

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LVD, POR, PWM, WDT
Number of I/O	48
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z32f12811ars

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 1.3. Pin Layout (LQFP-64)

			1		
29	_	PD8	IOUS	PORT D Bit 8 Input/Output	
		WDTO	Output	WDT Output	
30	_	PD9	IOUS	PORT D Bit 9 Input/Output	
		STBYO	Output	Power-down mode indication signal	
41	33	VDD	Р	VDD	
42	34	GND	Р	Ground	
		PB9	IOUS	PORT B Bit 9 Input/Output	
43	35	OVIN1	Input	PWM1 Over-voltage Input signal 1	
		TXD3	Output	UART3 TXD Output	
44	36	PB10	IOUS	PORT B Bit 10 Input/Output	
	50	PWM1H0	Output	PWM Channel 1 Phase 0 H-side Output	
45	37	PB11	IOUS	PORT B Bit 11 Input/Output	
45	57	PWM1L0	Output	PWM Channel 1 Phase 0 L-side Output	
46	38	PB12	IOUS	PORT B Bit 12 Input/Output	
40	50	PWM1H1	Output	PWM Channel 1 Phase 1 H-side Output	
47	20	PB13	IOUS	PORT B Bit 13 Input/Output	
47	33	PWM1L1	Output	PWM Channel 1 Phase 1 L-side Output	
19	40	PB14	IOUS	PORT B Bit 14 Input/Output	
40	40	PWM1H2	Output	PWM Channel 1 Phase 2 H-side Output	
10	/11	PB15	IOUS	PORT B Bit 15 Input/Output	
49	41	PWM1L2	Output	PWM Channel 1 Phase 2 L-side Output	
50	42	GND	Р	Ground	
51	43	VDD	Р	VDD	
50	44	PCO	IOUS	PORT C Bit 0 Input/Output	
52	44	TCK/SWCK	Input	JTAG TCK, SWD Clock Input	
52	45	PC1	IOUS	PORT C Bit 1 Input/Output	
	45	TMS/SWDIO	I/O	JTAG TMS, SWD Data Input/Output	
		PD10	IOUS	PORT D Bit 10 Input/Output	
54	-	AD0SOC	Output	ADC0 Start-of-Conversion	
		тос/рна	Input	Timer 0 Clock/Capture/Phase-A Input	
		PD11	IOUS	PORT D Bit 10 Input/Output	
55	-	AD0EOC	Output	ADC0 End-of-Conversion	
		Т1С/РНВ	Input	Timer 1 Clock/Capture/Phase-B Input	
56	46	NMI	Input	Non-maskable Interrupt Input	
		PD12	IOUS	PORT D Bit 12 Input/Output	
57	-	AD1SOC	Output	ADC1 Start-of-Conversion	
		T2C/PHZ0	Input	Timer 2 Clock/Capture/Phase-Z Input	
		PD13	IOUS	PORT D Bit 13 Input/Output	
58	-	AD1EOC	Output	ADC1 End-of-Conversion	
		T3C	Input	Timer 3 Clock/Capture Input	
59	47	VDD	Р	VDD	
60	48	GND	Р	Ground	
61	10	PC2	IOUS	PORT C Bit 2 Input/Output	
01	49	TDO/SWO	Output	JTAG TDO, SWO Output	
62	50	PC3	IOUS	PORT C Bit 3 Input/Output	
02	50	TDI	Input	JTAG TDI Input	
		PC4	IOUS	PORT C Bit 4Input/Output	
63	51	nTRST	Input	JTAG nTRST Input	
		ТОС/РНА	Input	Timer 0 Clock/Capture/Phase-A Input	
		PC5	IOUS	PORT C Bit 5Input/Output	
64	52	RXD1	Input	UART1 RXD Input	
		T1C/PHB	Input	Timer 1 Clock/Capture/Phase-B Input	
65	53	PC6	IOUS	PORT C Bit 6Input/Output	

