E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	FlexIO, I ² C, IrDA, SPI, UART/USART
Peripherals	DMA, PWM, WDT
Number of I/O	70
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 20x16b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-FQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mkl13z64vlk4

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Туре Description Resource Reference The Reference Manual contains a comprehensive description of the KL13P80M48SF3RM1 structure and function (operation) of a device. Manual Data Sheet The Data Sheet includes electrical characteristics and signal This document. connections. The chip mask set Errata provides additional or corrective information for KINETIS_L_0N01P1 Chip Errata a particular device mask set. Package Package dimensions are provided in package drawings. • 64-LQFP: 98ASS23234W1 drawing • 64 MAPBGA: 98ASA00420D1 48 QFN: 98ASA00616D¹ 80 LQFP: 98ASS23174W¹ • 32 QFN: 98ASA00615D1

Related Resources (continued)

1. To find the associated resource, go to http://www.freescale.com and perform a search using this term.

1.4 Voltage and current operating ratings

 Table 4.
 Voltage and current operating ratings

Symbol	Description	Min.	Max.	Unit
V _{DD}	Digital supply voltage	-0.3	3.8	V
I _{DD}	Digital supply current	—	120	mA
V _{IO}	IO pin input voltage	-0.3	V _{DD} + 0.3	V
۱ _D	Instantaneous maximum current single pin limit (applies to all port pins)	-25	25	mA
V _{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V

2 General

2.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

The midpoint is V_{IL} + (V_{IH} - V_{IL}) / 2

Figure 1. Input signal measurement reference

All digital I/O switching characteristics, unless otherwise specified, assume that the output pins have the following characteristics.

- $C_L=30 \text{ pF loads}$
- Slew rate disabled
- Normal drive strength

2.2 Nonswitching electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	 VLPS → RUN 					
		—	7.5	8	μs	
	• STOP → RUN					
			7.5	8	μs	

 Table 8. Power mode transition operating behaviors (continued)

1. Normal boot (FTFA_FOPT[LPBOOT]=11)

2.2.5 Power consumption operating behaviors

The maximum values stated in the following table represent characterized results equivalent to the mean plus three times the standard deviation (mean + 3 sigma).

NOTE

The while (1) test is executed with flash cache enabled.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DDA}	Analog supply current	_	—	See note	mA	1
I _{DD_RUNCO}	Running CoreMark in flash in compute operation mode—48M HIRC mode, 48 MHz core / 24 MHz flash, V _{DD} = 3.0 V					2
	• at 25 °C	—	4.74	4.93	mA	
	• at 105 °C	—	4.9	5.10		
I _{DD_RUNCO}	Running While(1) loop in flash in compute operation mode—48M HIRC mode, 48 MHz core / 24 MHz flash, V _{DD} = 3.0 V					
	• at 25 °C	—	3.27	3.43	mA	
	• at 105 °C	—	3.42	3.59		
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in Flash all peripheral clock disable 48 MHz core/24 MHz flash, V_{DD} = 3.0 V					2
	• at 25 °C	—	5.63	5.86	mA	
	• at 105 °C	—	5.79	6.02		
I _{DD_RUN}	Run mode current—48M HIRC mode, running CoreMark in flash all peripheral clock disable, 24 MHz core/12 MHz flash, $V_{DD} = 3.0 V$					2,
	• at 25 °C	—	3.47	3.61		
	• at 105 °C	—	3.63	3.78	mA	

 Table 9. Power consumption operating behaviors

Table continues on the next page...

