP0- = 100 mV	_	180	—	ns
Mode 1, $V_{DD} = 2.4 \text{ V}, V_{CM}^* = 1.2 \text{ V}$	CP0+ - CP0- = -100 mV	_	220	—	ns
Response Time:	CP0+ - CP0- = 100 mV		350	—	ns
Mode 2, V _{DD} = 2.4 V, V _{CM} * = 1.2 V	CP0+ - CP0- = -100 mV		600	—	ns
Response Time:	CP0+ - CP0- = 100 mV	_	1240	—	ns
Mode 3, $V_{DD} = 2.4 \text{ V}$, $V_{CM}^* = 1.2 \text{ V}$	CP0+ - CP0- = -100 mV	_	3200	—	ns
Common-Mode Rejection Ratio			1.5	—	mV/V
Inverting or Non-Inverting Input Voltage Range		-0.25	_	V _{DD} + 0.25	V
Input Capacitance		_	12	—	pF
Input Bias Current			1	—	nA
Input Offset Voltage		-7	_	+7	mV
Power Supply				••	
Power Supply Rejection		_	0.1	—	mV/V
	VDD = 3.6 V	_	0.6	—	μs
	VDD = 3.0 V	_	1.0	—	μs
rower-up nine	VDD = 2.4 V	_	1.8	—	μs
	VDD = 1.8 V	_	10	—	μs
	Mode 0	_	23	—	μA
Supply Current at DC	Mode 1	_	8.8	—	μΑ
Supply Current at DC	Mode 2		2.6	—	μA
	Mode 3	_	0.4	—	μA
*Note: Vcm is the common-mode voltage	ge on CP0+ and CP0–.				

5.2. Modes of Operation

ADC0 has a maximum conversion speed of 300 ksps in 10-bit mode. The ADC0 conversion clock (SARCLK) is a divided version of the system clock when burst mode is disabled (BURSTEN = 0), or a divided version of the low power oscillator when burst mode is enabled (BURSEN = 1). The clock divide value is determined by the AD0SC bits in the ADC0CF register.

5.2.1. Starting a Conversion

A conversion can be initiated in one of five ways, depending on the programmed states of the ADC0 Start of Conversion Mode bits (AD0CM2–0) in register ADC0CN. Conversions may be initiated by one of the following:

- 1. Writing a 1 to the AD0BUSY bit of register ADC0CN
- 2. A Timer 0 overflow (i.e., timed continuous conversions)
- 3. A Timer 2 overflow
- 4. A Timer 3 overflow
- 5. A rising edge on the CNVSTR input signal (pin P0.6)

Writing a 1 to AD0BUSY provides software control of ADC0 whereby conversions are performed "ondemand". During conversion, the AD0BUSY bit is set to logic 1 and reset to logic 0 when the conversion is complete. The falling edge of AD0BUSY triggers an interrupt (when enabled) and sets the ADC0 interrupt flag (AD0INT). When polling for ADC conversion completions, the ADC0 interrupt flag (AD0INT) should be used. Converted data is available in the ADC0 data registers, ADC0H:ADC0L, when bit AD0INT is logic 1. When Timer 2 or Timer 3 overflows are used as the conversion source, Low Byte overflows are used if Timer 2/3 is in 8-bit mode; High byte overflows are used if Timer 2/3 is in 16-bit mode. See "25. Timers" on page 278 for timer configuration.

Important Note About Using CNVSTR: The CNVSTR input pin also functions as Port pin P0.6. When the CNVSTR input is used as the ADC0 conversion source, Port pin P0.6 should be skipped by the Digital Crossbar. To configure the Crossbar to skip P0.6, set to 1 Bit 6 in register P0SKIP. See "21. Port Input/Output" on page 215 for details on Port I/O configuration.

