Zilog - Z32F06423AEE Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	40MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, Motor Control PWM, POR, PWM, WDT
Number of I/O	44
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 5.5V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z32f06423aee

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

•

'" 6cchAcXY

6 cchA cXY[·]D]bg[·]

The Z32F0642 MCU has a Boot mode option to program internal Flash memory. Enter Boot mode by setting the BOOT pin to 'L' at reset timing. (Normal state is 'H').

Boot mode supports UART boot and SPI boot. UART boot uses the UART0 port, and SPI boot uses SPI. The pins for Boot mode are listed in Table 3-1.

6`cW_ [·]	D]b`BUaY	8]f	8 Yg ₩]dŀ]cb [°]
OVOTEM	nRESET/PC10	I	Reset Input signal
STSTEM	BOOT/PC11	I	'0' to enter Boot mode
	RXD0/PC14	I	UART Boot Receive Data
UARTU	TXD0/PC15	0	UART Boot Transmit Data
	SS/PA2	I	SPI Boot Slave Select
CDI	SCK/PA3	I	SPI Boot Clock Input
591	MOSI/PD2	I	SPI Boot Data Input
	MISO/PD3	0	SPI Boot Data Output

HUV`Y`' !%6 cchiAcXY`D]bg`

.

=GD[·]AcXY[·]7cbbYW[·]jcbg[·]

Users can design the target board using any ISP mode port.

:][ifY`'!'`=GD`UbX`9!D; AŽ`7cbbYWMjcb`8]U[fUa`

:][ifY`(!+`FYgYhHfYY`7cb2][ifUh]cb`

FG9F FYgYhGci fWY 9bUV Y FY[]ghYf

The reset source to the CPU can be selected using the RSER register. When writing '1' in the bit field of each reset source, the reset source event is transferred to the reset generator. When writing '0' in the bit field of each reset source, the reset source event is masked and does not generate the reset event.

RSER=0x40	00 0018	

7	6		5	4	3	2	1	0
LOCKUPRST	PINRST	СРІ	URST	SWRST	WDTRST	MCKFRST	MOFRST	LVDRST
0	1		1	0	1	0	0	1
RW	RW	R	w	RW	RW	RW	RW	RW
		7	LOCKI	JPRST	CPU Lock up reset 0 Reset from 1 Reset from	t enable bit this event is masl this event is enab	ked Iled	
		6	PINRS	Т	External pin reset	enable bit		
				_	0 Reset from	this event is masl	(ed	
					1 Reset from	this event is enab	led	
		5	CPUR	БТ _	CPU request reset	t enable bit		
				_	0 Reset from	this event is mas	ked	
				_	1 Reset from	this event is enab	led	
		4	SWRS	<u> </u>	Software reset en	able bit		
				-	U Reset from	this event is masi	ked	
		3	WDTR	ST	Watchdog Timer	reset enable hit	neu	
		5	WB III	_	0 Reset from	this event is mask	ed	
				-	1 Reset from	this event is enab	led	
		2	MCKF	RST	MCLK Clock fail re	eset enable bit		
				_	0 Reset from	this event is masl	(ed	
					1 Reset from	this event is enab	led	
		1	MOFR	ST	MOSC Clock fail re	eset enable bit		
				_	0 Reset from	this event is mas	ked	
				_	1 Reset from	this event is enab	led	
		0	LVDRS		LVD reset enable	bit		
					U Reset from	this event is mask	(ea	
					I Reset from	unis event is enac	neu	

A77F%A]gWY``UbYcig'7`cW_'7cbffc``FY[]ghYf'%

The Z32F0642 MCU can drive the clock from an internal MCLK clock with a dedicated post divider. STCSEL bits and STCDIV bits of MCCR1 are used as SYSTICK external clock sources. This register is a 32-bit register.

																										N	ICCR	1=0x	4000	_0090
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1 0
				Reserved								Reserved							Reserved			STCSEL					STCDIV			
				-								-							-			000					0x0	0		
				-								-							-			RW					RW	,		
									10 8 7	S	TCS	EL				SYST 000 100 101 110 111 SYST		Cloc LSI MC HSI MC Res Cloc	k sou LK SC ervea k N c	urce se	lect b	bit								
									U							0x00 0xN To cł	: (se ang	lecto e th	ed ed clo e val	ock) / ue, set	N 0x01	first	with	out	char	ngin	g ST(CSEL		

A77F&`A]gWY``UbYci g'7`cW_'7cblfc``FY[]ghYf`&`

The Z32F0642 MCU can drive the clock from an internal MCLK clock with a dedicated post divider. PWMCSEL bits and PWMDIV bits of MCCR2 are used as MPWM clock sources. If it is used as MPWM, it must set this register. This register is a 32-bit register.