Symbol	Description	Temperature (°C)				Unit		
		-40	25	50	70	85	105	
	Includes selected clock source power consumption. • IRC8M (8 MHz internal reference clock) • IRC2M (2 MHz internal reference clock)	105 34	110 34	110 34	111 34	112 34	114 34	μA
I _{TPM}	 TPM peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source configured for output compare generating 100 Hz clock signal. No load is placed on the I/O generating the clock signal. Includes selected clock source and I/O switching currents. IRC8M (8 MHz internal reference clock) IRC2M (2 MHz internal reference clock) 	130 40	130 40	130 40	130 40	130 40	130 40	μΑ
I _{BG}	Bandgap adder when BGEN bit is set and device is placed in VLPx or VLLSx mode.	45	45	45	45	45	45	μA
I _{ADC}	ADC peripheral adder combining the measured values at V_{DD} and V_{DDA} by placing the device in STOP or VLPS mode. ADC is configured for low power mode using the internal clock and continuous conversions.	320	320	320	320	320	320	μΑ

Table 10.	Low power	mode peripheral	adders — typical	value (continued)
-----------	-----------	-----------------	------------------	-------------------

2.2.5.1 Diagram: Typical IDD_RUN operating behavior

The following data was measured under these conditions:

- MCG-Lite in HIRC for run mode, and LIRC for VLPR mode
- No GPIOs toggled
- Code execution from flash
- For the ALLOFF curve, all peripheral clocks are disabled except FTFA

Figure 2. Run mode supply current vs. core frequency

Board type	Symbol	Description	64 LQFP	80 LQFP	Unit	Notes
Single-layer (1S)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	71	58	°C/W	1, 2
Four-layer (2s2p)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	53	43	°C/W	1, 2
Single-layer (1S)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	60	47	°C/W	1, 3
Four-layer (2s2p)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./min. air speed)	46	37	°C/W	1, 3,
_	R _{θJB}	Thermal resistance, junction to board	35	26	°C/W	4
	R _{θJC}	Thermal resistance, junction to case	21	15	°C/W	5
_	Ψ_{JT}	Thermal characterization parameter, junction to package top outside center (natural convection)	5	3	°C/W	6

Table 15. Thermal attributes

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per JEDEC JESD51-2 with natural convection for horizontally oriented board. Board meets JESD51-9 specification for 1s or 2s2p board, respectively.
- 3. Per JEDEC JESD51-6 with forced convection for horizontally oriented board. Board meets JESD51-9 specification for 1s or 2s2p board, respectively.
- 4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

3 Peripheral operating requirements and behaviors

3.1 Core modules

3.1.1 SWD electricals

Table 16. SWD full voltage range electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
J1	SWD_CLK frequency of operation			

Table continues on the next page...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	

 Table 19. Oscillator DC electrical specifications (continued)

1. V_{DD} =3.3 V, Temperature =25 °C

2. See crystal or resonator manufacturer's recommendation

- 3. C_x,C_y can be provided by using the integrated capacitors when the low frequency oscillator (RANGE = 00) is used. For all other cases external capacitors must be used.
- 4. When low power mode is selected, R_F is integrated and must not be attached externally.
- 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

3.3.2.2 Oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal or resonator frequency — low- frequency mode (MCG_C2[RANGE]=00)	32	—	40	kHz	
f _{osc_hi_1}	Oscillator crystal or resonator frequency — high-frequency mode (low range) (MCG_C2[RANGE]=01)	3	_	8	MHz	
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)	8	_	32	MHz	
f _{ec_extal}	Input clock frequency (external clock mode)	_	—	48	MHz	
t _{dc_extal}	Input clock duty cycle (external clock mode)	40	50	60	%	
t _{cst}	Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0)	_	750	_	ms	1, 2
	Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1)	—	250		ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0)	_	0.6	_	ms	1
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1)	_	1	_	ms	

1. Proper PC board layout procedures must be followed to achieve specifications.

2. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set.

3.4 Memories and memory interfaces

3.4.1 Flash electrical specifications

This section describes the electrical characteristics of the flash memory module.

3.4.1.1 Flash timing specifications — program and erase

The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.

