E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	-
Core Size	8-Bit
Speed	12MHz
Connectivity	SIO
Peripherals	LVD, POR, PWM, WDT
Number of I/O	20
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-LFSOP (0.173", 4.40mm Width)
Supplier Device Package	24-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/onsemi/lc87fbk08au-ssop-h

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

■Interrupts

- 15 sources, 9 vector addresses
 - 1) Provides three levels (low (L), high (H), and highest (X)) of multiplex interrupt control. Any interrupt requests of the level equal to or lower than the current interrupt are not accepted.
 - 2) When interrupt requests to two or more vector addresses occur at the same time, the interrupt of the highest level takes precedence over the other interrupts. For interrupts of the same level, the interrupt into the smallest vector address takes precedence.

No.	Vector Address	Level	Interrupt Source
1	00003H	X or L	INT0
2	0000BH	X or L	INT1
3	00013H	H or L	INT2/T0L/INT4
4	0001BH	H or L	INT3/base timer
5	00023H	H or L	тон
6	0002BH	H or L	T1L/T1H
7	00033H	H or L	None
8	0003BH	H or L	SIO1
9	00043H	H or L	ADC/T6/T7
10	0004BH	H or L	Port 0

[•] Priority levels X > H > L

Subroutine Stack Levels: 128levels (The stack is allocated in RAM.)

■High-speed Multiplication/Division Instructions

- 16 bits \times 8 bits (5 tCYC execution time)
- 24 bits \times 16 bits (12 tCYC execution time)
- 16 bits ÷ 8 bits (8 tCYC execution time)
- 24 bits \div 16 bits (12 tCYC execution time)

■Oscillation Circuits

 Internal oscillation circuits 	
Low-speed RC oscillation circuit (SRC):	For system clock / For Watchdog timer (100kHz)
Medium-speed RC oscillation circuit (RC):	For system clock (1MHz)
Frequency variable RC oscillation circuit (MRC):	For system clock (8MHz±2.5%, Ta=-10°C to +85°C)
 External oscillation circuits 	
Hi-speed CF oscillation circuit (CF):	For system clock, with internal Rf
Low speed crystal oscillation circuit (X'tal):	For low-speed system clock / For Watchdog timer,
with internal Rf	

1) The CF and crystal oscillation circuits share the same pins. The active circuit is selected under program control.

2) Both the CF and crystal oscillator circuits stop operation on a system reset. After reset is released, oscillation is stopped so start the oscillation operation by program.

■System Clock Divider Function

- Can run on low current.
- The minimum instruction cycle selectable from 300ns, 600ns, 1.2µs, 2.4µs, 4.8µs, 9.6µs, 19.2µs, 38.4µs, and 76.8µs (at a main clock rate of 10MHz).

■Internal Reset Function

- Power-on reset (POR) function
 - 1) POR reset is generated only at power-on time.
 - 2) The POR release level can be selected from 4 levels (2.57V, 2.87V, 3.86V, and 4.35V) through option configuration.
- Low-voltage detection reset (LVD) function
 - 1) LVD and POR functions are combined to generate resets when power is turned on and when power voltage falls below a certain level.
 - 2) The use or disuse of the LVD function and the low voltage threshold level (3 levels: 2.81V, 3.79V, 4.28V) can be selected by optional configuration.

[•] Of interrupts of the same level, the one with the smallest vector address takes precedence.

■Standby Function

- HALT mode: Halts instruction execution while allowing the peripheral circuits to continue operation.
- 1) Oscillation is not halted automatically.
- 2) There are four ways of resetting the HALT mode.
 - (1) Setting the reset pin to the low level
 - (2) System resetting by low-voltage detection
 - (3) System resetting by watchdog timer
 - (4) Occurrence of an interrupt
- HOLD mode: Suspends instruction execution and the operation of the peripheral circuits.
 - The CF, low-/medium-/ Frequency variable RC, and crystal oscillators automatically stop operation. Note: The oscillation of the low-speed RC oscillator is also controlled directly by the watchdog timer and its standby-mode-time oscillation is also controlled.
 - 2) There are five ways of resetting the HOLD mode.
 - (1) Setting the reset pin to the lower level.
 - (2) System resetting by low-voltage detection
 - (3) System resetting by watchdog timer
 - (4) Having an interrupt source established at either INT0, INT1, INT2, INT4
 - * INTO and INT1 HOLD mode reset is available only when level detection is set.
 - (5) Having an interrupt source established at port 0.
- X'tal HOLD mode: Suspends instruction execution and the operation of the peripheral circuits except the base timer.
 - The CF, low-/medium-/ Frequency variable RC oscillators automatically stop operation. Note: The oscillation of the low-speed RC oscillator is also controlled directly by the watchdog timer and its standby-mode-time oscillation is also controlled.
- 2) The state of crystal oscillation established when the X'tal HOLD mode is entered is retained.
- 3) There are six ways of resetting the X'tal HOLD mode.
 - (1) Setting the reset pin to the low level.
 - (2) System resetting by watchdog timer or low-voltage detection.
 - (3) System resetting by watchdog timer or low-voltage detection.
 - (4) Having an interrupt source established at either INT0, INT1, INT2, INT4* INT0 and INT1 HOLD mode reset is available only when level detection is set.
 - (5) Having an interrupt source established at port 0.
 - (6) Having an interrupt source established in the base timer circuit. Note: Available only when X'tal oscillation is selected.

