

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	8051
Core Size	8-Bit
Speed	50MHz
Connectivity	EBI/EMI, I ² C, LINbus, SPI, UART/USART
Peripherals	CapSense, DMA, POR, PWM, WDT
Number of I/O	25
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 16x12b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-BSSOP (0.295", 7.50mm Width)
Supplier Device Package	48-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c3446pve-082

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1. Architectural Overview	
2. Pinouts	5
3. Pin Descriptions	9
4 CPU	10
4 1 8051 CPU	10
4 2 Addressing Modes	10
4.3 Instruction Set	10
4.4 DMA and PHUB	
4.5 Interrupt Controller	
5. Memory	
5.1 Static RAM	21
5.2 Flash Program Memory	/21
5.3 Flash Security	
5.4 EEPROM	21
5.5 Nonvolatile Latches (N	VLs)22
5.6 External Memory Interf	ace23
5.7 Memory Map	24
6. System Integration	
6.1 Clocking System	
6.2 Power System	
6.3 Reset	
6.4 I/O System and Routing	g33
7. Digital Subsystem	40
7.1 Example Peripherals	
7.2 Universal Digital Block	
7.3 UDB Array Description	45
7.4 DSI Routing Interface I	Description45
7.5 CAN	47
7.6 USB	
7.7 Timers, Counters, and	PWMs49
7.8 I ² C	
8. Analog Subsystem	51
8.1 Analog Routing	
8.2 Delta-sigma ADC	54
8.3 Comparators	
8.4 Opamps	
8.5 Programmable SC/CT	Вюскя56
8.6 LCD Direct Drive	

8.7 CapSense	
8.8 Temp Sensor	58
8.9 DAC	59
8.10 Up/Down Mixer	59
8.11 Sample and Hold	59
9. Programming, Debug Interfaces, Resource	es60
9.1 JTAG Interface	60
9.2 Serial Wire Debug Interface	62
9.3 Debug Features	63
9.4 Trace Features	63
9.5 Single Wire Viewer Interface	63
9.6 Programming Features	63
9.7 Device Security	63
10. Development Support	64
10.1 Documentation	64
10.2 Online	64
10.3 Tools	64
11. Electrical Specifications	65
11.1 Absolute Maximum Ratings	65
11.2 Device Level Specifications	66
11.3 Power Regulators	72
11.4 Inputs and Outputs	74
11.5 Analog Peripherals	85
11.6 Digital Peripherals	113
11.7 Memory	119
11.8 PSoC System Resources	125
11.9 Clocking	128
12. Ordering Information	133
12.1 Part Numbering Conventions	134
13. Packaging	135
14. Acronyms	137
15. Reference Documents	
16 Document Conventions	139
16.1 Units of Measure	
17. Revision History	
18. Sales, Solutions, and Legal Information .	

		/		1
(SIO) P12[2] 🗖	•1		48	VDDA
(SIO) P12[3] 🗖	2		47	■ VSSA
(Opamp2OUT, GPIO) P0[0] 🗖	3	Lines show	46	VCCA
(Opamp0OUT, GPIO) P0[1] 🗖	4		45	P15[3] (GPIO, KHZ XTAL: XI)
(Opamp0+, GPIO) P0[2] 🗖	5	association	44	P15[2] (GPIO, KHZ XTAL: XO)
(Opamp0-/Extref0, GPIO) P0[3] 🗖	6	dooolation	43	P12[1] (SIO, I2C1: SDA)
VDDIO0	7-		42	P12[0] (SIO, I2C1: SCL)
(Opamp2+, GPIO) P0[4] 🗖	8		-41	VDDIO3
(Opamp2-, GPIO) P0[5]	9		40	P15[1] (GPIO, MHZ XTAL: XI)
(IDAC0, GPIO) P0[6] 🗖	10		39	P15[0] (GPIO, MHZ XTAL: XO)
(IDAC2, GPIO) P0[7] 🗖	11	l	38	
VCCD 🗖	12	SSOP	37	VSSD
VSSD 🗖	13	0001	 36	VDDD [8]
VDDD 🗖	14		35	P15[7] (USBIO, D-, SWDCK)
(GPIO) P2[3] 🗖	15	I	l ₃₄	P15[6] (USBIO, D+, SWDIO)
(GPIO) P2[4] 🗖	16		33	P1[7] (GPIO)
VDDIO2 🗖	17-		32	P1[6] (GPIO)
(GPIO) P2[5] 🗖	18		-31	VDDIO1
(GPIO) P2[6] 🗖	19		30	P1[5] (GPIO, nTRST)
(GPIO) P2[7] 🗖	20	I	29	P1[4] (GPIO, TDI)
VSSD 🗖	21		28	P1[3] (GPIO, TDO, SWV)
NC 🗖	22		27	P1[2] (GPIO, Configurable XRES)
VSSD 🗖	23		26	P1[1] (GPIO, TCK, SWDCK)
VSSD 🗖	24		25	P1[0] (GPIO, TMS, SWDIO)