		TXD1	Output	UART1 TXD Output	
		T2C/PHZ	Input	Timer 2 Clock/Capture/Phase-Z Input	
		PC7	IOUS	PORT C Bit 7Input/Output	
66	54	SCL0	Output	I ² C Channel 0 SCL In/Out	
		T3C	Input	Timer 3 Clock/Capture input	
67		PC8	IOUS	PORT C Bit 8 Input/Output	
67	55	SDA0	Output	I ² C Channel 0 SDA In/Out	
		PC9	IOUS	PORT C Bit 9 Input/Output	
68	56	CLKO	Output	System Clock Output	
		Т8О	Output	Timer 8 Output	
60	F7	PC10	IOUS	PORT C Bit 10 Input/Output	
69	57	nRESET	Input	External Reset Input	Pull-up
		PC11	IOUS	PORT C Bit 11 Input/Output	
70	58	BOOT	Input	Boot mode Selection Input	
		T8C	Input	Timer 8 Clock/Capture Input	
71		PD14	IOUS	PORT D Bit 14 Input/Output	
/1	-	AD2SOC	Output	ADC2 Start-of-Conversion Output signal	
70		TD15	IOUS	PORT D Bit 15 Input/Output	
12	-	AD2EOC	Output	ADC2 Start-of-Conversion Output signal	
		PC15	IOUS	PORT C Bit 14 Input/Output	
73	59	TXD0	Output	UART0 TXD Output	
		MISO0	I/O	SPI0 Master-Input/Slave-Output	
		PC14	IOUS	PORT C Bit 14 Input/Output	
74	60	RXD0	Input	UARTO RXD Input	
74	60	MOSI0	I/O	SPI0 Master-Output/Slave-Input	
		VMARGIN	OA	Not used. (test purpose)	
75	64	PC13	IOUS	PORT C Bit 13 Input/Output	
75	61	XOUT	OA	External Crystal Oscillator Output	
70	62	PC12	IOUS	PORT C Bit 12 Input/Output	
76	62	XIN	IA	External Crystal Oscillator Input	
		PD0	IOUS	PORT D Bit 0 Input/Output	
//	-	SS1	I/O	SPI1 Slave Select	
70		PD1	IOUS	PORT D Bit 1 Input/Output	
78	-	SCK1	I/O	SPI1 Clock Input/Output	

*Notation: I=Input, O=Output, U=Pull-up, D=Pull-down, S=Schmitt-Trigger Input Type, C=CMOS Input Type, A=Analog, P=Power

(*) Selected pin function after reset condition

Pin order may be changed with revision notice

3. Boot Mode

Boot Mode Pins

The Z32F1281 MCU has a Boot Mode option to program internal Flash memory. When the BOOT pin is pulled low, the system will start up in the BOOT area ($0 \times 1 \text{FFF}_{0000}$) instead of the default Flash area ($0 \times 0000_{0000}$). This provides the ability to flash the part using either UART or SPI interfaces. The BOOT pin has an internal pull up resistor. Therefore, when the BOOT pin is not connected, it rides high (normal state).

Boot Mode uses the UART0 port and the SPI0 ports for the interface. The JTAG and SW interfaces can also be used, which provide the ability to recover from a bad Flash update that prevents the JTAG or SW debugger from attaching.

The pins for Boot Mode are listed in Table 3.1.

Block	Pin Name	Dir	Description
evetem	nRESET/PC10	I	Reset Input signal
STOTEIN	BOOT/PC11	I	'0' to enter Boot mode
	RXD0/PC14	I	UART Boot Receive Data
UARTU	TXD0/PC15	0	UART Boot Transmit Data
	SS0/PA12	I	SPI Boot Slave Select
SDIO	SCK0/PA13	I	SPI Boot Clock Input
500	MOSI0/PA14	I	SPI Boot Data Input
	MISO0/PA15	0	SPI Boot Data Output

Table 3.1. Boot Mode Pin List

RSER Reset Source Enable Register

The reset source which will generate the reset event can be selected by the RSER register. Write **1** in the bit field of each reset source to transfer the reset source event to the reset generator. Write **0** in the bit field of each reset source to mask the reset source event, and therefore, not generate the reset event.