■Onchip Debugger (flash versions only)

- Supports software debugging with the IC mounted on the target board.
- Software break point setting for debugger.
- Stepwise execution on debugger.
- Real time RAM data monitoring function on debugger. All the RAM data map can be monitored on screen when the program is running. (The RAM & SFR data can be changed by screen patch when the program is running)
- Two channels of on-chip debugger pins are available to be compatible with small pin count devices. DBGP0 (P0), DBGP1 (P1)

Data Security Function (flash versions only)

- Protects the program data stored in flash memory from unauthorized read or copy. Note: This data security function does not necessarily provide absolute data security.
- ■Package Form
 - MFP24S (300mil) : Lead-/Halogen-free type (discontinued)
 - SSOP24 (225mil) : Lead-/Halogen-free type
 - SSOP24 (275mil) : Lead-/Halogen-free type (build-to-order)
 - VCT24 (3mm×3mm) : Lead-/Halogen-free type (build-to-order)
- Development Tools
 - On-chip-debugger : (1) TCB87 TypeB + LC87FBK08A
 - (2) TCB87 TypeC (3 wire version) + LC87FBK08A

■Flash ROM Programming Boards

Package	Programming boards
MFP24S(300mil)	W87F2GM
SSOP24(225mil)	W87F2GS
SSOP24(275mil)	(build-to-order)
VCT24(3mm×3mm)	(build-to-order)

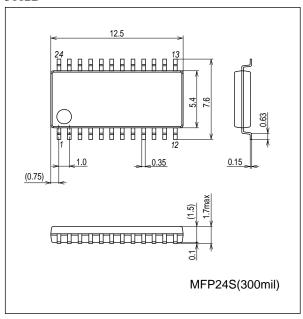
■Flash ROM Programmer

Maker		Model	Supported version	Device
	Single Programmer	AF9709/AF9709B/AF9709C (Including Ando Electric Co., Ltd. models)	Rev 03.28 or later	87F008SU
Flash Support Group, Inc. (FSG)	Gang	AF9723/AF9723B(Main body) (Including Ando Electric Co., Ltd. models)	-	-
	Programmer	AF9833(Unit) (Including Ando Electric Co., Ltd. models)	-	-
Flash Support Group, Inc. (FSG) + Our company (Note 1)	In-circuit Programmer	AF9101/AF9103(Main body) (FSG models) SIB87(Inter Face Driver) (Our company model)	(Note 2)	-
Our company	Single/Gang Programmer In-circuit/Gang Programmer	SKK / SKK Type B / SKK Type C (SanyoFWS) SKK-DBG Type B / SKK-DBG Type C (SanyoFWS)	Application Version 1.06 or later Chip Data Version 2.34 or later	LC87FBK08

For information about AF-Series:

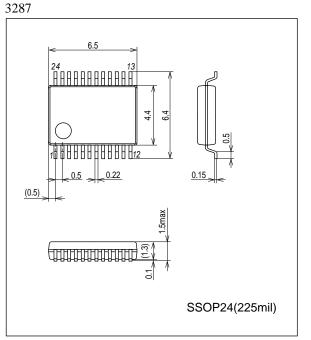
Flash Support Group, Inc. TEL: +81-53-459-1050

E-mail: sales@j-fsg.co.jp

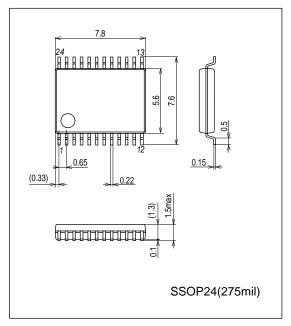

Note1: On-board-programmer from FSG (AF9101/AF9103) and serial interface driver from Our company (SIB87) together

can give a PC-less, standalone on-board-programming capabilities.

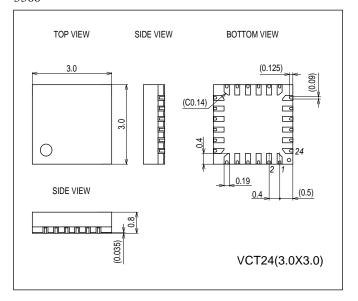
Note2: It needs a special programming devices and applications depending on the use of programming environment. Please ask FSG or Our company for the information.


Package Dimensions

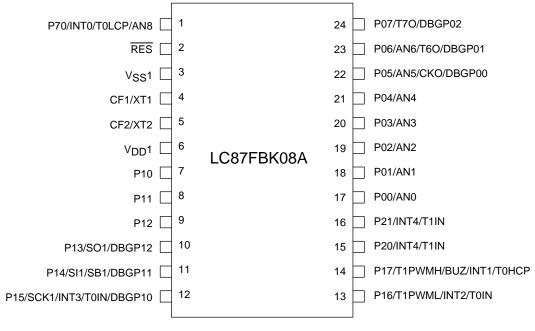
unit : mm (typ) 3112B


Package Dimensions

unit : mm (typ)


Package Dimensions

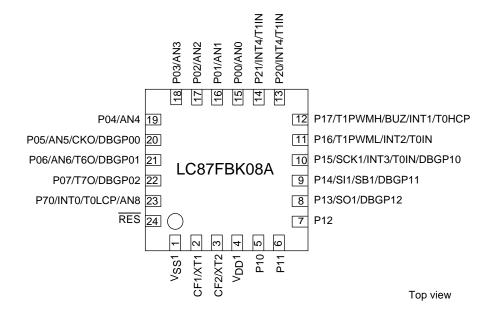
unit : mm (typ) 3175C



Package Dimensions

unit : mm (typ) 3366

Pin Assignment



Top view

MFP24S(300mil)/SSOP24(225mil) "Lead-/Halogen-free Type" SSOP24(275mil) "Lead-/Halogen-free Type"

MFP24S SSOP24	NAME			
1	P70/INT0/T0LCP/AN8			
2	RES			
3	V _{SS} 1			
4	CF1/XT1			
5	CF2/XT2			
6	V _{DD} 1			
7	P10			
8	P11			
9	P12			
10	P13/SO1/DBGP12			
11	P14/SI1/SB1/DBGP11			
12	P15/SCK1/INT3/T0IN/DBGP10			

MFP24S SSOP24	NAME
13	P16/T1PWML/INT2/T0IN
14	P17/T1PWMH/BUZ/INT1/T0HCP
15	P20/INT4/T1IN
16	P21/INT4/T1IN
17	P00/AN0
18	P01/AN1
19	P02/AN2
20	P03/AN3
21	P04/AN4
22	P05/AN5/CKO/DBGP00
23	P06/AN6/T6O/DBGP01
24	P07/T7O/DBGP02