Table 21. NVM program/erase timing specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{hvpgm4}	Longword Program high-voltage time	—	7.5	18	μs	—
t _{hversscr}	Sector Erase high-voltage time	_	13	113	ms	1
t _{hversall}	Erase All high-voltage time	—	52	452	ms	1

1. Maximum time based on expectations at cycling end-of-life.

3.4.1.2 Flash timing specifications — commands Table 22. Flash command timing specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{rd1sec1k}	Read 1s Section execution time (flash sector)	—	—	60	μs	1
t _{pgmchk}	Program Check execution time	—	—	45	μs	1
t _{rdrsrc}	Read Resource execution time	—	—	30	μs	1
t _{pgm4}	Program Longword execution time	—	65	145	μs	_
t _{ersscr}	Erase Flash Sector execution time	—	14	114	ms	2
t _{rd1all}	Read 1s All Blocks execution time	—	—	0.9	ms	1
t _{rdonce}	Read Once execution time	—	—	25	μs	1
t _{pgmonce}	Program Once execution time	—	65	—	μs	_
t _{ersall}	Erase All Blocks execution time	—	70	575	ms	2
t _{vfykey}	Verify Backdoor Access Key execution time	—		30	μs	1
t _{ersallu}	Erase All Blocks Unsecure execution time	_	70	575	ms	2

1. Assumes 25 MHz flash clock frequency.

2. Maximum times for erase parameters based on expectations at cycling end-of-life.

3.4.1.3 Flash high voltage current behaviors Table 23. Flash high voltage current behaviors

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DD_PGM}	Average current adder during high voltage flash programming operation		2.5	6.0	mA
I _{DD_ERS}	Average current adder during high voltage flash erase operation		1.5	4.0	mA

3.4.1.4 Reliability specifications

Table 24. NVM reliability specifications

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes			
Program Flash									
t _{nvmretp10k}	Data retention after up to 10 K cycles	5	50	—	years	_			
t _{nvmretp1k}	Data retention after up to 1 K cycles	20	100	_	years				
n _{nvmcycp}	Cycling endurance	10 K	50 K		cycles	2			

1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619.

2. Cycling endurance represents number of program/erase cycles at -40 °C \leq T_i \leq 125 °C.

3.5 Security and integrity modules

There are no specifications necessary for the device's security and integrity modules.

3.6 Analog

3.6.1 ADC electrical specifications

Using differential inputs can achieve better system accuracy than using single-end inputs.

3.6.1.1 16-bit ADC operating conditions Table 25. 16-bit ADC operating conditions

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
V _{DDA}	Supply voltage	Absolute	1.71	_	3.6	V	_
ΔV_{DDA}	Supply voltage	Delta to V _{DD} (V _{DD} – V _{DDA})	-100	0	+100	mV	2
ΔV_{SSA}	Ground voltage	Delta to V_{SS} ($V_{SS} - V_{SSA}$)	-100	0	+100	mV	2
V _{ADIN}	Input voltage	16-bit differential mode	VREFL	—	31/32 * VREFH	V	—
		All other modes	VREFL	—	VREFH		
C _{ADIN}	Input	16-bit mode	_	8	10	pF	_
	capacitance	 8-bit / 10-bit / 12-bit modes 	—	4	5		
R _{ADIN}	Input series resistance		_	2	5	kΩ	_
R _{AS}	Analog source resistance (external)	13-bit / 12-bit modes f _{ADCK} < 4 MHz		_	5	kΩ	3
f _{ADCK}	ADC conversion clock frequency	≤ 13-bit mode	1.0	_	18.0	MHz	4
f _{ADCK}	ADC conversion clock frequency	16-bit mode	2.0	—	12.0	MHz	4
C _{rate}	ADC conversion	≤ 13-bit modes					5
	rate	No ADC hardware averaging	20.000	—	818.330	Ksps	
		Continuous conversions enabled, subsequent conversion time					
C _{rate}	ADC conversion	16-bit mode					5
	rate	No ADC hardware averaging	37.037	—	461.467	Ksps	
		Continuous conversions enabled, subsequent conversion time					