	No	rmal Power	Mode	L	ow Power N	lode	
	8 bit	8 bit 10 bit 12 bit 8 k		8 bit	10 bit	12 bit	
Highest nominal SAR clock frequency	8.17 MHz (24.5/3)	8.17 MHz (24.5/3)	6.67 MHz (20.0/3)	4.08 MHz (24.5/6)	4.08 MHz (24.5/6)	4.00 MHz (20.0/5)	
Total number of conversion clocks required	11	13	52 (13 x 4)	11	13	52 (13*4)	
Total tracking time (min)	1.5 µs	1.5 µs	4.8 µs (1.5+3 x 1.1)	1.5 µs	1.5 µs	4.8 μs (1.5+3 x 1.1)	
Total time for one conversion	2.85 µs	3.09 µs	12.6 µs	4.19 µs	4.68 µs	17.8 µs	
ADC Throughput	351 ksps	323 ksps	79 ksps	238 ksps	214 ksps	56 ksps	
Energy per conversion	8.2 nJ	8.9 nJ	36.5 nJ	6.5 nJ	7.3 nJ	27.7 nJ	
Note: This table assumes that the 24.5 MHz precision oscillator is used for 8- and 10-bit modes, and the 20 MHz low power oscillator is used for 12-bit mode. The values in the table assume that the oscillators run at their nominal frequencies. The maximum SAR clock values given in Table 4.10 allow for maximum oscillation frequencies of 25.0 MHz and 22 MHz for the precision and low-power oscillators, respectively, when using the given SAR clock divider values. Energy calculations are for the ADC subsystem only and do not include							

Table 5.1. Representative Conversion Times and Energy Consumption for the SARADC with 1.65 V High-Speed VREF

CPU current. 12-bit mode is only available on C8051F980/6 and C8051F990/6 devices.

5.6. Programmable Window Detector

The ADC Programmable Window Detector continuously compares the ADC0 output registers to userprogrammed limits, and notifies the system when a desired condition is detected. This is especially effective in an interrupt-driven system, saving code space and CPU bandwidth while delivering faster system response times. The window detector interrupt flag (AD0WINT in register ADC0CN) can also be used in polled mode. The ADC0 Greater-Than (ADC0GTH, ADC0GTL) and Less-Than (ADC0LTH, ADC0LTL) registers hold the comparison values. The window detector flag can be programmed to indicate when measured data is inside or outside of the user-programmed limits, depending on the contents of the ADC0 Less-Than and ADC0 Greater-Than registers.

SFR Definition 5.8. ADC0GTH: ADC0 Greater-Than High Byte

Bit	7	6	5	4	3	2	1	0
Name	AD0GT[15:8]							
Туре	R/W							
Reset	1	1	1	1	1	1	1	1

SFR Page = 0x0; SFR Address = 0xC4

Bit	Name	Function
7:0	AD0GT[15:8]	ADC0 Greater-Than High Byte.
		Most Significant Byte of the 16-bit Greater-Than window compare register.

SFR Definition 5.9. ADC0GTL: ADC0 Greater-Than Low Byte

Bit	7	6	5	4	3	2	1	0
Name	AD0GT[7:0]							
Туре	R/W							
Reset	1	1	1	1	1	1	1	1

SFR Page = 0x0; SFR Address = 0xC3

Bit	Name	Function
7:0	AD0GT[7:0]	ADC0 Greater-Than Low Byte.
		Least Significant Byte of the 16-bit Greater-Than window compare register.
Note:	In 8-bit mode,	this register should be set to 0x00.

8.11. CS0 Conversion Accumulator

CS0 can be configured to accumulate multiple conversions on an input channel. The number of samples to be accumulated is configured using the CS0ACU2:0 bits (CS0CF2:0). The accumulator can accumulate 1, 4, 8, 16, 32, or 64 samples. After the defined number of samples have been accumulated, the result is divided by either 1, 4, 8, 16, 32, or 64 (depending on the CS0ACU[2:0] setting) and copied to the CS0DH:CS0DL SFRs.