VCT24(3mm×3mm) "Lead-/Halogen-free Type"

VCT24	NAME
1	V _{SS} 1
2	CF1/XT1
3	CF2/XT2
4	V _{DD} 1
5	P10
6	P11
7	P12
8	P13/SO1/DBGP12
9	P14/SI1/SB1/DBGP11
10	P15/SCK1/INT3/T0IN/DBGP10
11	P16/T1PWML/INT2/T0IN
12	P17/T1PWMH/BUZ/INT1/T0HCP

VCT24	NAME
13	P20/INT4/T1IN
14	P21/INT4/T1IN
15	P00/AN0
16	P01/AN1
17	P02/AN2
18	P03/AN3
19	P04/AN4
20	P05/AN5/CKO/DBGP00
21	P06/AN6/T6O/DBGP01
22	P07/T7O/DBGP02
23	P70/INT0/T0LCP/AN8
24	RES

Pin Description

Pin Name	I/O	Description					Option		
V _{SS} 1	-	- Power supply	pin					No	
V _{DD} 1	-	+ Power supply	+ Power supply pin						
Port 0	I/O	8-bit I/O port							
P00 to P07	-	 I/O specifiable 	e in 4-bit units						
		Pull-up resister	ors can be turned	on and off in 4-	bit units.				
		HOLD reset in	nput						
		Port 0 interrupt input							
		Pin functions						Yes	
		P05: System clock output							
		P06: Timer 6							
		P07: Timer 7							
			P00(AN0) to P06(AN6): AD converter input P05(DBGP00) to P07(DBGP02): On-chip debugger 0 port						
D () () to P07(DBGP02	?): On-chip debu	gger 0 port				
Port 1	I/O	8-bit I/O port	in 1 hit unite						
P10 to P17		I/O specifiable		on and off in 1	hit unite				
		Puil-up resiste Pin functions	ors can be turned	on and on in 1-	bit units.				
		P13: SIO1 da	ta outout						
			ta input / bus I/O						
			ck I/O / INT3 inpu	ut (with noise filt	er) / timer 0 eve	nt input / timer 0H	d capture input		
			WML output / IN	-	-				
		input	•	·			·		
			PWMH output / be	eper output / IN	IT1 input / HOLE	0 reset input / tim	er 0H capture	Yes	
		input							
		P15(DBGP10) to P13(DBGP12	?): On-chip-debu	igger 1 port				
		Interrupt ackn	owledge type						
			Rising	Falling	Rising &	H level	L level		
			Rising	1 annig	Falling	Thever	Lievei		
		INT1	enable	enable	disable	enable	enable		
		INT2	enable	enable	enable	disable	disable		
		INT3	enable	enable	enable	disable	disable		
Port 2	I/O	• 2-bit I/O port							
P20 to P21	-	 I/O specifiable 	e in 1-bit units						
12010121			ors can be turned	on and off in 1-	bit units.				
		Pin functions P20 to P21: INT4 input / HOLD reset input / timer 1 event input / timer 0L capture input / timer							
			H capture input					Yes	
		Interrupt ackn	owledge types						
			Dising	E a llia a	Rising &	1. Lawred	L laval		
			Rising	Falling	Falling	H level	L level		
		INT4	enable	enable	enable	disable	disable		
Port 7	I/O	• 1-bit I/O port							
P70		 I/O specifiable 	e in 1-bit units						
			ors can be turned	on and off in 1-	bit units.				
		Pin functions							
		P70: INT0 input / HOLD reset input / timer 0L capture input							
		P70(AN8): AD converter input						No	
		Interrupt ackn	owledge types		Distant				
			Rising	Falling	Rising &	H level	L level		
					Falling disable	enable			
		INT0	enable	enable			enable		

Continued on next page.

Pin Name	I/O	Description	Option
RES	I/O	External reset input / internal reset output	No
CF1/XT1	Ι	 Ceramic resonator or 32.768kHz crystal oscillator input pin Pin function General-purpose input port 	No
CF2/XT2	I/O	 Ceramic resonator or 32.768kHz crystal oscillator output pin Pin function General-purpose I/O port 	No

Port Output Types

The table below lists the types of port outputs and the presence/absence of a pull-up resistor.

Data can be read into any input port even if it is in the output mode.

Port Name	Option selected in units of	Option type	Output type	Pull-up resistor
P00 to P07	1 bit	1	CMOS	Programmable (Note 1)
		2	Nch-open drain	No
P10 to P17	1 bit	1	CMOS	Programmable
		2	Nch-open drain	Programmable
P20 to P21	1 bit	1	CMOS	Programmable
		2	Nch-open drain	Programmable
P70	-	No	Nch-open drain	Programmable
CF2/XT2	-	No	Ceramic resonator/32.768kHz crystal resonator output Nch-open drain (N-channel open drain when set to general-purpose output port)	No

Note 1: The control of the presence or absence of the programmable pull-up resistors for port 0 and the switching between low-and high-impedance pull-up connection is exercised in nibble (4-bit) units (P00 to 03 or P04 to 07).

User Option Table

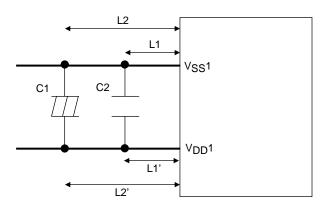
Option Name	Option to be Applied on	Mask version *1	Flash-ROM Version	Option Selected in Units of	Option Selection
Port output type	P00 to P07	0	0	1 bit	CMOS
					Nch-open drain
	P10 to P17	0	0	1 bit	CMOS
					Nch-open drain
	P20 to P21	0	0	1 bit	CMOS
					Nch-open drain
Program start	-	×	0	-	00000h
address		*2			01E00h
Low-voltage	Detect function	0	0	-	Enable:Use
detection reset					Disable:Not Used
function	Detect level	0	0	-	3-level
Power-on reset function	Power-On reset level	0	0	-	4-level

*1: Mask option selection - No change possible after mask is completed.

*2: Program start address of the mask version is 00000h.