RSER=0x4000_0018

7	6		5	4	3	2	1	0							
	PINRST	CPI	URST	SWRST	WDTRST	MCKFRST	XFRST	LVDRST							
0	1		0	0	1	0	0	1							
	RW	F	RW	RW	RW	RW	RW	RW							
		6	PINRS	T	External pin reset enable bit 0 Reset from this event is masked 1 Reset from this event is enabled										
		5	CPUR	ST	CPU request reset enable bit 0 Reset from this event is masked 1 Reset from this event is enabled										
		4	SWRS	T <u>-</u>	Software reset enable bit 0 Reset from this event is masked 1 Reset from this event is enabled										
		3	WDTF	RST	Watchdog Timer D Reset from L Reset from	reset enable bit this event is mas this event is ena	sked bled								
		2	MCKF	RST	MCLK Clock fail reset enable bit 0 Reset from this event is masked 1 Reset from this event is enabled										
		1	XFRST		External OSC Clo D Reset from I Reset from	ck fail reset enab this event is mas this event is ena	ble bit sked bled								
		0	LVDR	ST	LVD reset enable D Reset from I Reset from	bit this event is mas this event is ena	sked bled								

PER2 Peripheral Enable Register 2

To use a peripheral unit, it should be activated by writing 1 to the corresponding bit in the PER1/2 register. Prior to activation, the peripheral stays in reset state.

To disable the peripheral unit, write $\mathbf{0}$ to the corresponding bit in the PER0/1 register, after which the peripheral enters the reset state.

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
								AFE	ADC2	ADC1	ADC0			MPWM1	MWPM0					UART3	UART2	UART1	UART0			12C1	12C0			SP11	SPI0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1
								RW	RW	RW	RW			RW	RW					RW	RV	RW	RW			RW	RW			RW	RW
ļ																															
								2	3	AFE AFE function enable																					
								2	2	A	DC2				A	DC2	2 fur	ictio	n er	nable	е										
								2	1	A	DC1				A	DC1	l fur	ictio	n er	nable	e										
								2	0	A	DC0				A	DC) fur	ictio	n er	nable	e										_
								1	7	М	PW	M1			Ν	1PW	/M1	fund	ctior	1 ena	able										
								1	6	М	PW	M0			Ν	1PW	/M0	fund	ctior	1 ena	able										
								1	1	U	ART	3			U	JART	Γ3 fι	incti	ion e	enab	le										
									0	UART2 UART2 function enable																					
								9		UART1 UART1 function enable																					
								8		U.	ART	0			<u> </u>		$\frac{10}{6}$	inct	ion e	enab	le										
								5		12					- I'		func	tion	ena	ble											
								4		12 SI	011				14 5	DI1	func	tion	ena	blo											
								0		SI	210				<u> </u>	PIO	fund	tior	i ena	able											

		1 TSL filed can be updated by writing
18	TSL[2:0]	TSL trim value
16		
15	LTEN	LTM/LT value write enable. Write only with LTM/LT value
		0 LT field is not updated by writing
		1 LT filed can be updated by writing
13	LTM/LT	Internal oscillator LT trim value
8		Not recommended strongly to write into this field
7	UDCEN	UDCH/UDCL value write enable. Write only with UDC value
		0 UDC field is not updated by writing
		1 UDC filed can be updated by writing
4	UDCH/UDCL	Internal oscillator UDC trim value
0		Not recommended strongly to write into this field

All trim bits are writable when Trim mode is enabled.

Figure 7.4. Page Erase Timing Diagram

Flash erase is done by the ERS.FM.CR command. A safe writing operation requires the correct program time. The tERS erase time is defined by the FM.TMR register. When the timer is activated (TIMER.FM.CR bit is set), the IDLE.FM.MR bit is cleared and the Flash controller will start counting the HCLK pulses until the pulse count matches the value in the FM.TMR. When the count is reached, the Flash controller will set the IDLE.FM.MR bit to show the time has elapsed.

Figure 7.5 shows the bulk erase operation.

Figure 7.5. Bulk Erase Timing Diagram

The Flash area can be read from directly via the memory address. Writing of Flash memory can be done through Boot mode or in-application programming. The execution for the writing of Flash must occur from the RAM area. The Flash controller cannot read Flash memory (including instructions) once the program bit has been set.

Caution: If the vector table is not placed in RAM, you MUST disable interrupts so as to prevent reading the interrupt service routine in Flash.

To write to Flash memory:

- 1. Disable the Watch Dog Timer (if enabled).
- 2. Set the clock to internal oscillator (20 MHz).
- 3. Write configuration sequence to the MR register to enable Control Register upper bits (24-31).
- 4. Configure upper bits of the Control Register (HRESPD and Flash access of 4 cycles).
- 5. Lock the Flash controller by writing 0×00 to the MR register.

TnCR2

Timer n Control Register 2

Timer Control Register 2 is an 8-bit register.

T0CR2=0x4000_3004, T1CR2=0x4000_302	24
T2CR2=0x4000_3044, T3CR2=0x4000_306	ô4
T8CR2=0x4000_3104, T9CR2=0x4000_312	24

7	6	5	4	3	2	1	0
						TCLR	TEN
0	0	0	0	0	0	0	0
R	R	R	R	R	R	wo	RW
		1 TCLF	<u>1</u> 	Fimer Count reg) No I Initialize ti This is writ	ister clear mer. If set to '1', o re-only.	count register w	ill be cleared.
		0 TEN	 	Cimer enable bit Disable time Enable time	er er		

TnPRS Timer n Prescaler Register

Timer Prescaler Register sets the pre-scale of the input clock for the timer counter.

TnGRA

Timer n General Register A

Timer General Register A is a 16-bit register.

										T0G T2G	RA=0x4 RA =0x4	000_3000 000_3040	C, T1GR C, T3GR	A=0x400 A=0x400	00_302C 00_306C
								1		T8G	RA=0x4	000_3100	C, T9GR	A=0x400	00_312C
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							G	RA							
							0x0	000							
							Б	\A/							
							n	**							
				15	GRA		r	'imer n	General	Register	· А				
				0	ului			Periodic	mode	Register					
							_	Period	value of	time int	ernal.				
							-	When	the cour	nter val	ue is m	atched v	vith thi	s value,	GRA
]	Match ir	terrupt	is reque	sted				
							I	WM mo	ode						
							-	Duty va	lue of PV	WM Out	put				
							-	When	the cour	nter val	ue is m	atched v	vith thi	s value,	GRA
								Match ir	iterrupt	is reque	sted				
							()ne-sho	t mode						
							-	One-sh	ot delay	timing ł	pefore ou	utput pul	se.		
							-	When	the cour	nter val	ue is m	atched v	vith thi	s value,	GRA
								Match ir	iterrupt	is reque	sted				
							(Capture	mode						
								- Falliı	ng edge o	of TnC p	ort will	capture t	he coun	t value v	when
							1	rising ec	lge clear	mode			_	_	
								- Risin	g edge o	f TnC p	ort will o	capture t	he coun	t value v	when
							1	falling e	dge cleai	• mode					

TnSR Timer n Status Register

Timer Status Register is a 16-bit register. This register indicates the current status of the timer module.

T0SR=0x4000_3018, T1SR=0x4000_3038
T2SR=0x4000_3058, T3SR=0x4000_3078
T8SR=0x4000_3118, T9SR=0x4000_3138

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					QDIR	QDIRCH	QRF						MFA	MFB	OVF
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
					RW	RW	RW						RW	RW	RW

10	QDIR	Current Direction
		0 Phase A leading Phase B (clockwise)
		1 Phase B leading Phase A (counterclockwise)
9	QDIRCH	Quadrature direction change
		0 No direction change
		1 Direction is changed. Write '1' to this bit for clear
8	QRF	Quadrature revolution flag
		0 No revolution flag
		1 Revolution flag is detected. Write '1' to this bit for clear
2	MFA	GRA Match flag
		0 Not match with GRA
		1 Match flag with GRA. Write '1' to this bit for clear
1	MFB	GRB Match flag
		0 Not match with GRB
		1 Match flag with GRB. Write '1' to this bit for clear
0	OVF	Counter overflow flag
		0 No overflow event
		1 Counter overflowed. Write '1' to this bit for clear

Figure 11.5. PWM Output Operation

The PWM pulse period can be calculated as follows:

The period = TMCLK Period * Tn.GRB value Match A interrupt time = TMCLK Period * Tn.GRA value

If Tn.GRB = 0, the timer cannot be started even if TnCR2.TEN is "1" because the period is "0".

The values in Tn.GRA and Tn.GRB are loaded into the internal compare data buffers 0 and 1 when the loading condition occurs. In this mode, the Tn.CR2.TCLR write operation and the GRB match event will load the data buffer.

The TnIO output signal generates a PWM pulse. The Tn.GRB value defines the output pulse period and the Tn.GRA value defines the pulse width of one shot pulse. The active level of PWM pulse can be controlled by the Tn.CR1.STARTLVL bit value.

ADC Trigger generation is available at Match A interrupt time.

Capture Mode

Figure 11.6 shows the timing diagram in capture mode operation. The TnIO input signal is used for the capture pulse. Both rising and falling edges can capture the counter values in each capture condition.

Figure 11.7. ADC Trigger Function Timing Diagram

Setup Example: Using the 16-bit Timer0 for Continuous Mode Operation

- 1. Enable the Timer0 peripheral by writing the appropriate value to the Peripheral Enable Register (PER1).
- 2. Enable the Timer0 peripheral clock by writing the appropriate value to the Peripheral Clock Enable Register (PCER).
- 3. Stop Timer0 before modifying the Timer0 registers by resetting bit0 in the Timer Control Register2 (TnCR2).
- 4. In Timer Control Register1 (TnCR1), write the appropriate value to enable the Timer0 Normal Period Operation Mode (e.g. 0x0000).
- 5. Write the appropriate Timer prescalar value to the Timer Prescalar Register (TnPRS).
- 6. Write the appropriate Timer count match value to the Timer General Register A (TnGRA) register. This timer count match value is compared to the actual count value in the Timer Count Register (TnCNT).
- 7. Write the appropriate value to Timer Interrupt Enable Register (TnIER) to enable or disable the Timer interrupt.
- 8. Start the Timer by setting bit0 and bit1; Timer Control Register2 (TnCR2) is enabled and initialized.

Note: Timer General Register A (TnGRA) is used for normal Timer operations. Timer General Register B (TnGRB) is used for Timer PWM modes.

UnTHR

Transmit Data Hold Register

The UART Transmit Data Hold Register is an 8-bit write-only register.

UnIER UART Interrupt Enable Register

The UART Interrupt Enable Register is an 8-bit register.

U0IER=0x4000_8004, U1IER=0x4000_8104 U2IER=0x4000_8204, U3IER=0x4000_8304

7	6	5	4	3	2	1	0
-	-	DTXIEN	DRXIEN	-	RLSIE	THREIE	DRIE
0	0	0	0	0	0	0	0
		RW	RW		RW	RW	RW

5	DTXIEN	DMA transmit done interrupt enable
		0 DMA transmit done interrupt is disabled
		1 DMA transmit done interrupt is enabled
4	DRXIEN	DMA receive done interrupt enable
		0 DMA receive done interrupt is disabled
		1 DMA receive done interrupt is enabled
2	RLSIE	Receiver line status interrupt enable
		0 Receive line status interrupt is disabled
		1 Receive line status interrupt is enabled
1	THREIE	Transmit holding register empty interrupt enable
		0 Transmit holding register empty interrupt is disabled
		1 Transmit holding register empty interrupt is enabled
0	DRIE	Data receive interrupt enable
		0 Data receive interrupt is disabled
		1 Data receive interrupt is enabled

SP*n*SR

SPI n Status Register

SPnSR is a 10-bit read/write register. It contains the status of the SPI interface.

										SP	0SR=0x4	4000_900	08, SP1S	SR=0x40	00_9108
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						TXDMAF	RXDMAF		SSDET	NOSS	OVRF	UDRF	TXIDLE	ткру	RRDY
0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0
		-				RC1	RC1		RC1	RC1	RC1	RC1	R	R	R
			9	TXDMA	VF <u>(</u>	DMA Trar DMA DMA	ismit Op A Transn A Transn	eration nit Op is nit Op is	Complet working done.	te flag. (g or is d	DMA to isabled.	SPI)			
		_	8	RXDMA	AF I	OMA Rece	eive Ope	ration C	omplete	flag. (Sl	PI to DM	A)			
					() DMA	A Receiv	e Operat	ion is w	orking o	or is disa	bled.			
		-			1	DMA	A Transn	nit Op is	done.						
		-	7	CODET	ł	Reserved	C . 11'				-+ (]				
			6	22DE I		ne rising	g or falli	ig eage	01 55 51g	nal Dete	ect flag.				
						<u> </u>	dge is no	etected	eu.						
					1	. 550	- T	he bit is	cleared	when it	is writte	en as "0".			
		-	5	SSON	5	S signal S	Status fla	ag.					-		
					() SS si	ignal is i	nactive.							
		_			1	SS s	ignal is a	ictive.							
			4	OVRF	H	Receive O	verrun I	Error fla	g.						
						Rece	eive Ove	rrun err	or is not	t detecte	ed.				
]	Rece	eive Ove	rrun err	or is det	tected.		a din a Cl	חחח ייים		
		-	2	IIDDE	7	ranemit	- II	n Error	flag	by writ	ing or re	eading Si	PIIKDK.		
			3	UDKI) Trar	smit IIn	derrun	is not or	curred					
					1	Trar	ismit Un	derrun	is occur	red.					
							- T]	his bit is	cleared	by writ	ing or re	ading Sl	PnTDR.		
		-	2	TXIDLE	3 _ 1	'ransmit _/	/Receive	Operati	on flag.						
					() SPI i	is transn	nitting d	ata						
		-			1	SPI i	is in IDL	E state.							
			1	TRDY		<u>ransmit</u>	buffer E	mpty fla	g.						
) Trar	ismit bu	ffer is bi	usy.						
						Irar	ISMIT DU	Her 15 re	eady. cleared	hy writ	ing data	to SPnT	פחי		
		-	0	RRDY	I	Receive h	- I	adv flag	cicaleu	by will	ing uala	w sr ii i	DR.		
			5			Rece	eive buff	er has n	o data.						
					1	Rece	eive buff	er has d	ata.						
		-					- T	his bit is	cleared	by read	ing data	to SPnF	RDR.		

ICnSAR

I²C Slave Address Register

ICnSAR is an 8-bit read/write register. It shows the address in slave mode.

1

					IC0SAR=0x40	00_A00C, IC1SA	AR=0x4000_A10C
7	6	5	4	3	2	1	0
			SVAD				GCEN
			0x00				0
			RW				RW
	7	SVAD	7-bit Slave Addr	ess			
	0	GCEN	General call ena	ble bit			
			0 General o	all is disabled.			

General call is enabled.

START/Repeated START/STOP

Within the procedure of the I²C-bus, unique situations arise which are defined as START(S) and STOP(P) conditions; see Figure 14.6.

An "H" to "L" transition on the SDA line while SCL is "H" is one such unique case. This situation indicates a START condition. An "L" to "H" transition on the SDA line while SCL is "H" defines a STOP condition.

START and STOP conditions are always generated by the master. The bus is considered to be busy after the START condition. The bus is considered to be free again a certain time after the STOP condition.

The bus is busy if a repeated START(Sr) is generated instead of a STOP condition. In this respect, the START(S) and repeated START(Sr) conditions are functionally identical. Therefore, for the remainder of this document, the S symbol will be used as a generic term to represent both the START and repeated START conditions, unless Sr is particularly relevant.

Detection of START and STOP conditions by devices connected to the bus is easy if they incorporate the necessary interfacing hardware. However, microcontrollers with no such interface have to sample the SDA line at least twice per clock period to sense the transition.

Figure 14.6. START and STOP Condition

CMP0CR=0x4000_B320,CMP1CR =0x4000_B324

OPAnCR

OPAMP 0/1/2/3 Control Registers

Analog-front-end OPAMP 0/1/2/3 Control Registers are 8-bit registers. All four registers (AFEOPA0~AFEOPA3) have the same functions.

					OPA0CR=0x40 OPA2CR =0x40	00_B300, OPA10 00_B308, OPA3C	R =0x4000_B304 R =0x4000_B30C
7	6	5	4	3	2	1	0
			OPAEN		G	AIN	
0	0	0	0		(0x0	
			RW		1	RW	
		4 OP	AEN <u>0</u>	OPAMP n Dis	sable		
			1	OPAMP n En	able		
		3 GA	N 0000	Gain = 2.19	100	0 Gain = 4.3	7
		0	0001	Gain = 2.33	100	1 Gain = 5.0	
			0010) Gain = 2.5	101	0 Gain = 5.83	3
			0011	Gain = 2.69	101	1 Gain = 7.0	
			0100	Gain = 2.92	110	0 Gain = 8.74	1
			0101	Gain = 3.18	110	1 Reserved	
			0110	Gain = 3.5	111	0 Reserved	
			0111	Gain = 3.89	111	1 Gain = 1.0	0

CMPnCR Comparator 0/1/2/3 Control Register

Analog-front-end Comparator0/1/2/3 Control Registers are 8-bit registers. All four registers (AFECOMP0~AFECOMP3) have the same functions.

					С	MP2CR =0x400	00_B328, CMP3CF	R =0x4000_B32C	,
7	6	5	4		3	2	1	0	
			CMPEN	I			CINSEL	REFSEL	
0	0	0	1		0	0	0	0	
			RW				RW	RW	
		4	CMPEN	0	Compara	ator 0~3 Enab	le		
				1	Compara	ator 0~3 Disał	ole		
		1	CINSEL		Compara	ator input sele	ction		
				0	Input fro	om OPAMP 0~	3 each		
				1	Input fro	om external pi	n		
					(see pin	mux table)			
		0	REFSEL		Compara	ator reference	selection		
				0	Reserve	d			
				1	REF inp	ut from extern	al pin		
					(see pin	mux table)			

When OPAMP is disabled, the OPAMP output is unknown (floating). Therefore, the user should set (write 1) CINSELx to choose the external input when OPAMP is an inactive state.

Current Consumption

Parameter	Symbol	Condition	Min	Тур.	Max	unit
Normal Operation		ROSC=RUN IOSC20=RUN MXOSC=8MHz HCLK=72MHz	-	35	-	mA
Sleep Mode	IDD _{SLEEP}	ROSC=RUN IOSC20=RUN MXOSC=STOP HCLK =RUN	-	3	-	mA

Table 18.4. Current Consumption in Each Mode (Temperature: +25°C)

POR Electrical Characteristics

Table 18.5. POR Electrical Characteristics (Temperature: -40 ~ +85 ℃)

Parameter	Symbol	Condition	Min	Тур.	Max	unit
Operating Voltage	VDD18		1.6	1.8	2.0	V
Operating Current	IDD _{PoR}	Typ. <6uA If always on	-	60	-	nA
POR Set Level	VR _{PoR}	VDD rising (slow)	1.3	1.4	1.55	V
POR Reset Level	VFPOR	VDD falling (slow)	1.1	1.2	1.4	V

LVD Electrical Characteristics

Table 18.6. LVD Electrical Characteristics (Temperature: -40 ~ +85 $^{\circ}$ C)

Parameter	Symbol	Condition	Min	Тур.	Мах	unit
Operating Voltage	VDD		1.7		5	V
Operating Current	IDD _{LVD}	Typ. <6uA when always on	-	1	-	mA
LVD Set Level 0	VLVD0	VDD falling (slow)	1.6	1.8	2.0	V
LVD Set Level 1	VLVD1	VDD falling (slow)	2.0	2.2	2.5	V
LVD Set Level 2	VLVD2	VDD falling (slow)	2.5	2.7	3.0	V
LVD Set Level 3	VLVD3	VDD falling (slow)	3.9	4.3	4.6	V

OP-Amp Electrical Characteristics

Parameter	Symbol	Condition	Min	Тур.	Max	unit
Operating Voltage	AVDD		3.0	5	5.5	V
Operating Current	IDDA				2.2	mA
Analog Input Range			0		AVDD-1.4	V
Slew Rate		@ CL = 20pF		15		V/us
Gain Error		Gain=2.19~4.3 7	-3		+3	%
		Gain=5.0~8.74	-4		+4	%
Common Mode Rejection Ratio			50	70		dB
Power Supply Rejection Ratio			40	70		dB
Gain Bandwidth		@CL=20pF		16		MHz
Open Loop Voltage Gain				100		dB
Open Loop Phase Margin		@CL=20pF		45		o
Closed Loop Phase Margin				70		o
Turn On time				2		us
Gain			2.19		8.74	

Table 18.12. ADC Electrical Characteristics (Temperature: -40 ~ +85 °C)

Comparator Electrical Characteristics

Table 18.13. Comparator Electrical Characteristics (Temperature: -40 ~ +85 °C)

Parameter	Symbol	Condition	Min	Тур.	Max	unit
Operating Voltage	AVDD		3.0	5	5.5	V
Analog Input Range	VIN		AVSS		AVDD	V
Reference Input Range	VREF		0.9		AVDD-0.2	V
Input Offset Voltage			-4		+4	%
Response Time					1	us