- 1. Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production.
- 2. DC potential difference.
- 3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The R_{AS}/C_{AS} time constant should be kept to < 1 ns.
- 4. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.
- 5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
		<12-bit modes	_	±0.4	–0.7 to +0.5		
E _{FS}	Full-scale error	12-bit modes	_	-4	-5.4	LSB ⁴	V _{ADIN} =
		 <12-bit modes 	_	-1.4	-1.8		V _{DDA} ⁵
EQ	Quantization	16-bit modes	—	-1 to 0	—	LSB ⁴	
	error	• ≤13-bit modes	_	_	±0.5		
ENOB	Effective	16-bit differential mode					6
	number of bits	• Avg = 32	12.8	14.5	_	bits	
		• Avg = 4	11.9	13.8	_	bits	
		16-bit single-ended mode					
		• Avg = 32	12.2	13.9	—	bits	
		• Avg = 4	11.4	13.1	_	bits	
SINAD	Signal-to-noise plus distortion	See ENOB	6.02 × ENOB + 1.76			dB	
THD	Total harmonic	16-bit differential mode					7
	distortion	• Avg = 32	_	-94	_	dB	
		16-bit single-ended mode	_	-85		dB	
		• Avg = 32					
SFDR	Spurious free	16-bit differential mode					7
	dynamic range	• Avg = 32	82	95	_	dB	
		16-bit single-ended mode	78	90		dB	
		• Avg = 32					
EIL	Input leakage error		I _{In} × R _{AS}			mV	I _{In} = leakage current
							(refer to the MCU's voltage and current operating ratings)
	Temp sensor slope	Across the full temperature range of the device	1.55	1.62	1.69	mV/°C	8
V _{TEMP25}	Temp sensor voltage	25 °C	706	716	726	mV	8

Table 20. To bit ADO characteristics ($v_{\text{RFFH}} = v_{\text{DDA}}$, $v_{\text{RFFL}} = v_{\text{SSA}}$ (continued)
--

1. All accuracy numbers assume the ADC is calibrated with V_{REFH} = V_{DDA}

- Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1 MHz ADC conversion clock speed.
- 4. 1 LSB = $(V_{REFH} V_{REFL})/2^N$
- 5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
- 6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.
- 7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.
- 8. ADC conversion clock < 3 MHz

Figure 7. Typical ENOB vs. ADC_CLK for 16-bit differential mode

Kinetis KL13 Microcontroller, Rev.2, 03/2015.

3.6.2 Voltage reference electrical specifications

Table 27.	VREF full-range	operating	requirements
-----------	-----------------	-----------	--------------

Symbol	Description	Min. Max.		Unit	Notes
V _{DDA}	Supply voltage		3.6	V	—
T _A	Temperature	Operating temperature range of the device		°C	—
CL	Output load capacitance	100		nF	1, 2

- 1. C_L must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external reference.
- The load capacitance should not exceed +/-25% of the nominal specified C_L value over the operating temperature range of the device.

Table 28 is tested under the condition of setting VREF_TRM[CHOPEN], VREF_SC[REGEN] and VREF_SC[ICOMPEN] bits to 1.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{out}	Voltage reference output with factory trim at nominal V _{DDA} and temperature=25C	1.1915	1.195	1.1977	V	1
V _{out}	Voltage reference output — factory trim	1.1584	—	1.2376	V	1
V _{out}	Voltage reference output — user trim	1.193	_	1.197	V	1
V _{step}	Voltage reference trim step	—	0.5	—	mV	1
V _{tdrift}	Temperature drift (Vmax -Vmin across the full temperature range: 0 to 70°C)		2	15	mV	1
I _{bg}	Bandgap only current	—	—	80	μA	1
I _{lp}	Low-power buffer current	—	—	360	uA	1
I _{hp}	High-power buffer current	—	—	1	mA	1
ΔV_{LOAD}	Load regulation				μV	1, 2
	• current = ± 1.0 mA	_	200	_		
T _{stup}	Buffer startup time	—	—	100	μs	—
T _{chop_osc_st}	Internal bandgap start-up delay with chop oscillator enabled	—	—	35	ms	_
V _{vdrift}	Voltage drift (Vmax -Vmin across the full voltage range)		2		mV	1

Table 28. VREF full-range operating behaviors

1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.