Figure 2-3. 48-pin SSOP Part Pinout

Figure 2-4. 100-pin TQFP Part Pinout

Figure 2-5 and Figure 2-6 show an example schematic and an example PCB layout, for the 100-pin TQFP part, for optimal analog performance on a two-layer board.

- The two pins labeled VDDD must be connected together.
- The two pins labeled VCCD must be connected together, with capacitance added, as shown in Figure 2-5 and Power System on page 29. The trace between the two VCCD pins should be as short as possible.
- The two pins labeled Vssd must be connected together.

For information on circuit board layout issues for mixed signals, refer to the application note, AN57821 - Mixed Signal Circuit Board Layout Considerations for PSoC® 3 and PSoC 5.

Program branching instructions

4.3.1 Instruction Set Summary

4.3.1.1 Arithmetic Instructions

Arithmetic instructions support the direct, indirect, register, immediate constant, and register-specific instructions. Arithmetic modes are used for addition, subtraction, multiplication, division, increment, and decrement operations. Table 4-1 lists the different arithmetic instructions.

Mnemonic	Description	Bytes	Cycles
ADD A,Rn	Add register to accumulator	1	1
ADD A,Direct	Add direct byte to accumulator	2	2
ADD A,@Ri	Add indirect RAM to accumulator	1	2
ADD A,#data	Add immediate data to accumulator	2	2
ADDC A,Rn	Add register to accumulator with carry	1	1
ADDC A, Direct	Add direct byte to accumulator with carry	2	2
ADDC A,@Ri	Add indirect RAM to accumulator with carry	1	2
ADDC A,#data	Add immediate data to accumulator with carry	2	2
SUBB A,Rn	Subtract register from accumulator with borrow	1	1
SUBB A, Direct	Subtract direct byte from accumulator with borrow	2	2
SUBB A,@Ri	Subtract indirect RAM from accumulator with borrow	1	2
SUBB A,#data	Subtract immediate data from accumulator with borrow	2	2
INC A	Increment accumulator	1	1
INC Rn	Increment register	1	2
INC Direct	Increment direct byte	2	3
INC @Ri	Increment indirect RAM	1	3
DEC A	Decrement accumulator	1	1
DEC Rn	Decrement register	1	2
DEC Direct	Decrement direct byte	2	3
DEC @Ri	Decrement indirect RAM	1	3
INC DPTR	Increment data pointer	1	1
MUL	Multiply accumulator and B	1	2
DIV	Divide accumulator by B	1	6
DAA	Decimal adjust accumulator	1	3

Table 4-1. Arithmetic Instructions

Table 4-4. Boolean Instructions (continued)

Mnemonic	Description	Bytes	Cycles
ANL C, /bit	AND complement of direct bit to carry	2	2
ORL C, bit	OR direct bit to carry	2	2
ORL C, /bit	OR complement of direct bit to carry	2	2
MOV C, bit	Move direct bit to carry	2	2
MOV bit, C	Move carry to direct bit	2	3
JC rel	Jump if carry is set	2	3
JNC rel	Jump if no carry is set	2	3
JB bit, rel	Jump if direct bit is set	3	5
JNB bit, rel	Jump if direct bit is not set	3	5
JBC bit, rel	Jump if direct bit is set and clear bit	3	5

4.4.2 DMA Features

- 24 DMA channels
- Each channel has one or more transaction descriptors (TD) to configure channel behavior. Up to 128 total TDs can be defined
- TDs can be dynamically updated
- Eight levels of priority per channel
- Any digitally routable signal, the CPU, or another DMA channel, can trigger a transaction
- Each channel can generate up to two interrupts per transfer
- Transactions can be stalled or canceled
- Supports transaction size of infinite or 1 to 64 KB
- TDs may be nested and/or chained for complex transactions