																											м	CR2	=0x4	000_	0094
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				Reserved								Reserved										PWMCSEL									
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		000					0>	00			
																						RW					R	w			
								1 8 7 0	10 PWMCSEL 8 7 PWMDIV 0				P 0 1 1 1 1 0 0 0 T	WM 00 01 10 11 WM x00 xN : o ch	I Clor I I I Clor : dis (sele ange	ck so LSI MCL HSI MOS Rese ck N able ecte	K SC divi d clo e valu	e sel d der ock) ue, s	ect I	oit x0 fir	rst w	vitho	out c	hanį	ging	PWI	VICS	EL			

When the debounce functions of input data are used by the Debounce Enable register, the external input data is captured by the Debounce CLK.

- If CNT Value is "01", Debounced Input Data is "1"
- If CNT Value is "10", Debounced Input Data is "0"

It is possible to change the Debounce CLK of each port group used by the MCCR4~5 register.

:][ifY`)!)"8YVcibWY`@c[]W`

:][ifY`)!*"Dcfh8YVcibWY`9IUad`Y`

Db'6 GF DC F H'b'6]hGYhF Y[]ghYf

Pn.BSR is a register for controlling each bit of the Pn.ODR register. Writing a '1' into the specific bit will set a corresponding bit of Pn.ODR to '1'. Writing '0' in this register has no effect.

											PA.BSR	=0x4000_	2008, PB	.BSR=0x4	000_2108
											PC.BSR	=0x4000_	2208, PD	.BSR=0x4	000_2308
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							B	SR							
							00	00							
							v	10							
•															
					BSR		F	in curre	nt level						
							C) Not	t effect						
							1	Set	correspo	ondent l	oit in Pn.(DDR regi	ster		

Db'67F'DCFH'b'6]h7`YUF'FY[]ghYf'

Pn.BCR is a register for controlling each bit of the Pn.ODR register. Writing a '1' into the specific bit will set a corresponding bit of Pn.ODR to '0'. Writing '0' in this register has no effect.

FY[]gh¥fg[·]

The base address of the Flash Memory Controller is listed in Table 7-1.

HUV`Y`+!%: `Ug\ `A Ya cfmi7 cblfc``Yf`6 UgY'5 XXfYgg`

NAME	BASE ADDRESS
Flash Controller	0x4000_0100

Table 7-2 shows the Register memory map.

B5 A 9 ⁻	C::G9H	HMD9 [·]	89G7F=DH=CB	F9G9H J5@9'
FM.MR	0x0004	RW	Flash Memory Mode Select register	0x01000000
FM.CR	0x0008	RW	Flash Memory Control register	0x05000000
FM.AR	0x000C	RW	Flash Memory Address register	0x00000000
FM.DR	0x0010	RW	Flash Memory Data register	0x00000000
FM.TMR	0x0014	RW	Flash Memory Timer register	0x00018FFF
FM.TICK	0x001C	R	Flash Memory Tick Timer	0x00000000
FM.CRC	0x0020	R	Flash CRC16 check value	0x00000000
FM.CFG	0x0030	RW	Flash Memory Configuration value	0x00008200
FM.HWID	0x0040	R	Second HW ID for AC30M1x64/1x32	0x30146400
BOOTCR	0x0074	RW	Boot ROM clear, SRAM Remap register	0x0000000
FM.WPROT	0x0078	RW	Write Protection register	0x00FFFF00
FM.RPROT	0x007C	RW	Read Protection register	0x000000FF

HUV`Y`+!&`: A7 `F Y[]ghYf `A Ud`

- "KUHW[!8c['H]aYf'fK8HL'

Cj Yfj]Yk [·]

The Watchdog timer can monitor the system and generate an interrupt or a reset. It has a 32-bit down-counter.