Recommended Unused Pin Connections

Dart Nama	Recommended Unused	Pin Connections
Port Name	Board	Software Output low Output low Output low Output low Output low
P00 to P07	Open	Output low
P10 to P17	Open	Output low
P20 to P21	Open	Output low
P70	Open	Output low
CF1/XT1	Pulled low with a $100k\Omega$ resistor or less	General-purpose input port
CF2/XT2	Pulled low with a $100k\Omega$ resistor or less	General-purpose input port


On-chip Debugger Pin Connection Requirements

For the treatment of the on-chip debugger pins, refer to the separately available documents entitled "RD87 on-chip debugger installation manual".

Power Pin Treatment Recommendations (VDD1, VSS1)

Connect bypass capacitors that meet the following conditions between the VDD1 and VSS1 pins:

- Connect among the V_{DD}1 and V_{SS}1 pins and bypass capacitors C1 and C2 with the shortest possible heavy lead wires, making sure that the impedances between the both pins and the bypass capacitors are as possible (L1=L1', L2=L2').
- \bullet Connect a large-capacity capacitor C1 and a small-capacity capacitor C2 in parallel. The capacitance of C2 should approximately 0.1 $\mu F.$

Parameter	Symbol	Pin/Remarks	Conditions			Speci	fication	
Falaillelei	Symbol	FINAL	Conditions	V _{DD} [V]	min	typ	max	uni
Operating supply voltage	V _{DD}	V _{DD} 1	0.245µs ≤ tCYC ≤ 200µs		2.7		5.5	
Memory sustaining supply voltage	VHD	V _{DD} 1	RAM and register contents sustained in HOLD mode.		1.6			
High level	V _{IH} (1)	Ports 1, 2, 7		2.7 to 5.5	0.3V _{DD} +0.7		V _{DD}	
input voltage	V _{IH} (2)	Ports 0		2.7 to 5.5	0.3V _{DD} +0.7		V _{DD}	v
	V _{IH} (3)	CF1, CF2, RES		2.7 to 5.5	0.75V _{DD}		V _{DD}	v
Low level	V _{IL} (1)	Ports 1, 2, 7		4.0 to 5.5	V _{SS}		0.1V _{DD} +0.4	
input voltage				2.7 to 4.0	V _{SS}		0.2V _{DD}	
	V _{IL} (2)	Ports 0		4.0 to 5.5	VSS		0.15V _{DD} +0.4	
				2.7 to 4.0	V _{SS}		0.2V _{DD}	
	V _{IL} (3)	CF1, CF2, RES		2.7 to 5.5	VSS		0.25V _{DD}	
High level	I _{OH} (1)	Ports 0, 1, 2	Per 1 applicable pin	4.5 to 5.5	-1.0			
output current	I _{OH} (2)			2.7 to 4.5	-0.35			
	I _{OH} (3)	P05 (System clock output function	Per 1 applicable pin	4.5 to 5.5	-6.0			
	I _{OH} (4)	used)		2.7 to 4.5	-1.4			
	$\Sigma I_{OH}(1)$	Ports 0, 1, 2	Total of all applicable pins	4.5 to 5.5	-25			
	$\Sigma^{I}OH^{(2)}$			2.7 to 4.5	-8.0			
Low level	I _{OL} (1)	Ports 0, 1, 2	Per 1 applicable pin	4.5 to 5.5			7	
output current	I _{OL} (2)			2.7 to 4.5			1	m/
	I _{OL} (3)	P70, CF2	Per 1 applicable pin	2.7 to 5.5			1	
	I _{OL} (4)	P00, P01	Per 1 applicable pin	4.5 to 5.5			15	
	I _{OL} (5)			2.7 to 4.5			2	
	$\Sigma I_{OL}(1)$	Ports 0	Total of all applicable pins	4.5 to 5.5			40	
	$\Sigma I_{OL}(2)$			2.7 to 4.5			10	
	$\Sigma I_{OL}(3)$	Ports 0, 1, 2, CF2	Total of all applicable pins	4.5 to 5.5			70	
	$\Sigma I_{OL}(4)$			2.7 to 4.5			21	
	$\Sigma I_{OL}(5)$	Ports 7	Total of all applicable pins	2.7 to 5.5			1	
Instruction cycle time (Note 2-1)	tCYC			2.7 to 5.5	0.245		200	με
External system clock frequency	FEXCF	CF1	 CF2 pin open System clock frequency division ratio=1/1 External system clock duty=50±5% 	2.7 to 5.5	0.1		12	MH
			 CF2 pin open System clock frequency division ratio=1/2 External system clock duty=50±5% 	3.0 to 5.5	0.2		24.4	IVIF

Allowable Operating Conditions at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1 = 0V$

 • External system clock duty=50±5%

 Note 2-1: Relationship between tCYC and oscillation frequency is 3/FmCF at a division ratio of 1/1 and 6/FmCF at a division ratio of 1/2.

Continued on next page.

	0					Specific	ation	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Oscillation frequency	FmCF(1)	CF1, CF2	12MHz ceramic oscillation. See Fig. 1.	2.7 to 5.5		12		
range (Note 2-2)	FmCF(2)	CF1, CF2	10MHz ceramic oscillation. See Fig. 1.	2.7 to 5.5		10		
	FmCF(3)	CF1, CF2	4MHz ceramic oscillation. CF oscillation normal amplifier size selected. (CFLAMP=0) See Fig. 1.	2.7 to 5.5		4		
			4MHz ceramic oscillation. CF oscillation low amplifier size selected. (CFLAMP=1) See Fig. 1.	2.7 to 5.5		4		MHz
	FmMRC(1)		Frequency variable RC oscillation. (Note 2-3)	2.7 to 5.5	7.76	8.0	8.24	
	FmMRC(2)		Frequency variable RC oscillation. • Ta=-10 to +85°C (Note 2-3)	2.7 to 5.5	7.80	8.0	8.20	
	FmRC		Internal medium-speed RC oscillation	2.7 to 5.5	0.5	1.0	2.0	
	FmSRC		Internal low-speed RC oscillation	2.7 to 5.5	50	100	200	
	FsX'tal	XT1, XT2	32.768kHz crystal oscillation See Fig. 1.	2.7 to 5.5		32.768		kHz
Oscillation stabilization time	tmsMRC		When Frequency variable RC oscillation state is switched from stopped to enabled. See Fig. 3.	2.7 to 5.5			100	μs

Note 2-2: See Tables 1 and 2 for the oscillation constants.