4.4.3 Priority Levels

The CPU always has higher priority than the DMA controller when their accesses require the same bus resources. Due to the system architecture, the CPU can never starve the DMA. DMA channels of higher priority (lower priority number) may interrupt current DMA transfers. In the case of an interrupt, the current transfer is allowed to complete its current transaction. To ensure latency limits when multiple DMA accesses are requested simultaneously, a fairness algorithm guarantees an interleaved minimum percentage of bus bandwidth for priority levels 2 through 7. Priority levels 0 and 1 do not take part in the fairness algorithm and may use 100 percent of the bus bandwidth. If a tie occurs on two DMA requests of the same priority level, a simple round robin method is used to evenly share the allocated bandwidth. The round robin allocation can be disabled for each DMA channel, allowing it to always be at the head of the line. Priority levels 2 to 7 are guaranteed the minimum bus bandwidth shown in Table 4-7 after the CPU and DMA priority levels 0 and 1 have satisfied their requirements.

Table 4-7. Priority Levels

Priority Level	% Bus Bandwidth
0	100.0
1	100.0
2	50.0
3	25.0
4	12.5
5	6.2
6	3.1
7	1.5

When the fairness algorithm is disabled, DMA access is granted based solely on the priority level; no bus bandwidth guarantees are made.

4.4.4 Transaction Modes Supported

The flexible configuration of each DMA channel and the ability to chain multiple channels allow the creation of both simple and complex use cases. General use cases include, but are not limited to:

4.4.4.1 Simple DMA

In a simple DMA case, a single TD transfers data between a source and sink (peripherals or memory location). The basic timing diagrams of DMA read and write cycles are shown in Figure 4-1. For more description on other transfer modes, refer to the Technical Reference Manual.

Figure 4-1. DMA Timing Diagram

6.2.1 Power Modes

PSoC 3 devices have four different power modes, as shown in Table 6-2 and Table 6-3. The power modes allow a design to easily provide required functionality and processing power while simultaneously minimizing power consumption and maximizing battery life in low-power and portable devices.

PSoC 3 power modes, in order of decreasing power consumption are:

- Active
- Alternate Active
- Sleep
- Hibernate

Active is the main processing mode. Its functionality is configurable. Each power controllable subsystem is enabled or disabled by using separate power configuration template registers. In alternate active mode, fewer subsystems are enabled, reducing power. In sleep mode most resources are disabled regardless of the template settings. Sleep mode is optimized to provide timed sleep intervals and Real Time Clock functionality. The lowest power mode is hibernate, which retains register and SRAM state, but no clocks, and allows wakeup only from I/O pins. Figure 6-5 on page 31 illustrates the allowable transitions between power modes. Sleep and hibernate modes should not be entered until all VDDIO supplies are at valid voltage levels.

Power Modes	Description	Entry Condition	Wakeup Source	Active Clocks	Regulator
Active	Primary mode of operation, all peripherals available (programmable)	Wakeup, reset, manual register entry	Any interrupt	Any (programmable)	All regulators available. Digital and analog regulators can be disabled if external regulation used.
Alternate Active	Similar to Active mode, and is typically configured to have fewer peripherals active to reduce power. One possible configuration is to use the UDBs for processing, with the CPU turned off	Manual register entry	Any interrupt	Any (programmable)	All regulators available. Digital and analog regulators can be disabled if external regulation used.
Sleep	All subsystems automatically disabled	Manual register entry	Comparator, PICU, I ² C, RTC, CTW, LVD	ILO/kHzECO	Both digital and analog regulators buzzed. Digital and analog regulators can be disabled if external regulation used.
Hibernate	All subsystems automatically disabled Lowest power consuming mode with all peripherals and internal regulators disabled, except hibernate regulator is enabled Configuration and memory contents retained	Manual register entry	PICU		Only hibernate regulator active.

Table 6-2. Power Modes

Table 6-3. Power Modes Wakeup Time and Power Consumption

Sleep Modes	Wakeup Time	Current (typ)	Code Execution	Digital Resources	Analog Resources	Clock Sources Available	Wakeup Sources	Reset Sources
Active	-	1.2 mA ^[11]	Yes	All	All	All	-	All
Alternate Active	-	-	User defined	All	All	All	-	All
Sleep	<15 µs	1 μΑ	No	l ² C	Comparator	ILO/kHzECO	Comparator, PICU, I ² C, RTC, CTW, LVD	XRES, LVD, WDR
Hibernate	<100 µs	200 nA	No	None	None	None	PICU	XRES

Note

11. Bus clock off. Execute from cache at 6 MHz. See Table 11-2 on page 66.

detect and report certain exception conditions. This register is cleared after a power-on reset. For details see the Technical Reference Manual.