- 32-bit down counter (WDT.CNT)
- Select reset or periodic interrupt
- Count clock selection
- Dedicated pre-scaler
- Watchdog underflow output signal

:][i fY'- !%K 8 H'6`cW_'8]U[fUa '

FY[]ghYfg⁻

The base address of watchdog timer is 0x4000_0200 and the register map is described in Table 9-2. Initial watchdog time-out period is set to 2,000-miliseconds.

|--|

B5A9 ⁻	65G9588F9GG
WDT	0x4000_0200

WDT	0x4000_0200

B5 A 9 ⁻	C::G9H	HMD9 [·]	89G7F=DH=CB	F9G9H'J5@9'
WDT.LR	0x0000	W	WDT Load register	0x00000000
WDT.CNT	0x0004	R	WDT Current counter register	0x00000000
WDT.CON	0x0008	RW	WDT Control register	0x0000805C

:ibWijcbU'8YgWjdhjcb

The watchdog timer count can be enabled by setting WDTEN (WDT.CON[4]) to '1'. As the watchdog timer is enabled, the down counter starts counting from the Load Value. If WDTRE (WDT.CON[6]) is set as '1', WDT reset will be asserted when the WDT counter value reaches '0' (underflow event) from the WDT.LR value. Before the WDT counter goes down to 0, the software can write a certain value to the WDT.LR register to reload the WDT counter.

Hja jb['8 jU[fUa '

:][ifY`-!&`H]a]b[`8]U[fUa`]b`=bhYffidh`AcXY`CdYfUh]cb`k \Yb`K 8H`7`cW_`]g`9IhYfbU`7`cW_`

In WDT interrupt mode, after WDT underflow occurs, a certain count value is reloaded to prevent the next WDT interrupt in a short time period and this reloading action can only be activated when the watchdog timer counter is set to be in Interrupt mode (set WDTIE of WDT.CON). It takes up to 5 cycles from the Load value to the CNT value. The WDT interrupt signal and CNT value data might be delayed by a maximum of 2 system bus clocks in synchronous logic.

Df YgWU Y'HUV'Y'

The WDT includes a 32-bit down counter with programmable pre-scaler to define different time-out intervals.

The clock sources of the watchdog timer include the peripheral clock (PCLK) or one of five external clock sources. An external clock source can be enabled by setting CKSEL (WDT.CON[3]) to '1'. The external clock source is chosen in the MCCR3 register of the SCU (system control unit) block.

To make the WDT counter base clock, users can control 3-bit pre-scaler WPRS [2:0] in the WDT.CON register and the maximum pre-scaled value is "clock source frequency/256". The pre-scaled WDT counter clock frequency values are listed in following table.

Selectable clock source (40 kHz ~ 16 MHz) and the time out interval when 1 count Time out period = {(Load Value) * (1/pre-scaled WDT counter clock frequency) + max 5Text} + max 4Tclk

*Time out period (time out period from load Value to interrupt set '1')

FY[]ghYfg[·]

The base address of UART is 0x4000_8000 and the register map is described in Table 12-2 and Table 12-3.

HUV`Y`%&!&`6 UgY`5 XXfYgg`cZ9 UW(`Dcfh

B5 A 9 ⁻	6 5 G9 5 8 8 F 9 GG
UO	0x4000_8000
U1	0x4000_8100

HUV`Y`%&!' `I 5 F H`F Y[]ghYf `A Ud`

B5 A 9 ⁻	C::G9H	HMD9 [°]	89G7F=DH=CB	F9G9H J5@99
Un.RBR	0x00	R	Receive Data Buffer Register	0x00
Un.THR	0x00	W	Transmit Data Hold Register	0x00
Un.IER	0x04	RW	Interrupt Enable Register	0x00
Un.IIR	0x08	R	Interrupt ID Register	0x01
-	0x08	-	Reserved	-
Un.LCR	0x0C	RW	Line Control Register	0x00
Un.DCR	0x10	RW	Data Control Register	
Un.LSR	0x14	R	Line Status Register	0x00
-	0x18	-	Reserved	-
Un.SCR	0x1C	RW	Scratch Pad Register	0x00
Un.BDR	0x20	RW	Baud rate Divisor Latch Register	0x0000
Un.BFR	0x24	RW	Baud rate Fractional Counter Value	0x00
Un.IDTR	0x30	RW	Inter-frame Delay Time Register	0x80

I b'F6F'FYWY]jY'6iZ2Yf'FY[]ghYf'

The UART Receive Buffer register is an 8-bit read-only register. Received data is read out from this register. The maximum length of data is 8 bits. The last data received will be maintained in this register until a new byte is received.

I b'6: F`6Ui X`FUhY`: fUWN]cb'7ci bhYf`FY[]ghYf`

The Baud Rate Fraction Counter register is an 8-bit register.