Note 2-3: When switching the system clock, allow an oscillation stabilization time of 100µs or longer after the frequency variable RC oscillator circuit transmits from the "oscillation stopped" to "oscillation enabled" state.

SIO1 Serial I/O Characteristics at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1 = 0V$ (Note 4)

		Doromotor	Cumphiel	Pin/	Conditions			Speci	fication	
	1	Parameter	Symbol	Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
		Frequency	tSCK(3)	SCK1(P15)	• See Fig. 5.		2			
	Input clock	Low level pulse width	tSCKL(3)			2.7 to 5.5	1			tCYC
Serial clock	dul	High level pulse width	tSCKH(3)				1			
erial	×	Frequency	tSCK(4)	SCK1(P15)	CMOS output selected		2			
S	out clock	Low level pulse width	tSCKL(4)		• See Fig. 5.	2.7 to 5.5		1/2		10.01/
	Output	High level pulse width	tSCKH(4)					1/2		tSCK
Serial input	Da	ta setup time	tsDI(2)	SB1(P14), SI1(P14)	 Must be specified with respect to rising edge of 	0.745.5.5	(1/3)tCYC +0.01			
Serial	Da	ta hold time	thDI(2)		SIOCLK. • See Fig. 5.	2.7 to 5.5	0.01			
Serial output	Οι	itput delay time	tdD0(4)	SO1(P13), SB1(P14)	 Must be specified with respect to falling edge of SIOCLK. Must be specified as the time to the beginning of output state change in open drain output mode. See Fig. 5. 	2.7 to 5.5			(1/2)tCYC +0.05	μs

Note 4: These specifications are theoretical values. Add margin depending on its use.

Pulse Input Conditions at Ta = -40°C to +85°C, $V_{\mbox{SS}}1=0V$

5	0					Speci	fication	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
High/low level pulse width	tPIH(1) tPIL(1)	INT0(P70), INT1(P17), INT2(P16), INT4(P20 to P21)	 Interrupt source flag can be set. Event inputs for timer 0 or 1 are enabled. 	2.7 to 5.5	1			
	tPIH(2) tPIL(2)	INT3(P15) when noise filter time constant is 1/1	 Interrupt source flag can be set. Event inputs for timer 0 are enabled. 	2.7 to 5.5	2			tCYC
	tPIH(3) tPIL(3)	INT3(P15) when noise filter time constant is 1/32	 Interrupt source flag can be set. Event inputs for timer 0 are nabled. 	2.7 to 5.5	64			
	tPIH(4) tPIL(4)	INT3(P15) when noise filter time constant is 1/128	 Interrupt source flag can be set. Event inputs for timer 0 are enabled. 	2.7 to 5.5	256			
	tPIL(5)	RES	Resetting is enabled.	2.7 to 5.5	200			μs

AD Converter Characteristics at $V_{SS}1 = 0V$

<12bits AD Converter Mode/Ta = -40°C to $+85^{\circ}C >$

Demonster	Ormshall	Dia /De se e stre	Oracliticare			Specifi	cation	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Resolution	Ν	AN0(P00) to		2.7 to 5.5		12		bit
Absolute	ET	AN6(P06),	(Note 6-1)	3.0 to 5.5			±16	
accuracy		AN8(P70)		2.7 to 5.5			±20	LSB
Conversion time	TCAD		See Conversion time calculation	4.0 to 5.5	32		115	
			formulas. (Note 6-2)	3.0 to 5.5	64		115	μs
				2.7 to 5.5	134		215	
Analog input voltage range	VAIN			2.7 to 5.5	V _{SS}		V _{DD}	V
Analog port	IAINH]	VAIN=V _{DD}	2.7 to 5.5			1	
input current	IAINL		VAIN=V _{SS}	2.7 to 5.5	-1			μA

<8bits AD Converter Mode/Ta = -40° C to $+85^{\circ}$ C >

5						Specifi	cation	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Resolution	Ν	AN0(P00) to		2.7 to 5.5		8		bit
Absolute accuracy	ET	AN6(P06), AN8(P70)	(Note 6-1)	2.7 to 5.5			±1.5	LSB
Conversion time	TCAD		See Conversion time calculation	4.0 to 5.5	20		90	
			formulas. (Note 6-2)	3.0 to 5.5	40		90	μs
				2.7 to 5.5	80		135	
Analog input voltage range	VAIN			2.7 to 5.5	V _{SS}		V _{DD}	V
Analog port	IAINH]	VAIN=V _{DD}	2.7 to 5.5			1	
input current	IAINL		VAIN=V _{SS}	2.7 to 5.5	-1			μΑ

Conversion time calculation formulas:

12bits AD Converter Mode: TCAD(Conversion time) = $((52/(AD \text{ division ratio}))+2)\times(1/3)\times tCYC$ 8bits AD Converter Mode: TCAD(Conversion time) = $((32/(AD \text{ division ratio}))+2)\times(1/3)\times tCYC$

External oscillation	Operating supply voltage range	System division ratio	Cycle time	AD division ratio		ersion time AD)
(FmCF)	(V _{DD})	(SYSDIV)	(tCYC)	(ADDIV)	12bit AD	8bit AD
	4.0V to 5.5V	1/1	250ns	1/8	34.8µs	21.5µs
CF-12MHz	3.0V to 5.5V	1/1	250ns	1/16	69.5µs	42.8µs
	2.7V to 5.5V	1/1	250ns	1/32	138.8µs	85.5µs
	4.0V to 5.5V	1/1	375ns	1/8	52.25µs	32.25µs
CF-8MHz	3.0V to 5.5V	1/1	375ns	1/16	104.25µs	64.25µs
	2.7V to 5.5V	1/1	375ns	1/32	208.25µs	128.25µs
	3.0V to 5.5V	1/1	750ns	1/8	104.5µs	64.5µs
CF-4MHz	2.7V to 5.5V	1/1	750ns	1/16	208.5µs	128.5µs

Note 6-1: The quantization error (±1/2LSB) must be excluded from the absolute accuracy. The absolute accuracy must be measured in the microcontroller's state in which no I/O operations occur at the pins adjacent to the analog input channel.