6.3.1 Reset Sources

6.3.1.1 Power Voltage Level Monitors

IPOR – Initial power-on reset

At initial power on, IPOR monitors the power voltages V_{DDD} , V_{DDA} , V_{CCD} and V_{CCA} . The trip level is not precise. It is set to approximately 1 volt, which is below the lowest specified operating voltage but high enough for the internal circuits to be reset and to hold their reset state. The monitor generates a reset pulse that is at least 150 ns wide. It may be much wider if one or more of the voltages ramps up slowly.

If after the IPOR triggers either V_{DDX} drops back below the trigger point, in a non-monotonic fashion, it must remain below that point for at least 10 μ s. The hysteresis of the IPOR trigger point is typically 100 mV.

After boot, the IPOR circuit is disabled and voltage supervision is handed off to the precise low-voltage reset (PRES) circuit.

PRES – Precise low voltage reset

This circuit monitors the outputs of the analog and digital internal regulators after power up. The regulator outputs are compared to a precise reference voltage. The response to a PRES trip is identical to an IPOR reset.

After PRES has been deasserted, at least 10 μ s must elapse before it can be reasserted.

In normal operating mode, the program cannot disable the digital PRES circuit. The analog regulator can be disabled, which also disables the analog portion of the PRES. The PRES circuit is disabled automatically during sleep and hibernate modes, with one exception: During sleep mode the regulators are periodically activated (buzzed) to provide supervisory services and to reduce wakeup time. At these times the PRES circuit is also buzzed to allow periodic voltage monitoring.

ALVI, DLVI, AHVI – Analog/digital low voltage interrupt, analog high voltage interrupt

Interrupt circuits are available to detect when VDDA and VDDD go outside a voltage range. For AHVI, VDDA is compared to a fixed trip level. For ALVI and DLVI, VDDA and VDDD are compared to trip levels that are programmable, as listed in Table 6-4. ALVI and DLVI can also be configured to generate a device reset instead of an interrupt.

Table 6-4.	Analog/Digital Low Voltage Interrupt, Analog High
Voltage In	terrupt

Interrupt	Supply	Normal Voltage Range	Available Trip Settings
DLVI	VDDD	1.71 V–5.5 V	1.70 V–5.45 V in 250 mV increments
ALVI	VDDA	1.71 V–5.5 V	1.70 V–5.45 V in 250 mV increments
AHVI	VDDA	1.71 V–5.5 V	5.75 V

The monitors are disabled until after IPOR. During sleep mode these circuits are periodically activated (buzzed). If an interrupt occurs during buzzing then the system first enters its wakeup sequence. The interrupt is then recognized and may be serviced.

The buzz frequency is adjustable, and should be set to be less than the minimum time that any voltage is expected to be out of range. For details on how to adjust the buzz frequency, see the TRM.

6.3.1.2 Other Reset Sources

■ XRES – External reset

PSoC 3 has either a single GPIO pin that is configured as an external reset or a dedicated XRES pin. Either the dedicated XRES pin or the GPIO pin, if configured, holds the part in reset while held active (low). The response to an XRES is the same as to an IPOR reset.

After XRES has been deasserted, at least 10 μs must elapse before it can be reasserted.

The external reset is active low. It includes an internal pull-up resistor. XRES is active during sleep and hibernate modes.

SRES – Software reset

A reset can be commanded under program control by setting a bit in the software reset register. This is done either directly by the program or indirectly by DMA access. The response to a SRES is the same as after an IPOR reset.

Another register bit exists to disable this function.

WRES – Watchdog timer reset

The watchdog reset detects when the software program is no longer being executed correctly. To indicate to the watchdog timer that it is running correctly, the program must periodically reset the timer. If the timer is not reset before a user-specified amount of time, then a reset is generated.

Note IPOR disables the watchdog function. The program must enable the watchdog function at an appropriate point in the code by setting a register bit. When this bit is set, it cannot be cleared again except by an IPOR power on reset event.

Figure 7-15. CAN Controller Block Diagram

11. Electrical Specifications

Specifications are valid for $-40^{\circ}C \le Ta \le 125^{\circ}C$ and Tj $\le 150^{\circ}C$, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted. The unique flexibility of the PSoC UDBs and analog blocks enable many functions to be implemented in PSoC Creator components, see the component data sheets for full AC/DC specifications of individual functions. See the Example Peripherals on page 40 for further explanation of PSoC Creator components.