					U0.BFR	=0x4000_8024, U1.	BFR=0x4000_8124
7	6	5	4	3	2	1	0
			BFI	2			
			0x0	0			
			RW	I			
		7 BFR	Fr	actions counter	r value.		
		0	0	Fraction co	unter is disabled		
			N	Fraction co	unter enabled. F Fraction counter	raction compensation is incremented by	ation mode is

HUV`Y`%&!+`9|Uad`Y`cZ6UiX`FUhY`7UWi`Uhjcb`

I5FH _{₩c₩} [·] 1(\$ [•] A <n<sup>·</n<sup>						
6 UiX 'fUhY'	8]j]XYf [.]	: 7 BH	9ffcf`fl 분			
1200	2083	85	0.00%			
2400	1041	170	0.00%			
4800	520	213	0.00%			
9600	260	106	0.00%			
19200	130	53	0.00%			
38400	65	262	0.00%			
57600	43	103	0.00%			
115200	21	179	0.01%			

FCNT = Float * 256

The FCNT value is calculated using the equation above. For example, when the target baud rate is 4800 bps and UART_{clock} is 40MHz, the BDR value is 520.8333. The integer number 520 should be the BDR value and the floating number 0.8333 will result in the FCNT value of 213, as shown below:

FCNT = 0.8333 * 256 = 213.3333, so the FCNT value is 213.

The 8-bit fractional counter will count up by FCNT value every (baud rate)/16 periods and when the fractional counter overflows, the divisor value increments by 1. Therefore, this period will be compensated. In the next period, the divisor value will return to the original set value.

:][ifY`%&!'`GUad`]b[`H]a]b[`cZI5FH`FYWY]jYf`

BchY. It is recommended to enable debounce settings in the PCU block to reinforce the immunity of external glitch noise.

HfUbga]hhYf

The transmitter's function is to transmit data. The start bit, data bits, optional parity bit, and stop bit are serially shifted, with the least significant bit first. The number of data bits is selected in the DLAN[1:0] field in the Un.LCR register.

The parity bit is set according to the PARITY and PEN bit field in the Un.LCR register. If the parity type is even, then the parity bit depends on the one bit sum of all data bits. For odd parity, the parity bit is the inverted sum of all data bits.

The number of stop bits is selected in the STOPBIT field in the Un.LCR register.

An example of transmit data format is shown in Figure 12-4.

:][ifY`%&!(`HfUbga]h8UhU:cfaUh9IUad`Y`

=bhYf!ZtUa Y`8 Y`UmHfUbga]gg]cb`

The inter-frame delay function allows the transmitter to insert an Idle state on the TXD line between two characters. The width of the Idle state is defined in the WAITVAL field in the Un.IDTR register. When this field is set to 0, no time-delay is generated. Otherwise, the transmitter holds a high level on TXD after each transmitted character during the number of bit periods defined in the WATIVAL field.

:][ifY`%&!)`=bhYf!ZtUaY`8Y`UmiH]a]b[`8]U[fUa`

HfUbga]hi=bh¥ffidhi

The transmit operation creates interrupt flags. When the Transmitter Holding register is empty, the THRE interrupt flag will be set. When the Transmitter Shifter register is empty, the TXE interrupt flag will be set. Users can select which interrupt timing is best for the application.

:][i fY`%&!* `HfUbga]h=bhYffi dh'H]a]b[`8]U[fUa `

D]b^{*}8 YgW]dh]cb^{*}

HUV`Y`%(!%=^{\$}7`+bhYfZJWY`91 hYfbU`D]bg`

D=B`B5A9`	HMD9	89G7F=DH=CB
SCL	I/O	I ² C channel Serial clock bus line (open-drain)
SDA	I/O	I ² C channel Serial data bus line (open-drain)

FY[]ghYfg[·]

The base address of I^2C is 0x4000_A000. The register map is described in Table 14-2 and Table 14-3.

HUV`Y`%(!&`=^{\$}7 `=bhYfZUWY`6 UgY`5 XXfYgg`

B5 A 9 [·]	6 5 G9 5 8 8 F 9 GG
I ² C	0x4000 A000

HUV`Y`%{ !' `≜7 `F Y[]ghYf `A Ud`

B5 A 9 ⁻	C::G9H	HMD9 [°]	F9G9H [°] J5@P9 [°]	
IC.DR	0x00	RW	I ² C Data Register	0xFF
IC.SR	0x08	R, RW	I ² C Status Register	0x00
IC.SAR	0x0C	RW	I ² C Slave Address Register	0x00
IC.CR	0x14	RW	I ² C Control Register	0x00
IC.SCLL	0x18	RW	I ² C SCL LOW duration Register	0xFFFF
IC.SCLH	0x1C	RW	I ² C SCL HIGH duration Register	0xFFFF
IC.SDH	0x20	RW	I ² C SDA Hold Register	0x7F

A D'8 K @A DK A '8 i hmiK @F Y[]ghYf '

The PWM WL channel duty register is a 16-bit register.