2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load

Symbol	Description	Min.	Max.	Unit	Notes
T _A	Temperature	0	50	°C	

Table 29. VREF limited-range operating requirements

Table 30. VREF limited-range operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{out}	Voltage reference output with factory trim	1.173	1.225	V	—

3.6.3 CMP and 6-bit DAC electrical specifications

Table 31. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{DD}	Supply voltage	1.71	—	3.6	V
I _{DDHS}	Supply current, High-speed mode (EN=1, PMODE=1)	—	—	200	μA
I _{DDLS}	Supply current, low-speed mode (EN=1, PMODE=0)	—	—	20	μA
V _{AIN}	Analog input voltage	$V_{\rm SS} - 0.3$	—	V _{DD}	V
V _{AIO}	Analog input offset voltage	_	—	20	mV
V _H	Analog comparator hysteresis ¹				
	• CR0[HYSTCTR] = 00	_	5	_	mV
	• CR0[HYSTCTR] = 01	—	10	—	mV
	• CR0[HYSTCTR] = 10	—	20	_	mV
	 CR0[HYSTCTR] = 11 	—	30	—	mV
V _{CMPOh}	Output high	V _{DD} – 0.5			V
V _{CMPOI}	Output low	—	—	0.5	V
t _{DHS}	Propagation delay, high-speed mode (EN=1, PMODE=1)	20	50	200	ns
t _{DLS}	Propagation delay, low-speed mode (EN=1, PMODE=0)	80	250	600	ns
	Analog comparator initialization delay ²	_	—	40	μs
I _{DAC6b}	6-bit DAC current adder (enabled)		7	_	μA
INL	6-bit DAC integral non-linearity	-0.5	—	0.5	LSB ³
DNL	6-bit DAC differential non-linearity	-0.3		0.3	LSB

1. Typical hysteresis is measured with input voltage range limited to 0.6 to V_{DD} –0.6 V.

 Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.

3. 1 LSB = V_{reference}/64

Communication interfaces

Num.	Symbol	Description	Min.	Max.	Unit	Note
1	f _{op}	Frequency of operation	0	f _{periph} /4	Hz	1
2	t _{SPSCK}	SPSCK period	4 x t _{periph}	_	ns	2
3	t _{Lead}	Enable lead time	1	_	t _{periph}	_
4	t _{Lag}	Enable lag time	1	_	t _{periph}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{periph} - 30	_	ns	_
6	t _{SU}	Data setup time (inputs)	2	_	ns	_
7	t _{HI}	Data hold time (inputs)	7	_	ns	
8	t _a	Slave access time	—	t _{periph}	ns	3
9	t _{dis}	Slave MISO disable time	_	t _{periph}	ns	4
10	t _v	Data valid (after SPSCK edge)	—	130	ns	
11	t _{HO}	Data hold time (outputs)	0	_	ns	_
12	t _{RI}	Rise time input	_	t _{periph} - 25	ns	—
	t _{FI}	Fall time input				
13	t _{RO}	Rise time output	—	36	ns	—
	t _{FO}	Fall time output				

Table 37. SPI slave mode timing on slew rate enabled pads

1. For SPI0 f_{periph} is the bus clock (f_{BUS}). For SPI1 f_{periph} is the system clock (f_{SYS}).

2.

- $t_{periph} = 1/f_{periph}$ Time to data active from high-impedance state 3.
- 4. Hold time to high-impedance state

Figure 20. Reset circuit

When an external supervisor chip is connected to the RESET_b pin, a series resistor should be used to avoid damaging the supervisor chip or the RESET_b pin, as shown in Figure 55. The series resistor value (RS below) should be in the range of 100Ω to $1k\Omega$ depending on the external reset chip drive strength. The supervisor chip must have an active high, open-drain output.

• NMI pin

Because a low level on the NMI_b pin will trigger the Non-maskable interrupt, it is not recommended to add a pull-down resistor or capacitor on this pin. When this pin is enabled as the NMI function an external pull-up resistor (10k) as shown in the following figure is recommended for robustness.

If the NMI_b pin is used as an I/O pin the Non-maskable interrupt handler is required to disable the NMI function by remapping to another function. The NMI function is disabled by programming the FOPT[NMI_DIS] bit to zero.

80 LQFP	64 LQFP	48 QFN	64 Map Bga	32 QFN	Pin Name	Default	ALTO	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
37	—	—	_	_	PTA17	DISABLED		PTA17	SPI0_MISO			SPI0_MOSI		
38	30	22	G7	15	VDD	VDD	VDD							
39	31	23	H7	16	VSS	VSS	VSS							
40	32	24	H8	17	PTA18	EXTAL0	EXTAL0	PTA18		lpuart1_ RX	TPM_ CLKIN0			
41	33	25	G8	18	PTA19	XTAL0	XTAL0	PTA19		LPUART1_ TX	TPM_ CLKIN1		LPTMR0_ ALT1	
42	34	26	F8	19	PTA20	RESET_b		PTA20						RESET_b
43	35	27	F7	20	PTB0/ LLWU_P5	ADC0_SE8	ADC0_SE8	PTB0/ LLWU_P5	I2C0_SCL	TPM1_CH0	SPI1_MOSI	SPI1_MISO		
44	36	28	F6	21	PTB1	ADC0_SE9	ADC0_SE9	PTB1	I2C0_SDA	TPM1_CH1	SPI1_MISO	SPI1_MOSI		
45	37	29	E7	-	PTB2	ADC0_ SE12	ADC0_ SE12	PTB2	I2C0_SCL	TPM2_CH0				
46	38	30	E8	-	PTB3	ADC0_ SE13	ADC0_ SE13	PTB3	I2C0_SDA	TPM2_CH1				
47	_	_	_	_	PTB8			PTB8	SPI1_PCS0	EXTRG_IN				
48	_	_	_	_	PTB9			PTB9	SPI1_SCK					
49	_	_	_	_	PTB10			PTB10	SPI1_PCS0					
50	_	_	_	_	PTB11			PTB11	SPI1_SCK					
51	39	31	E6	-	PTB16			PTB16	SPI1_MOSI	LPUART0_ RX	TPM_ CLKIN0	SPI1_MISO		
52	40	32	D7	_	PTB17			PTB17	SPI1_MISO	LPUART0_ TX	TPM_ CLKIN1	SPI1_MOSI		
53	41	_	D6	_	PTB18			PTB18		TPM2_CH0				
54	42	_	C7	_	PTB19			PTB19		TPM2_CH1				
55	43	33	D8	-	PTC0	ADC0_ SE14	ADC0_ SE14	PTC0		EXTRG_IN		CMP0_OUT		
56	44	34	C6	22	PTC1/ LLWU_P6/ RTC_CLKIN	ADC0_ SE15	ADC0_ SE15	PTC1/ LLWU_P6/ RTC_CLKIN	I2C1_SCL		TPM0_CH0			
57	45	35	B7	23	PTC2	ADC0_ SE11	ADC0_ SE11	PTC2	I2C1_SDA		TPM0_CH1			
58	46	36	C8	24	PTC3/ LLWU_P7			PTC3/ LLWU_P7	SPI1_SCK	LPUART1_ RX	TPM0_CH2	CLKOUT		
59	47	_	E3	_	VSS	VSS	VSS							
60	48	_	E4	-	VDD	VDD	VDD							
61	49	37	B8	25	PTC4/ LLWU_P8			PTC4/ LLWU_P8	SPI0_PCS0	LPUART1_ TX	TPM0_CH3	SPI1_PCS0		
62	50	38	A8	26	PTC5/ LLWU_P9			PTC5/ LLWU_P9	SPI0_SCK	LPTMR0_ ALT2			CMP0_OUT	
63	51	39	A7	27	PTC6/ LLWU_P10	CMP0_IN0	CMP0_IN0	PTC6/ LLWU_P10	SPI0_MOSI	EXTRG_IN		SPI0_MISO		
64	52	40	B6	28	PTC7	CMP0_IN1	CMP0_IN1	PTC7	SPI0_MISO			SPI0_MOSI		

NP

Pinouts and Packaging

80	64	48	64	32	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7
LQFP	LQFP	QFN	MAP BGA	QFN										
65	53	_	A6	-	PTC8	CMP0_IN2	CMP0_IN2	PTC8	I2C0_SCL	TPM0_CH4				
66	54	_	B5	_	PTC9	CMP0_IN3	CMP0_IN3	PTC9	I2C0_SDA	TPM0_CH5				
67	55	_	B4	_	PTC10			PTC10	I2C1_SCL					
68	56	-	A5	-	PTC11			PTC11	I2C1_SDA					
69	Ι	-	-	-	PTC12			PTC12			TPM_ CLKIN0			
70	-	_	-	-	PTC13			PTC13			TPM_ CLKIN1			
71	_	-	_	Ι	PTC16			PTC16						
72	_	_	_	_	PTC17			PTC17						
73	57	41	C3	_	PTD0			PTD0	SPI0_PCS0		TPM0_CH0		FXIO0_D0	
74	58	42	A4	-	PTD1	ADC0_ SE5b	ADC0_ SE5b	PTD1	SPI0_SCK		TPM0_CH1		FXIO0_D1	
75	59	43	C2	-	PTD2			PTD2	SPI0_MOSI	UART2_RX	TPM0_CH2	SPI0_MISO	FXIO0_D2	
76	60	44	B3	_	PTD3			PTD3	SPI0_MISO	UART2_TX	TPM0_CH3	SPI0_MOSI	FXIO0_D3	
77	61	45	A3	29	PTD4/ LLWU_P14			PTD4/ LLWU_P14	SPI1_PCS0	UART2_RX	TPM0_CH4		FXIO0_D4	
78	62	46	C1	30	PTD5	ADC0_ SE6b	ADC0_ SE6b	PTD5	SPI1_SCK	UART2_TX	TPM0_CH5		FXIO0_D5	
79	63	47	B2	31	PTD6/ LLWU_P15	ADC0_ SE7b	ADC0_ SE7b	PTD6/ LLWU_P15	SPI1_MOSI	LPUART0_ RX	I2C1_SDA	SPI1_MISO	FXIO0_D6	
80	64	48	A2	32	PTD7			PTD7	SPI1_MISO	LPUART0_ TX	I2C1_SCL	SPI1_MOSI	FXIO0_D7	

8.2 KL13 Family Pinouts

Figure below shows the 64 LQFP pinouts:

NOTE

The 32 QFN, 48 QFN, and 64 MAPBGA packages for this product are not yet available. However, these packages are included in Package Your Way program for Kinetis MCUs. Visit freescale.com/KPYW for more details.

	1	2	3	4	5	6	7	8	
A	PTE0	PTD7	PTD4/ LLWU_P14	PTD1	PTC11	PTC8	PTC6/ LLWU_P10	PTC5/ LLWU_P9	А
В	PTE1	PTD6/ LLWU_P15	PTD3	PTC10	PTC9	PTC7	PTC2	PTC4/ LLWU_P8	в
С	PTD5	PTD2	PTD0	VSS	NC	PTC1/ LLWU_P6/ RTC_CLKIN	PTB19	PTC3/ LLWU_P7	с
D	PTE17	PTE19	PTA0	PTA1	PTA3	PTB18	PTB17	PTC0	D
E	PTE16	PTE18	VSS	VDD	PTA2	PTB16	PTB2	PTB3	E
F	PTE21	PTE23	VSSA	VDDA	PTA5	PTB1	PTB0/ LLWU_P5	PTA20	F
G	PTE20	PTE22	VREFL	VREFH/ VREFO	PTA4	PTA13	VDD	PTA19	G
н	PTE29	PTE30	PTE31	PTE24	PTE25	PTA12	VSS	PTA18	н
	1	2	3	4	5	6	7	8	

Figure 30. 64 MAPBGA Pinout diagram

Figure below shows the 48 QFN pinouts:

Terminology and guidelines

11.3 Definition: Attribute

An *attribute* is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements.

11.3.1 Example

This is an example of an attribute:

Symbol	Description	Min.	Max.	Unit
CIN_D	Input capacitance: digital pins	—	7	pF

11.4 Definition: Rating

A *rating* is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure:

- Operating ratings apply during operation of the chip.
- *Handling ratings* apply when the chip is not powered.

11.4.1 Example

This is an example of an operating rating:

Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	-0.3	1.2	V