11.1 Absolute Maximum Ratings

Table 11-1. Absolute Maximum Ratings DC Specifications	Table 11-1.	Absolute Maxi	mum Ratings	DC Spe	cifications	[17]
--	-------------	---------------	-------------	--------	-------------	------

Parameter	Description	Min	Тур	Max	Units	
Tstorag	Storage temperature	Recommended storage temperature is 0 °C–50 °C. Exposure to storage temperatures above 125 °C for extended periods may affect device reliability	-55	25	125	°C
Vdda	Analog supply voltage relative to Vssd		-0.5	_	6	V
Vddd	Digital supply voltage relative to Vssd		-0.5	-	6	V
Vddio	I/O supply voltage relative to Vssd		-0.5	_	6	V
Vcca	Direct analog core voltage input		-0.5	_	1.95	V
Vccd	Direct digital core voltage input		-0.5	_	1.95	V
Vssa	Analog ground voltage		Vssd – 0.5	-	Vssd + 0.5	V
Vgpio ^[18]	DC input voltage on GPIO	Includes signals sourced by Vdda and routed internal to the pin	Vssd – 0.5	-	Vddio + 0.5	V
Vsio	DC input voltage on SIO	Output disabled	Vssd – 0.5	-	7	V
		Output enabled	Vssd – 0.5	-	6	V
Ivddio ^[19]	Current per Vddio supply pin	–40 °C to +85 °C	-	_	100	mA
		–40 °C to +125 °C	-	-	40	
I _{GPIO}	GPIO current		-30	-	41	mA
I _{SIO}	SIO current		-49	-	28	mA
I _{USBIO}	USBIO current		-56	-	59	mA
V _{EXTREF}	ADC external reference inputs	Pins P0[3], P3[2]	-	-	2	V
LU	Latch up current ^[20]		-140	_	140	mA
	Electrostatic discharge voltage,	V _{SSA} tied to V _{SSD}	2200	-	-	V
L3DHBM	Human body model	V _{SSA} not tied to V _{SSD}	750	-	-	V
ESD _{CDM}	Electro-static discharge voltage	Charge Device Model	500	-	-	V

Note Usage above the absolute maximum conditions listed in Table 11-1 may cause permanent damage to the device. Exposure to maximum conditions for extended periods of time may affect device reliability. When used below maximum conditions but above normal operating conditions the device may not operate to specification.

Notes

20. Meets or exceeds JEDEC Spec EIA/JESD78 IC Latch-up Test.

^{17.} Usage above the absolute maximum conditions listed in Table 11-1 may cause permanent damage to the device. Exposure to Absolute Maximum conditions for extended periods of time may affect device reliability. The Maximum Storage Temperature is 150 °C in compliance with JEDEC Standard JESD22-A103, High Temperature Storage Life. When used below Absolute Maximum conditions but above normal operating conditions, the device may not operate to specification.

^{18.} The Vddio supply voltage must be greater than the maximum analog voltage on the associated GPIO pins. Maximum analog voltage on GPIO pin \leq Vddio \leq Vdda. 19. Maximum value 100 mA of Iddio applies only to -40 °C to +85 °C range and the limit of Iddio parameter for the -40 °C to +125 °C range is 40 mA.

11.2 Device Level Specifications

Specifications are valid for -40°C \leq Ta \leq 125°C and Tj \leq 150°C, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

11.2.1 Device Level Specifications

Table 11-2. DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
V _{DDA}	Analog supply voltage and input to analog core regulator	Analog core regulator enabled	1.8	-	5.5	V
V _{DDA}	Analog supply voltage, analog regulator bypassed	Analog core regulator disabled	1.8	1.89	V	
V _{DDD}	Digital supply voltage relative to V _{SSD}	Digital core regulator enabled	1.8	-	V _{DDA} ^[21]	V
V _{DDD}	Digital supply voltage, digital regulator bypassed	Digital core regulator disabled	1.71	1.8	1.89	V
V _{DDIO} ^[22]	I/O supply voltage relative to V _{SSIO}		1.71	-	V _{DDA} ^[21]	V
V _{CCA}	Direct analog core voltage input (Analog regulator bypass)	Analog core regulator disabled	1.71	1.8	1.89	V
V _{CCD}	Direct digital core voltage input (Digital regulator bypass)	Digital core regulator disabled	1.71	1.8	1.89	V