													MP.C	OWL=0x4	000_4024
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							DU	TΥ							
	0x0001														
							R	w							
I															
				15	DUT	Υ	1	6-bit PW	/M Duty	for WL o	output.				
				It should be larger than 0x0001											
				0 (if Duty is 0x0000, PWM will not work)											

A D'+9 F `A DK A `+bhYffi dh'9 bUV`Y`F Y[]ghYf`

The PWM Interrupt Enable Register is an 8-bit register.

MP.IER=0x4000_4034

7	6	5	4	3	2	1	0
PRDIEN	BOTIEN	WHIE	VHIE	UHIE	WLIE	VLIE	ULIE
0	0	0	0	0	0	0	0
RW	RW	RW	RW	RW	RW	RW	RW

7	PRDIEN	PWM Counter Period Interrupt enable
		0 interrupt disable
		1 interrupt enable
6	BOTIEN	PWM Counter Bottom Interrupt enable
		0 interrupt disable
		1 interrupt enable
5	WHIE	WH Duty or ATR6 Match Interrupt enable
	ATR6IE	0 interrupt disable
		1 interrupt enable
4	VHIE	VH Duty or ATR5 Match Interrupt enable
	ATR5IE	0 interrupt disable
		1 interrupt enable
3	UHIE	UH Duty or ATR4 Match Interrupt enable
	ATR4IE	0 interrupt disable
		1 interrupt enable
2	WLIE	WL Duty or ATR3 Match Interrupt enable
	ATR3IE	0 interrupt disable
		1 interrupt enable
1	VLIE	VL Duty or ATR2 Match Interrupt enable
	ATR2IE	0 interrupt disable
		1 interrupt enable
0	ULIE	UL Duty or ATR1 Match Interrupt enable
	ATR1IE	0 interrupt disable
		1 interrupt enable

A chcf[·]DK A[·]%7\UbbY[·]5gma a Yhf]WAcXY[·]H]a]b[[·]

The 1-Channel Asymmetric mode makes asymmetric duration pulses which are defined by the H-side and Lside duty register. Therefore, the L-side signal is always the negative signal of H-side. During up count period, the H-side duty register matching condition makes the active level pulse and during down count period, the Lside duty register matching condition makes the default level pulse.

:][ifY`%)"&`%7\UbbY`5gmaaYhf]WAcXY`KUjYZcfa`fACHCF61\$žA7<AC81\$%L

The default start level of both H-side and L-side is low. For the H-side, the PWM output level is changed to active level when the H-side duty level is matched in up count period and is returned to the default level when the L-side duty level is matched in down count period.

When the PSTART is set, the L-side PWM output is changed to the active level, then the L-side PWM output is the inverse output of H-side output.

Gma a Yhf]WUʿAcXYʿjgʿ5gma a Yhf]WUʿAcXYʿ

In Symmetrical mode, the wave form is between the up and down counters. The same duty value is used for both the up and down counter matches. The on time and off time is the same between the up and down counters. The end result is that in a period, the duty time is centered in the period.

:][ifY`%)!%(`GmaaYhf]WU`DKA`H]a]b[`

In Asymmetrical mode, the wave from is not symmetric between the up and down counters. The Duty High is used to match on the up counter and the Duty Low is used to match on the down counter.

:][ifY'%)!%) 5 gma a Yhf]WU DK A Hja]b[UbX'GYbg]b[A Uf[]b

:][ifY`%)!%+`5 b`9IUad`Y`cZ587`5Wei]g]h]cb`H]a]b[`Vm9jYbhZica`ADKA`

587 GYei YbhjU 7 cbj Yfg]cb A c XY Hja]b[8 JU[fUa

Single Sequential Conversion mode (Single Sequential mode) occurs when AD.MR.ADMOD is 0x0 and AD.MR.SEQCNT is not 0x0. To set Sequential Conversion mode, AD.MR.AMOD is 2'b00 and AD.MR.SEQCNT is not 2'b00.

The operation of Sequential mode is almost the same as the Burst mode. The difference is the source of SOC. Each SOC is made by the trigger of SEQTRGx as each SEQCNT. See Figure 17-5.

:][ifY`%+!)`587`GYeiYbh]U`AcXY`H]a]b[`fK\Yb`58"AF"5AC8`1'Ï\$`UbX`58"AF"G9E7BH©` Ï\$B2