Note 6-2: The conversion time refers to the period from the time an instruction for starting a conversion process till the time the conversion results register(s) are loaded with a complete digital conversion value corresponding to the analog input value.

The conversion time is 2 times the normal-time conversion time when:

- The first AD conversion is performed in the 12-bit AD conversion mode after a system reset.
- The first AD conversion is performed after the AD conversion mode is switched from 8-bit to 12-bit conversion mode.

						Specif	ication	
Parameter	Symbol	Pin/Remarks	Conditions	Option selected voltage	min	typ	max	unit
POR release	PORRL		Select from option.	2.57V	2.45	2.57	2.69	
voltage			(Note 7-1)	2.87V	2.75	2.87	2.99	
				3.86V	3.73	3.86	3.99	
				4.35V	4.21	4.35	4.49	V
Detection voltage unknown state	POUKS		• See Fig. 7. (Note 7-2)			0.7	0.95	ſ
Power supply rise time	PORIS		 Power supply rise time from 0V to 1.6V. 				100	ms

Power-on Reset (POR) Characteristics at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1 = 0V$

Note7-1: The POR release level can be selected out of 4 levels only when the LVD reset function is disabled. Note7-2: POR is in an unknown state before transistors start operation.

Low Voltage Detection Reset (LVD) Characteristics at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1=0V$

				_		Specific	cation	
Parameter	Symbol	Pin/Remarks	Conditions	Option selected voltage	min	typ	max	unit
LVD reset voltage	LVDET		Select from option.	2.81V	2.71	2.81	2.91	
(Note 8-2)			(Note 8-1)	3.79V	3.67	3.79	3.91	V
			(Note 8-3)	4.28V	4.15	4.28	4.41	
LVD hysteresys	LVHYS		See Fig. 8.	2.81V		60		
width				3.79V		65		mV
				4.28V		65		
Detection voltage unknown state	LVUKS		• See Fig. 8. (Note 8-4)			0.7	0.95	V
Low voltage detection minimum width (Reply sensitivity)	TLVDW		• LVDET-0.5V • See Fig. 9.		0.2			ms

Note8-1: The LVD reset level can be selected out of 3 levels only when the LVD reset function is enabled.

Note8-2: LVD reset voltage specification values do not include hysteresis voltage.

Note8-3: LVD reset voltage may exceed its specification values when port output state changes and/or when a large current flows through port.

Note8-4: LVD is in an unknown state before transistors start operation.

Consumption Current Characteristics at $Ta = -40^{\circ}C$ to $+85^{\circ}C$, $V_{SS}1 = 0V$

Parameter	Symbol	Pin/	Conditions			Speci	fication	1
	Cynibol	Remarks		V _{DD} [V]	min	typ	max	unit
Normal mode consumption current	IDDOP(1)	V _{DD} 1	FmCF=12MHz ceramic oscillation mode System clock set to 12MHz side Internal low speed and medium speed RC resillation strenged	2.7 to 5.5		4.8	8.7	
(Note 9-1) (Note 9-2)			 oscillation stopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio 	2.7 to 3.6		3.0	5.0	
	IDDOP(2)		CF1=24MHz external clock System clock set to CF1 side Internal low speed and medium speed RC	3.0 to 5.5		5.0	9.6	
			oscillation stopped.Frequency variable RC oscillation stopped.1/2 frequency division ratio	3.0 to 3.6		3.2	6.0	
	IDDOP(3)		 FmCF=10MHz ceramic oscillation mode System clock set to 10MHz side Internal low speed and medium speed RC oscillation stopped. 	2.7 to 5.5		4.1	7.8	
			Frequency variable RC oscillation stopped. 1/1 frequency division ratio	2.7 to 3.6		2.6	4.9	
	IDDOP(4)		 FmCF=4MHz ceramic oscillation mode System clock set to 4MHz side Internal low speed and medium speed RC 	2.7 to 5.5		2.2	5.1	
			oscillation stopped.Frequency variable RC oscillation stopped.1/1 frequency division ratio	2.7 to 3.6		1.5	2.7	mA
	IDDOP(5)		 CF oscillation low amplifier size selected. (CFLAMP=1) FmCF=4MHz ceramic oscillation mode System clock set to 4MHz side 	2.7 to 5.5		0.95	2.4	
			 Internal low speed and medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/4 frequency division ratio 	2.7 to 3.6		0.50	1.1	
	IDDOP(6)		 FsX'tal=32.768kHz crystal oscillation mode Internal low speed RC oscillation stopped. System clock set to internal medium speed 	2.7 to 5.5		0.42	1.4	
			RC oscillation. • Frequency variable RC oscillation stopped. • 1/2 frequency division ratio	2.7 to 3.6		0.25	0.76	
	IDDOP(7)		 FsX'tal=32.768kHz crystal oscillation mode Internal low speed and medium speed RC oscillation stopped. 	2.7 to 5.5		3.2	5.4	
			 System clock set to 8MHz with frequency variable RC oscillation 1/1 frequency division ratio 	2.7 to 3.6		2.3	4.2	
	IDDOP(8)		 External FsX'tal and FmCF oscillation stopped. System clock set to internal low speed RC oscillation. 	2.7 to 5.5		55	169	
			 Internal medium speed RC oscillation sopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio 	2.7 to 3.6		39	109	
	IDDOP(9)		External FsX'tal and FmCF oscillation stopped. System clock set to internal low speed RC oscillation.	5.0		55	136	μΑ
			 Internal medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio Ta=-10 to +50°C 	3.3		39	103	

Note9-1: Values of the consumption current do not include current that flows into the output transistors and internal pull-up resistors.