11.3.2 Analog Core Regulator

Table 11-5. Analog Core Regulator DC Specifications

Parameter	Description	Description Conditions							
Vdda	Input voltage		1.8	-	5.5	V			
Vcca	Output voltage		-	1.80	-	V			
	Regulator output capacitor	±10%, X5R ceramic or better (X7R for Ta > 85°C)	-	1	-	μF			

Figure 11-5. Analog Regulator PSRR vs Frequency and V_{DD}

Figure 11-8. SIO Output High Voltage and Current, Unregulated Mode

Figure 11-20. Opamp Operating Current vs Vdda and Power Mode

Table 11-16. Opamp AC Specifications

Parameter	Description	Conditions	Min	Тур	Мах	Units
GBW	Gain-bandwidth product	Power mode = minimum, 15 pF load	1	-	_	MHz
		Power mode = low, 15 pF load	2	-	-	MHz
		Power mode = medium, 200 pF load	1	-	_	MHz
		Power mode = high, 200 pF load	2.5	-	-	MHz
SR	Slew rate, 20% - 80%	Power mode = low, 15 pF load	1.1	-	-	V/µs
		Power mode = medium, 200 pF load	0.9	-	-	V/µs
		Power mode = high, 200 pF load	3	-	-	V/µs
e _n	Input noise density	Power mode = high, Vdda = 5 V, at 100 kHz	_	45	_	nV/sqrtH z

Figure 11-21. Opamp Noise vs Frequency, Power Mode = High, Vdda = 5 V

Figure 11-28. IDAC INL vs Input Code, Range = 255 µA, Sink Mode

Figure 11-46. VDAC Full Scale Error vs Temperature, 4 V Mode

Figure 11-47. VDAC Operating Current vs Temperature, 1V Mode, Low speed mode

11.5.10 Programmable Gain Amplifier

The PGA is created using a SC/CT Analog Block, see the PGA component data sheet in PSoC Creator for full AC/DC specifications, and APIs and example code.

Unless otherwise specified, operating conditions are:

- Operating temperature = 25 °C for typical values
- Unless otherwise specified, all charts and graphs show typical values

Table 11-32. PGA DC Specifications

Parameter	Description	Conditions	Min	Тур	Мах	Units
Vin	Input voltage range	Power mode = minimum	Vssa	-	Vdda	V
Vos	Input offset voltage	Power mode = high, gain = 1	-	_	10	mV
	Gain Error ^[29]	Non inverting mode, reference = Vs				
Ge1	Gain = 1	Rin of 40K, -40°C \leq Ta \leq 85°C and Tj \leq 100°C	-	_	±0.15	%
		$\begin{array}{l} \mbox{Rin of 40K, -40}^\circ\mbox{C} \leq \mbox{Ta} \leq 125^\circ\mbox{C and} \\ \mbox{Tj} \leq 150^\circ\mbox{C} \end{array}$	-	-	±0.15	%
Ge16	Gain = 16	Rin of 40K, -40°C \leq Ta \leq 85°C and Tj \leq 100°C	-	-	±2.5	%
		Rin of 40K, -40°C \leq Ta \leq 125°C and Tj \leq 150°C	-	_	±4	%
Ge50	Gain = 50	Rin of 40K, -40°C \leq Ta \leq 85°C and Tj \leq 100°C	-	_	±5	%
		Rin of 40K, -40°C \leq Ta \leq 125°C and Tj \leq 150°C	-	-	±6	%
TCVos	Input offset voltage drift with temperature	Power mode = high, gain = 1	-	-	±30	µV/°C
Vonl	DC output nonlinearity	Gain = 1	-	-	±0.01	% of FSR
Cin	Input capacitance		-	-	7	pF
Voh	Output voltage swing	Power mode = high, gain = 1, Rload = 100 k Ω to V _{DDA} / 2	V _{DDA} – 0.15	_	-	V
Vol	Output voltage swing	Power mode = high, gain = 1, Rload = 100 k Ω to V _{DDA} / 2	-	_	V _{SSA} + 0.15	V
Vsrc	Output voltage under load	Iload = 250 µA, Vdda ≥ 2.7V, power mode = high	-	_	300	mV
ldd	Operating current	Power mode = high	-	1.5	1.65	mA
PSRR	Power supply rejection ratio		48	-	-	dB

11.6 Digital Peripherals

Specifications are valid for -40°C \leq Ta \leq 125°C and Tj \leq 150°C, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

11.6.1 Timer

Table 11-37. Timer DC Specifications

Parameter	Description	Тур	Мах	Units		
	Block current consumption	16-bit timer, at listed input clock frequency	-	_	-	μA
	3 MHz		-	15	_	μA
	12 MHz		-	60	_	μA
	50 MHz		_	260	_	μA

Table 11-38. Timer AC Specifications

Parameter	Description	Conditions	Min	Тур	Мах	Units
	Operating frequency	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	DC	-	50 ^[45]	MHz
		-40°C \leq Ta \leq 125°C and Tj \leq 150°C	DC	-	50	MHz
	Capture pulse width (Internal)	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	15	-	-	ns
		-40°C \leq Ta \leq 125°C and Tj \leq 150°C	21	-	-	ns
	Capture pulse width (external)	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	30	-	-	ns
		-40°C \leq Ta \leq 125°C and Tj \leq 150°C	42	-	-	ns
	Timer resolution	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	15	-	-	ns
		-40°C \leq Ta \leq 125°C and Tj \leq 150°C	21	-	-	ns
	Enable pulse width	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	15	-	-	ns
		-40°C \leq Ta \leq 125°C and Tj \leq 150°C	21	-	-	ns
	Enable pulse width (external)	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	30	-	-	ns
		-40°C \leq Ta \leq 125°C and Tj \leq 150°C	42	-	-	ns
	Reset pulse width	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	15	-	-	ns
		-40°C \leq Ta \leq 125°C and Tj \leq 150°C	21	-	-	ns
	Reset pulse width (external)	-40°C \leq Ta \leq 85°C and Tj \leq 100°C	30	-	-	ns
		-40°C \leq Ta \leq 125°C and Tj \leq 150°C	42	-	-	ns

45. Applicable at -40°C to 85°C; 50 MHz at -40°C to 125°C.

11.8.3 Interrupt Controller

Table 11-65. Interrupt Controller AC Specifications

Parameter	Description	Тур	Max	Units		
	Delay from Interrupt signal input to ISR code execution from ISR code	Includes worse case completion of longest instruction DIV with 6 cycles	-	-	25	Tcy CPU

11.8.4 JTAG Interface

Table 11-66. JTAG Interface AC Specifications^[29]

Parameter	Description	Conditions	Min	Тур	Max	Units
f_TCK	TCK frequency	$3.3 \text{ V} \le \text{V}_{DDD} \le 5 \text{ V}$	-	-	14 ^[58]	MHz
		$1.71 \text{ V} \le \text{V}_{\text{DDD}} < 3.3 \text{ V}$	-	-	7 ^[58]	MHz
T_TDI_setup	TDI setup before TCK high		(T/10) – 5	_	-	ns
T_TMS_setup	TMS setup before TCK high		T/4	-	-	
T_TDI_hold	TDI, TMS hold after TCK high	T = 1/f_TCK max	T/4	-	-	
T_TDO_valid	TCK low to TDO valid	T = 1/f_TCK max	-	-	2T/5	
T_TDO_hold	TDO hold after TCK high	T = 1/f_TCK max	T/4	-	-	

Figure 11-60. JTAG Interface Timing

12. Ordering Information

In addition to the features listed in Table 12-1, every CY8C34 device includes: a precision on-chip voltage reference, precision oscillators, Flash, ECC, DMA, a fixed function I²C, 4 KB trace RAM, JTAG/SWD programming and debug, external memory interface, and more. In addition to these features, the flexible UDBs and Analog Subsection support a wide range of peripherals. To assist you in selecting the ideal part, PSoC Creator makes a part recommendation after you choose the components required by your application. All CY8C34 derivatives incorporate device and Flash security in user-selectable security levels; see TRM for details.