Auto-Scan Enabled	Accumulator Enabled	CS0 Conversion Complete Interrupt Behavior	CS0 Greater Than Interrupt Behavior	CS0MX Behavior
N	Ν	CS0INT Interrupt serviced after 1 conversion com- pletes	Interrupt serviced after 1 con- version completes if value in CS0DH:CS0DL is greater than CS0THH:CS0THL	CS0MX unchanged.
N	Y	CS0INT Interrupt serviced after <i>M</i> conversions com- plete	Interrupt serviced after <i>M</i> conversions complete if value in CS0DH:CS0DL (post accumulate and divide) is greater than CS0THH:CS0THL	CS0MX unchanged.
Y	Ν	CS0INT Interrupt serviced after 1 conversion com- pletes	Interrupt serviced after con- version completes if value in CS0DH:CS0DL is greater than CS0THH:CS0THL; Auto-Scan stopped	If greater-than comparator detects conver- sion value is greater than CS0THH:CS0THL, CS0MX is left unchanged; otherwise, CS0MX updates to the next channel (CS0MX + 1) and wraps back to CS0SS after passing CS0SE.
Y	Y	CSOINT Interrupt serviced after <i>M</i> conversions com- plete	Interrupt serviced after <i>M</i> conversions complete if value in CS0DH:CS0DL (post accumu- late and divide) is greater than CS0THH:CS0THL; Auto-Scan stopped	If greater-than comparator detects conver- sion value is greater than CS0THH:CS0THL, CS0MX is left unchanged; otherwise, CS0MX updates to the next channel (CS0MX + 1) and wraps back to CS0SS after passing CS0SE.

Table 8.1. Operation with Auto-scan and Accumulate

SFR Definition 13.5. EIE2: Extended Interrupt Enable 2

Bit	7	6	5	4	3	2	1	0
Name		ECSEOS	ECSDC	ECSCPT		ERTC0F	EMAT	EWARN
Туре	R/W	R/W	R/W	R/W	R	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Page = All;SFR Address = 0xE7

Bit	Name	Function
7	Unused	Read = 0b. Write = Don't care.
6	ECSEOS	Enable Capacitive Sense End of Scan Interrupt.0: Disable Capacitive Sense End of Scan interrupt.1: Enable interrupt requests generated by CS0EOS.
5	ECSDC	Enable Capacitive Sense Digital Comparator Interrupt. 0: Disable Capacitive Sense Digital Comparator interrupt. 1: Enable interrupt requests generated by CS0CMPF.
4	ECSCPT	 Enable Capacitive Sense Conversion Complete Interrupt. 0: Disable Capacitive Sense Conversion Complete interrupt. 1: Enable interrupt requests generated by CS0INT.
3	Unused	Read = 0b. Write = Don't care.
2	ERTC0F	Enable SmaRTClock Oscillator Fail Interrupt. This bit sets the masking of the SmaRTClock Alarm interrupt. 0: Disable SmaRTClock Alarm interrupts. 1: Enable interrupt requests generated by SmaRTClock Alarm.
1	EMAT	 Enable Port Match Interrupts. This bit sets the masking of the Port Match Event interrupt. 0: Disable all Port Match interrupts. 1: Enable interrupt requests generated by a Port Match.
0	EWARN	 Enable Supply Monitor Early Warning Interrupt. This bit sets the masking of the Supply Monitor Early Warning interrupt. 0: Disable the Supply Monitor Early Warning interrupt. 1: Enable interrupt requests generated by the Supply Monitor.

13.6. External Interrupts INT0 and INT1

The INTO and INT1 external interrupt sources are configurable as active high or low, edge or level sensitive. The INOPL (INT0 Polarity) and IN1PL (INT1 Polarity) bits in the IT01CF register select active high or active low; the IT0 and IT1 bits in TCON (Section "25.1. Timer 0 and Timer 1" on page 280) select level or edge sensitive. The table below lists the possible configurations.

IT0	IN0PL	INT0 Interrupt
1	0	Active low, edge sensitive
1	1	Active high, edge sensitive
0	0	Active low, level sensitive
0	1	Active high, level sensitive

IT1	IN1PL	INT1 Interrupt
1	0	Active low, edge sensitive
1	1	Active high, edge sensitive
0	0	Active low, level sensitive
0	1	Active high, level sensitive

INT0 and INT1 are assigned to Port pins as defined in the IT01CF register (see SFR Definition 13.7). Note that INT0 and INT0 Port pin assignments are independent of any Crossbar assignments. INT0 and INT1 will monitor their assigned Port pins without disturbing the peripheral that was assigned the Port pin via the Crossbar. To assign a Port pin only to INT0 and/or INT1, configure the Crossbar to skip the selected pin(s). This is accomplished by setting the associated bit in register PnSKIP (see Section "21.3. Priority Crossbar Decoder" on page 219 for complete details on configuring the Crossbar).

IE0 (TCON.1) and IE1 (TCON.3) serve as the interrupt-pending flags for the INT0 and INT1 external interrupts, respectively. If an INT0 or INT1 external interrupt is configured as edge-sensitive, the corresponding interrupt-pending flag is automatically cleared by the hardware when the CPU vectors to the ISR. When configured as level sensitive, the interrupt-pending flag remains logic 1 while the input is active as defined by the corresponding polarity bit (IN0PL or IN1PL); the flag remains logic 0 while the input is inactive. The external interrupt source must hold the input active until the interrupt request is recognized. It must then deactivate the interrupt request before execution of the ISR completes or another interrupt request will be generated.

17. Voltage Regulator (VREG0)

C8051F99x-C8051F98x devices include an internal voltage regulator (VREG0) to regulate the internal core supply to 1.8 V from a VDD supply of 1.8 to 3.6 V. Electrical characteristics for the on-chip regulator are specified in the Electrical Specifications chapter.

The REGOCN register allows the Precision Oscillator Bias to be disabled, reducing supply current in all non-Sleep power modes. This bias should only be disabled when the precision oscillator is not being used.

The internal regulator (VREG0) is disabled when the device enters Sleep Mode and remains enabled when the device enters Suspend Mode. See Section "15. Power Management" on page 162 for complete details about low power modes.

SFR Definition 17.1. REG0CN: Voltage Regulator Control

Bit	7	6	5	4	3	2	1	0
Name		Reserved	Reserved	OSCBIAS				Reserved
Туре	R	R/W	R/W	R/W	R	R	R	R/W
Reset	0	0	0	0	0	0	0	0

SFR Page = 0x0; SFR Address = 0xC9

Bit	Name	Function
7	Unused	Read = 0b. Write = Don't care.
6:5	Reserved	Read = 00b. Must Write 00b.
4	OSCBIAS	Precision Oscillator Bias.
		When set to 1, the bias used by the precision oscillator is forced on. If the precision oscillator is not being used, this bit may be cleared to 0 to reduce supply current in all non-Sleep power modes.
3:1	Unused	Read = 000b. Write = Don't care.
0	Reserved	Read = 0b. Must Write 0b.

17.1. Voltage Regulator Electrical Specifications

See Table 4.15 on page 64 for detailed Voltage Regulator Electrical Specifications.

SFR Definition 18.2. RSTSRC: Reset Source

Bit	7	6	5	4	3	2	1	0
Name	RTC0RE	FERROR	CORSEF	SWRSF	WDTRSF	MCDRSF	PORSF	PINRSF
Туре	R/W	R	R/W	R/W	R	R/W	R/W	R
Reset	Varies							

SFR Page = 0x0; SFR Address = 0xEF.

Bit	Name	Description	Write	Read
7	RTC0RE	SmaRTClock Reset Enable and Flag	0: Disable SmaRTClock as a reset source. 1: Enable SmaRTClock as a reset source.	Set to 1 if SmaRTClock alarm or oscillator fail caused the last reset.
6	FERROR	Flash Error Reset Flag.	N/A	Set to 1 if Flash read/write/erase error caused the last reset.
5	CORSEF	Comparator0 Reset Enable and Flag.	0: Disable Comparator0 as a reset source.1: Enable Comparator0 as a reset source.	Set to 1 if Comparator0 caused the last reset.
4	SWRSF	Software Reset Force and Flag.	Writing a 1 forces a sys- tem reset.	Set to 1 if last reset was caused by a write to SWRSF.
3	WDTRSF	Watchdog Timer Reset Flag.	N/A	Set to 1 if Watchdog Timer overflow caused the last reset.
2	MCDRSF	Missing Clock Detector (MCD) Enable and Flag.	0: Disable the MCD. 1: Enable the MCD. The MCD triggers a reset if a missing clock condition is detected.	Set to 1 if Missing Clock Detector timeout caused the last reset.
1	PORSF	Power-On / Power-Fail Reset Flag, and Power-Fail Reset Enable.	 0: Disable the VDD Supply Monitor as a reset source. 1: Enable the VDD Supply Monitor as a reset source.³ 	Set to 1 anytime a power- on or V _{DD} monitor reset occurs. ²
0	PINRSF	HW Pin Reset Flag.	N/A	Set to 1 if RST pin caused the last reset.
Notes	5:			

1. It is safe to use read-modify-write operations (ORL, ANL, etc.) to enable or disable specific interrupt sources.

2. If PORSF read back 1, the value read from all other bits in this register are indeterminate.

3. Writing a 1 to PORSF before the VDD Supply Monitor is stabilized may generate a system reset.

Mode	Setting	Power Consumption
Crystal	Bias Double Off, AGC On	Lowest 600 nA
	Bias Double Off, AGC Off	Low 800 nA
	Bias Double On, AGC On	High
	Bias Double On, AGC Off	Highest
Self-Oscillate	Bias Double Off	Low
	Bias Double On	High

Table 20.3. SmaRTClock Bias Settings

20.3.2. Setting a SmaRTClock Alarm

The SmaRTClock alarm function compares the 32-bit value of SmaRTClock Timer to the value of the ALARMn registers. An alarm event is triggered if the SmaRTClock timer is **equal to** the ALARMn registers. If Auto Reset is enabled, the 32-bit timer will be cleared to zero one SmaRTClock cycle after the alarm event.

The SmaRTClock alarm event can be configured to reset the MCU, wake it up from a low power mode, or generate an interrupt. See Section "13. Interrupt Handler" on page 138, Section "15. Power Management" on page 162, and Section "18. Reset Sources" on page 181 for more information.

The following steps can be used to set up a SmaRTClock Alarm:

- 1. Disable SmaRTClock Alarm Events (RTC0AEN = 0).
- 2. Set the ALARMn registers to the desired value.
- 3. Enable SmaRTClock Alarm Events (RTC0AEN = 1).

Notes:

- 1. The ALRM bit, which is used as the SmaRTClock Alarm Event flag, is cleared by disabling SmaRTClock Alarm Events (RTC0AEN = 0).
- If AutoReset is disabled, disabling (RTC0AEN = 0) then Re-enabling Alarm Events (RTC0AEN = 1) after a SmaRTClock Alarm without modifying ALARMn registers will automatically schedule the next alarm after 2^32 SmaRTClock cycles (approximately 36 hours using a 32.768 kHz crystal).
- 3. The SmaRTClock Alarm Event flag will remain asserted for a maximum of one SmaRTClock cycle. See Section "15. Power Management" on page 162 for information on how to capture a SmaRTClock Alarm event using a flag which is not automatically cleared by hardware.

20.3.3. Software Considerations for using the SmaRTClock Timer and Alarm

The SmaRTClock timer and alarm have two operating modes to suit varying applications. The two modes are described below:

Mode 1:

The first mode uses the SmaRTClock timer as a perpetual timebase which is never reset to zero. Every 36 hours, the timer is allowed to overflow without being stopped or disrupted. The alarm interval is software managed and is added to the ALRMn registers by software after each alarm. This allows the alarm match value to always stay ahead of the timer by one software managed interval. If software uses 32-bit unsigned addition to increment the alarm match value, then it does not need to handle overflows since both the timer and the alarm match value will overflow in the same manner.

This mode is ideal for applications which have a long alarm interval (e.g., 24 or 36 hours) and/or have a need for a perpetual timebase. An example of an application that needs a perpetual timebase is one whose wake-up interval is constantly changing. For these applications, software can keep track of the number of timer overflows in a 16-bit variable, extending the 32-bit (36 hour) timer to a 48-bit (272 year) perpetual timebase.

Mode 2:

The second mode uses the SmaRTClock timer as a general purpose up counter which is auto reset to zero by hardware after each alarm. The alarm interval is managed by hardware and stored in the ALRMn registers. Software only needs to set the alarm interval once during device initialization. After each alarm, software should keep a count of the number of alarms that have occurred in order to keep track of time.

This mode is ideal for applications that require minimal software intervention and/or have a fixed alarm interval. This mode is the most power efficient since it requires less CPU time per alarm.

SFR Definition 21.3. XBR2: Port I/O Crossbar Register 2

Bit	7	6	5	4	3	2	1	0
Name	WEAKPUD	XBARE						
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Page = 0x0; SFR Address = 0xE3

Bit	Name	Function
7	WEAKPUD	Port I/O Weak Pullup Disable.
		0: Weak Pullups enabled (except for Port I/O pins configured for analog mode).
		1: Weak Pullups disabled.
6	XBARE	Crossbar Enable.
		0: Crossbar disabled.
		1: Crossbar enabled.
5:0	Unused	Read = 000000b; Write = Don't Care.
Note: 7	The Crossbar mu	ust be enabled (XBARE = 1) to use any Port pin as a digital output.

22.5.3. Write Sequence (Slave)

During a write sequence, an SMBus master writes data to a slave device. The slave in this transfer will be a receiver during the address byte, and a receiver during all data bytes. When slave events are enabled (INH = 0), the interface enters Slave Receiver Mode when a START followed by a slave address and direction bit (WRITE in this case) is received. If hardware ACK generation is disabled, upon entering Slave Receiver Mode, an interrupt is generated and the ACKRQ bit is set. The software must respond to the received slave address with an ACK, or ignore the received slave address with a NACK. If hardware ACK generation is enabled, the hardware will apply the ACK for a slave address which matches the criteria set up by SMB0ADR and SMB0ADM. The interrupt will occur after the ACK cycle.

If the received slave address is ignored (by software or hardware), slave interrupts will be inhibited until the next START is detected. If the received slave address is acknowledged, zero or more data bytes are received.

If hardware ACK generation is disabled, the ACKRQ is set to 1 and an interrupt is generated after each received byte. Software must write the ACK bit at that time to ACK or NACK the received byte.

With hardware ACK generation enabled, the SMBus hardware will automatically generate the ACK/NACK, and then post the interrupt. It is important to note that the appropriate ACK or NACK value should be set up by the software prior to receiving the byte when hardware ACK generation is enabled.

The interface exits Slave Receiver Mode after receiving a STOP. Note that the interface will switch to Slave Transmitter Mode if SMB0DAT is written while an active Slave Receiver. Figure 22.7 shows a typical slave write sequence. Two received data bytes are shown, though any number of bytes may be received. Notice that the 'data byte transferred' interrupts occur at different places in the sequence, depending on whether hardware ACK generation is enabled. The interrupt occurs **before** the ACK with hardware ACK generation disabled, and **after** the ACK when hardware ACK generation is enabled.

Figure 22.7. Typical Slave Write Sequence

23.2.2. 9-Bit UART

9-bit UART mode uses a total of eleven bits per data byte: a start bit, 8 data bits (LSB first), a programmable ninth data bit, and a stop bit. The state of the ninth transmit data bit is determined by the value in TB80 (SCON0.3), which is assigned by user software. It can be assigned the value of the parity flag (bit P in register PSW) for error detection, or used in multiprocessor communications. On receive, the ninth data bit goes into RB80 (SCON0.2) and the stop bit is ignored.

Data transmission begins when an instruction writes a data byte to the SBUF0 register. The TI0 Transmit Interrupt Flag (SCON0.1) is set at the end of the transmission (the beginning of the stop-bit time). Data reception can begin any time after the REN0 Receive Enable bit (SCON0.4) is set to 1. After the stop bit is received, the data byte will be loaded into the SBUF0 receive register if the following conditions are met: (1) RI0 must be logic 0, and (2) if MCE0 is logic 1, the 9th bit must be logic 1 (when MCE0 is logic 0, the state of the ninth data bit is unimportant). If these conditions are met, the eight bits of data are stored in SBUF0, the ninth bit is stored in RB80, and the RI0 flag is set to 1. If the above conditions are not met, SBUF0 and RB80 will not be loaded and the RI0 flag will not be set to 1. A UART0 interrupt will occur if enabled when either TI0 or RI0 is set to 1.

23.3. Multiprocessor Communications

9-Bit UART mode supports multiprocessor communication between a master processor and one or more slave processors by special use of the ninth data bit. When a master processor wants to transmit to one or more slaves, it first sends an address byte to select the target(s). An address byte differs from a data byte in that its ninth bit is logic 1; in a data byte, the ninth bit is always set to logic 0.

Setting the MCE0 bit (SCON0.5) of a slave processor configures its UART such that when a stop bit is received, the UART will generate an interrupt only if the ninth bit is logic 1 (RB80 = 1) signifying an address byte has been received. In the UART interrupt handler, software will compare the received address with the slave's own assigned 8-bit address. If the addresses match, the slave will clear its MCE0 bit to enable interrupts on the reception of the following data byte(s). Slaves that weren't addressed leave their MCE0 bits set and do not generate interrupts on the reception of the following data byte(s) addressed slave resets its MCE0 bit to ignore all transmissions until it receives the next address byte.

Multiple addresses can be assigned to a single slave and/or a single address can be assigned to multiple slaves, thereby enabling "broadcast" transmissions to more than one slave simultaneously. The master processor can be configured to receive all transmissions or a protocol can be implemented such that the master/slave role is temporarily reversed to enable half-duplex transmission between the original master and slave(s).

Figure 24.7. Slave Mode Data/Clock Timing (CKPHA = 1)

24.6. SPI Special Function Registers

SPI0 is accessed and controlled through four special function registers in the system controller: SPI0CN Control Register, SPI0DAT Data Register, SPI0CFG Configuration Register, and SPI0CKR Clock Rate Register. The four special function registers related to the operation of the SPI0 Bus are described in the following figures.

SFR Definition 24.3. SPI0CKR: SPI0 Clock Rate

Bit	7	6	5	4	3	2	1	0		
Nam	e		SCR[7:0]							
Туре)			R	W					
Rese	et O	0	0 0 0 0 0 0 0							
SFR F	Page = 0x0; SFR Address = 0xA2									
Bit	Name				Function	1				
7:0	SCR[7:0]	SPI0 Cloc	k Rate.							
		These bits configured sion of the the system register. $f_{SCK} =$ for 0 <= S Example: $f_{SCK} =$ $f_{SCK} =$	s determine for master e system cloch n clock frequ $\frac{SY}{2 \times (SPI00)}$ PI0CKR <= If SYSCLK = $\frac{2000000}{2 \times (4 + 1)}$ 200 <i>kHz</i>	the frequenc mode opera ck, and is giv uency and S SCLK CKR[7:0] + 255 = 2 MHz and	y of the SC tion. The SC yen in the fo <i>PIOCKR</i> is the second sec	K output wh CK clock fre Illowing equ he 8-bit valu	ien the SPI0 i quency is a d ation, where ue held in the	module is livided ver- SYSCLK is SPI0CKR		