Note9-2: The consumption current values do not include operational current of LVD function if not specified.

Continued on next page.

Parameter	Symbol	Pin/ Remarks	Conditions			Specification		
Falametei	Symbol		Conditions	V _{DD} [V]	min	typ	max	unit
Normal mode consumption current	IDDOP(10)	V _{DD} 1	 FsX'tal=32.768kHz crystal oscillation mode System clock set to 32.768kHz side Internal low speed and medium speed RC 	2.7 to 5.5		28	89	
(Note 9-1) (Note 9-2)			 oscillation stopped. Frequency variable RC oscillation stopped. 1/2 frequency division ratio 	2.7 to 3.6		11	38	
	IDDOP(11)		 FsX'tal=32.768kHz crystal oscillation mode System clock set to 32.768kHz side Internal low speed and medium speed RC oscillation stopped. 	5.0		28	78	μA
			 Frequency variable RC oscillation stopped. 1/2 frequency division ratio Ta=-10 to +50°C 	3.3		11	29	
HALT mode consumption current (Note 9-1) (Note 9-2)	IDDHALT(1)		 HALT mode FmCF=12MHz ceramic oscillation mode System clock set to 12MHz side Internal low speed and medium speed RC 	2.7 to 5.5		2.4	4.5	
			oscillation stopped. • Frequency variable RC oscillation stopped. • 1/1 frequency division ratio	2.7 to 3.6		1.3	2.2	
	IDDHALT(2)		 HALT mode CF1=24MHz external clock System clock set to CF1 side Internal low speed and medium speed RC 	3.0 to 5.5		2.7	5.3	
			 oscillation stopped. Frequency variable RC oscillation stopped. 1/2 frequency division ratio 	3.0 to 3.6		1.6	2.9	
	IDDHALT(3)		 HALT mode FmCF=10MHz ceramic oscillation mode System clock set to 10MHz side Internal low speed and medium speed RC 	2.7 to 5.5		2.0	4.1	
			 Internation stopped and medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio 	2.7 to 3.6		1.1	2.1	
	IDDHALT(4)		 HALT mode FmCF=4MHz ceramic oscillation mode System clock set to 4MHz side Internal low speed and medium speed RC 	2.7 to 5.5		1.2	3.3	mA
			oscillation stopped. • Frequency variable RC oscillation stopped. • 1/1 frequency division ratio	2.7 to 3.6		0.50	1.2	
	IDDHALT(5)		 HALT mode CF oscillation low amplifier size selected. (CFLAMP=1) FmCF=4MHz ceramic oscillation mode System clock set to 4MHz side 	2.7 to 5.5		0.70	1.8	
			 Internal low speed and medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/4 frequency division ratio 	2.7 to 3.6		0.30	0.68	
	IDDHALT(6)		 HALT mode FsX'tal=32.768kHz crystal oscillation mode Internal low speed RC oscillation stopped. System clock set to internal medium speed 	2.7 to 5.5		0.30	0.90	
			RC oscillationFrequency variable RC oscillation stopped.1/2 frequency division ratio	2.7 to 3.6		0.20	0.44	

Note9-1: Values of the consumption current do not include current that flows into the output transistors and internal pull-up resistors.

Note9-2: The consumption current values do not include operational current of LVD function if not specified.

Continued on next page.

Parameter	Symbol	Pin/	Conditions		Specification				
Parameter	Symbol	remarks	Conditions	V _{DD} [V]	min	typ	max	unit	
HALT mode consumption current (Note 9-1)	IDDHALT(7)	V _{DD} 1	 HALT mode FsX'tal=32.768kHz crystal oscillation mode Internal low speed and medium speed RC oscillation stopped. 	2.7 to 5.5		1.3	2.3	mA	
(Note 9-2)			 System clock set to 8MHz with frequency variable RC oscillation 1/1 frequency division ratio 	2.7 to 3.6		0.90	1.5		
	IDDHALT(8)		HALT mode External FsX'tal and FmCF oscillation stopped. System clock set to internal low speed RC	2.7 to 5.5		18	68		
			oscillation. Internal medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio 	2.7 to 3.6		11	35		
	IDDHALT(9)		 HALT mode External FsX'tal and FmCF oscillation stopped. System clock set to internal low speed RC oscillation. 	5.0		18	46		
			 Internal medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/1 frequency division ratio Ta=-10 to +50°C 	3.3		11	11 27		
	IDDHALT(10)		HALT mode FsX'tal=32.768kHz crystal oscillation mode System clock set to 32.768kHz side	2.7 to 5.5		20	85		
			 Internal low speed and medium speed RC oscillation stopped. Frequency variable RC oscillation stopped. 1/2 frequency division ratio 	2.7 to 3.6		5.6	30		
	IDDHALT(11)		HALT mode FsX'tal=32.768kHz crystal oscillation mode System clock set to 32.768kHz side Internal low speed and medium speed RC	5.0		20	51	μΑ	
			oscillation stopped. • Frequency variable RC oscillation stopped. • 1/2 frequency division ratio • Ta=-10 to +50°C	3.3		5.6	17		
HOLD mode	IDDHOLD(1)		HOLD mode	2.7 to 5.5		0.012	23		
consumption current			• CF1=V _{DD} or open (External clock mode)	2.7 to 3.6		0.008	11		
(Note 9-1) (Note 9-2)	IDDHOLD(2)		 HOLD mode CF1=V_{DD} or open (External clock mode) 	5.0		0.012	1.2		
			• Ta=-10 to +50°C	3.3		0.008	0.59		
	IDDHOLD(3)		HOLD mode	2.7 to 5.5		2.0	26		
			 CF1=V_{DD} or open (External clock mode) LVD option selected 	2.7 to 3.6		1.6	13		
	IDDHOLD(4)		HOLD mode • CF1=V _{DD} or open (External clock mode)	5.0		2.0	3.8		
			 Ta=-10 to +50°C LVD option selected 	3.3		1.6	2.8		
Timer HOLD	IDDHOLD(5)		Timer HOLD mode	2.7 to 5.5		16	70		
mode			FsX'tal=32.768 kHz crystal oscillation mode	2.7 to 3.6		4.2	25		
consumption current	IDDHOLD(6)		Timer HOLD mode • FsX'tal=32.768kHz crystal oscillation mode	5.0		16	42		
(Note 9-1) (Note 9-2)			• Ta=-10 to +50°C	3.3		4.2	11		

Note9-1: Values of the consumption current do not include current that flows into the output transistors and internal pull-up resistors.