	Ν	NCU	Cor	re		4	Ana	log						Dig	gital			I/O	[67]			
Part Number	CPU Speed (MHz)	Flash (KB)	SRAM (KB)	EEPROM (KB)	LCD Segment Drive	ADC	DAC	Comparator	SC/CT Analog Blocks	Opamps	DFB	CapSense	UDBS ^[66]	16-bit Timer/PWM	FS USB	CAN 2.0b	Total I/O	GPIO	SIO	OIBSN	Package	JTAG ID ^[68]
16 KB Flash																						
CY8C3444PVE-118	50	16	2	0.5	-	12-bit Del-Sig	2	4	2	2	-	~	16	4	-	-	29	25	4	0	48-SSOP	0x1E076069
CY8C3444AXA-116	50	16	2	0.5	~	12-bit Del-Sig	2	4	2	2	-	5	16	4	-	-	70	62	8	0	100-TQFP	0x1E074069
CY8C3444PVA-100	50	16	2	0.5	~	12-bit Del-Sig	2	4	2	2	-	~	16	4	-	-	29	25	4	0	48-SSOP	0x1E064069
32 KB Flash																						
CY8C3445AXE-097	50	32	4	1	~	12-bit Del-Sig	2	4	2	2	-	~	20	4	-	-	70	62	8	0	100-TQFP	0x1E061069
CY8C3445AXE-107	50	32	4	1	-	12-bit Del-Sig	2	4	2	2	-	~	20	4	~	-	72	62	8	2	100-TQFP	0x1E06B069
CY8C3445AXE-181	50	32	4	1	-	12-bit Del-Sig	2	4	2	2	-	~	20	4	-	~	70	62	8	0	100-TQFP	0x1E0B5069
CY8C3445AXA-104	50	32	4	1	I	12-bit Del-Sig	2	4	2	2	I	5	20	4	I	-	70	62	8	0	100-TQFP	0x1E068069
CY8C3445AXA-108	50	32	4	1	>	12-bit Del-Sig	2	4	2	2	I	5	20	4	~	-	72	62	8	2	100-TQFP	0x1E06C069
CY8C3445AXA-181	50	32	4	1	-	12-bit Del-Sig	2	4	2	2	1	2	20	4	-	~	70	62	8	0	100-TQFP	0x1E0B5069
CY8C3445PVA-090	50	32	4	1	~	12-bit Del-Sig	2	4	2	2	-	2	20	4	~	-	31	25	4	2	48-SSOP	0x1E05A069
CY8C3445PVA-094	50	32	4	1	2	12-bit Del-Sig	2	4	2	2	-	۲	20	4	-	-	29	25	4	0	48-SSOP	0x1E05E069
64 KB Flash																						
CY8C3446AXE-099	50	64	8	2	~	12-bit Del-Sig	2	4	2	2	-	~	24	4	~	-	72	62	8	2	100-TQFP	0x1E063069
CY8C3446AXE-115	50	64	8	2	-	12-bit Del-Sig	2	4	2	2	-	۲	24	4	-	-	70	62	8	0	100-TQFP	0x1E073069
CY8C3446PVE-082	50	64	8	2	-	12-bit Del-Sig	2	4	2	2	-	2	24	4	-	-	29	25	4	0	48-SSOP	0x0E052069
CY8C3446PVE-102	50	64	8	2	~	12-bit Del-Sig	2	4	2	2	-	2	24	4	-	~	29	25	4	0	48-SSOP	0x1E066069
CY8C3446AXA-099	50	64	8	2	~	12-bit Del-Sig	2	4	2	2	-	2	24	4	~	-	72	62	8	2	100-TQFP	0x1E063069
CY8C3446AXA-105	50	64	8	2	~	12-bit Del-Sig	2	4	2	2	-	2	24	4	-	-	70	62	8	0	100-TQFP	0x1E069069
CY8C3446PVA-076	50	64	8	2	~	12-bit Del-Sig	2	4	2	2	-	~	24	4	~	-	31	25	4	2	48-SSOP	0x1E04C069
CY8C3446PVA-091	50	64	8	2	~	12-bit Del-Sig	2	4	2	2	-	~	24	4	-	-	29	25	4	0	48-SSOP	0x1E05B069
CY8C3446PVA-102	50	64	8	2	~	12-bit Del-Sig	2	4	2	2	-	~	24	4	-	~	29	25	4	0	48-SSOP	0x1E066069

Table 12-1. CY8C34 Family with Single Cycle 8051

Notes

 ^{66.} UDBs support a wide variety of functionality including SPI, LIN, UART, timer, counter, PWM, PRS, and others. Individual functions may use a fraction of a UDB or multiple UDBs. Multiple functions can share a single UDB. See the "Example Peripherals" section on page 40 for more information on how UDBs may be used.
 67. The I/O Count includes all types of digital I/O: GPIO, SIO, and the two USB I/O. See the ""I/O System and Routing" section on page 33" for details on the functionality of each of these types of I/O.

of each of these types of I/O. 68. The JTAG ID has three major fields. The most significant nibble (left digit) is the version, followed by a 2 byte part number and a 3 nibble manufacturer ID.