SFR Definition 24.4. SPI0DAT: SPI0 Data

Bit	7	6	5	4	3	2	1	0	
Name		SPI0DAT[7:0]							
Туре		R/W							
Reset	0	0	0	0	0	0	0	0	

SFR Page = 0x0; SFR Address = 0xA3

Bit	Name	Function
7:0	SPI0DAT[7:0]	SPI0 Transmit and Receive Data.
		The SPI0DAT register is used to transmit and receive SPI0 data. Writing data to SPI0DAT places the data into the transmit buffer and initiates a transfer when in Master Mode. A read of SPI0DAT returns the contents of the receive buffer.

DOCUMENT CHANGE LIST

Revision 0.3 to Revision 0.4

• QFN-20 package and landing diagram updated.

Revision 0.4 to Revision 1.0

- IREF0CF register description updated.
- Updated ADC0 Chapter Text.
- Corrected an error in the Product Selector Guide.
- Updated SmaRTClock chapter to indicate how the Alarm value should be set when using Auto Reset and the LFO.
- Updated electrical specifications to fill TBDs and updated power specifications based on Rev B characterization data.
- Added a note to the OSCICL register description.
- Added a note to the CRC0CN register description.
- Updated equation in the CRC0CNT register description.
- Updated Power On Reset description.

Revision 1.0 to Revision 1.1

Removed references to AN338.

Revision 1.1 to Revision 1.2

- Removed QuickSense references.
- Updated part numbers to Revision C in "Ordering Information" on page 31 and added Figure 3.4, Figure 3.5, and Figure 3.6 to identify the silicon revision.
- Updated REVID register (SFR Definition 14.2) and REVID C2 register (C2 Register Definition 27.3) with the 0x02 value for Revision C.
- Updated Figure "7.3 CP0 Multiplexer Block Diagram" on page 98 to remove the bar over the CPnOUT signals.
- Updated the "Reset Sources" on page 181 chapter to reflect the correct state of the RST pin during power-on reset.
- Updated Figure "1.14 Port I/O Functional Block Diagram" on page 26 and Figure "21.1 Port I/O Functional Block Diagram" on page 215 to mention P1.4 is not available on 20-pin devices.
- Removed references to the EMI0CN register, which does not exist.
- Updated Figure "8.2 Auto-Scan Example" on page 103 to refer to the correct pins.
- Updated POR Monitor Threshold (V_{POR}) Brownout Condition (VDD Falling) specification minimum, typical, and maximum values.
- Updated the reset value of the CLKSEL register (SFR Definition 19.1).
- Updated description of WEAKPUD in SFR Definition 21.3.
- Corrected SFR addresses for P0DRV (SFR Definition 21.12), P1DRV (SFR Definition 21.17), P2DRV (SFR Definition 21.20), PMU0MD (SFR Definition 15.3), FLSCL (SFR Definition 14.5), REF0CN (SFR Definition 5.15), CS0SCAN0 (SFR Definition 8.5), and CS0SCAN1 (SFR Definition 8.6).
- Replaced all instances of V_{BAT} with V_{DD}.
- Added a note to "11.1. Accessing XRAM", "15.5. Sleep Mode", and "18. Reset Sources" regarding an issue with the first address of XRAM.
- Added a note to "15.5. Sleep Mode" and "19. Clocking Sources" regarding using the internal low power