Note9-2: The consumption current values do not include operational current of LVD function if not specified.

Characteristics of a Sample Subsystem Clock Oscillator Circuit

Given below are the characteristics of a sample subsystem clock oscillation circuit that are measured using a Our designated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.

Table 2 Characteristics of a Sample Subsystem Clock Oscillator Circuit with a Crystal Oscillator ■EPSON TOYOCOM

Nominal	Туре	Oscillator Name	Circuit Constant				Operating Voltage	Oscillation Stabilization Time		Demeric
Frequency			C1 [pF]	C2 [pF]	Rf [Ω]	Rd [Ω]	Range [V]	typ [s]	max [s]	Remarks
32.768kHz	SMD	MC-306	9	9	Open	330k	2.7 to 5.5	1.4	4.0	Applicable CL value = 7.0pF

SEIKO INSTRUMENTS

Nominal	-	Oscillator Name	Circuit Constant				Operating Voltage	Oscillation Stabilization Time		
Frequency	туре		C1 [pF]	C2 [pF]	Rf [Ω]	Rd [Ω]	Range [V]	typ [s]	max [s]	Remarks
32.768kHz	SMD	SSP-T7-F	18	18	Open	0	2.7 to 5.5	0.75	2.0	Applicable CL value = 12.5pF

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized after V_{DD} goes above the operating voltage lower limit (see Figure 3).

- The time interval that is required for the oscillation to get stabilized after the instruction for starting the subclock oscillation circuit is executed.
- The time interval that is required for the oscillation to get stabilized after the Hold mode, under the state which the subclock oscillation is enabled, is reset and oscillation is started.

(Notes on the implementation of the oscillator circuit)

- Oscillation is influenced by the circuit pattern layout of printed circuit board. Place the oscillation-related components as close to the CPU chip and to each other as possible with the shortest possible pattern length.
- Keep the signal lines whose state changes suddenly or in which large current flows as far away from the oscillator circuit as possible and make sure that they do not cross one another.
- Be sure to insert a current limiting resistor (Rd) so that the oscillation amplitude never exceeds the input voltage level that is specified as the absolute maximum rating.
- The oscillator circuit constants shown above are sample characteristic values that are measured using the Our designated oscillation evaluation board. Since the accuracy of the oscillation frequency and other characteristics vary according to the board on which the IC is installed, it is recommended that the user consult the resonator vendor for oscillation evaluation of the IC on a user's production board when using the IC for applications that require high oscillation accuracy. For further information, contact your resonator vendor or Our company sales representative serving your locality.
- It must be noted, when replacing the flash ROM version of a microcontroller with a mask ROM version, that their operating voltage ranges may differ even when the oscillation constant of the external oscillator is the same.

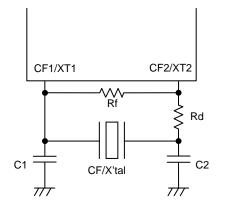


Figure 1 CF and XT Oscillator Circuit

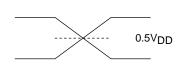
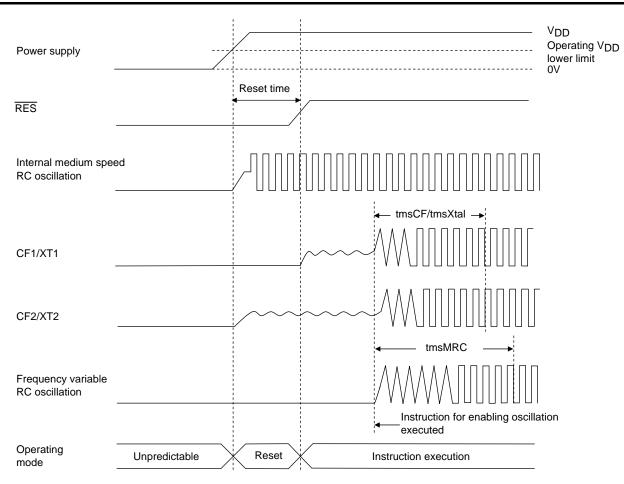
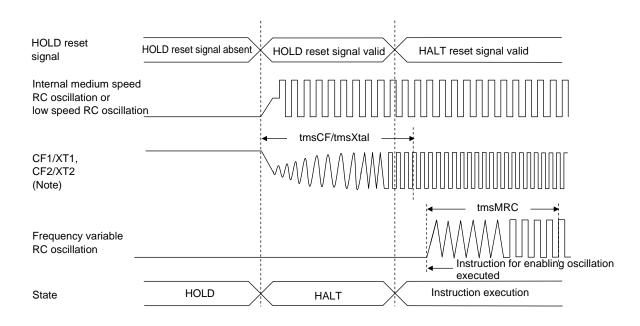




Figure 2 AC Timing Measurement Point

Reset Time and Oscillation Stabilization Time

HOLD Reset Signal and Oscillation Stabilization Time

Note: External oscillation circuit is selected.

Figure 3 Oscillation Stabilization Times

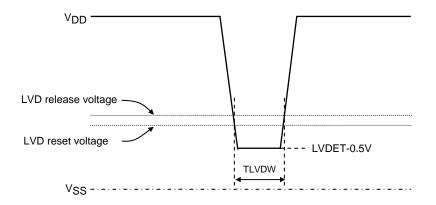


Figure 9 Low voltage detection minimum width (Example of momentary power loss/Voltage variation waveform)

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal