

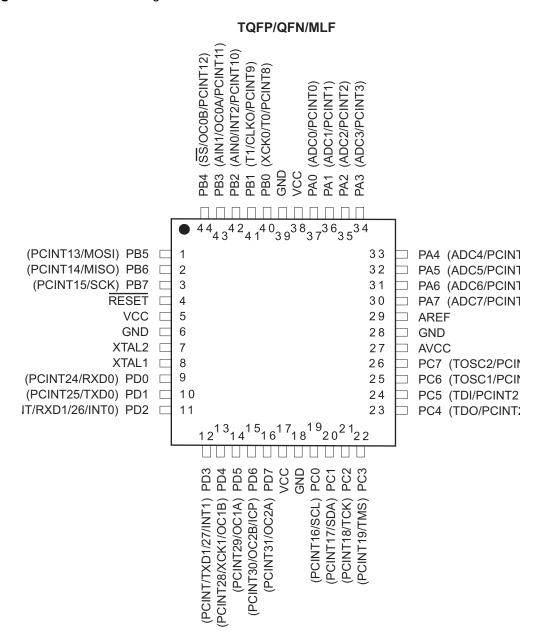
Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

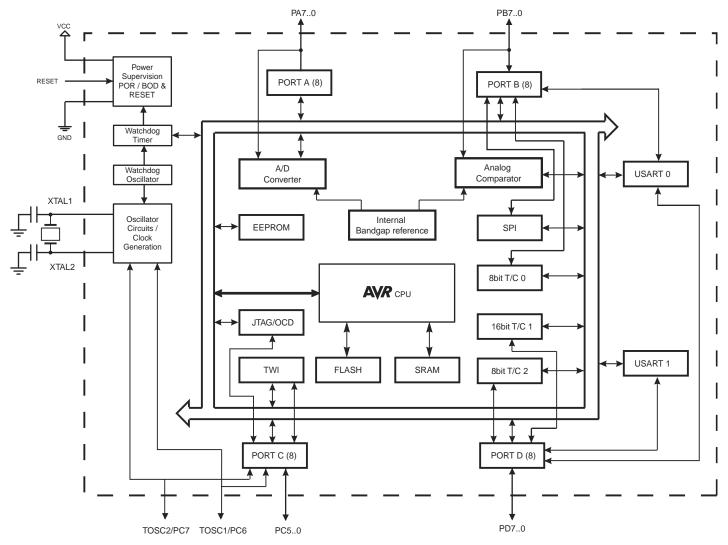
Details	
Product Status	Obsolete
Core Processor	AVR
Core Size	8-Bit
Speed	16MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	32
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/atmel/atmega164p-a15az


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Pin Configurations

Figure 1-1. Pinout ATmega164P/324P/644P


Note: The large center pad underneath the QFN/MLF package should be soldered to ground on the board to ensure good mechanical stability.

2. Overview

The ATmega164P/324P/644P is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega164P/324P/644P achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

2.1 Block Diagram

Figure 2-1. Block Diagram

The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The ATmega164P/324P/644P provides the following features: 16/32/64K bytes of In-System Programmable Flash with Read-While-Write capabilities, 512B/1K/2K bytes EEPROM, 1/2/4K bytes SRAM, 32 general purpose I/O lines, 32 general purpose working registers, Real Time Counter (RTC), three flexible Timer/Counters with compare modes and PWM, 2 USARTs, a byte oriented 2-wire Serial Interface, a 8-channel, 10-bit ADC with optional differential input stage with programmable gain, programmable Watchdog Timer with Internal Oscillator, an SPI serial port, IEEE std. 1149.1 compliant JTAG test interface, also used for accessing the On-chip Debug system and programming and six software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or Hardware Reset. In Powersave mode, the asynchronous timer continues to run, allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except Asynchronous Timer and ADC, to minimize switching noise during ADC conversions. In Standby mode, the Crystal/Resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low power consumption. In Extended Standby mode, both the main Oscillator and the Asynchronous Timer continue to run.

The device is manufactured using Atmel's high-density nonvolatile memory technology. The Onchip ISP Flash allows the program memory to be reprogrammed in-system through an SPI serial interface, by a conventional nonvolatile memory programmer, or by an On-chip Boot program running on the AVR core. The boot program can use any interface to download the application program in the application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATmega164P/324P/644P is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications.

The ATmega164P/324P/644P AVR is supported with a full suite of program and system development tools including: C compilers, macro assemblers, program debugger/simulators, in-circuit emulators, and evaluation kits.

2.2 Comparison Between ATmega164P, ATmega324P and ATmega644P

 Table 2-1.
 Differences between ATmega164P and ATmega644P

Device	Flash	EEPROM	RAM
ATmega164P	16 Kbyte	512 Bytes	1 Kbyte
ATmega324P	32 Kbyte	1 Kbyte	2 Kbyte
ATmega644P	64 Kbyte	2 Kbyte	4 Kbyte

Automotive Quality Grade

The ATmega164P/324P/644P have been developed and manufactured according to the most stringent requirements of the international standard ISO-TS-16949. This data sheet contains limit values extracted from the results of extensive characterization (Temperature and Voltage). The quality and reliability of the ATmega164P/324P/644P have been verified during regular product qualification as per AEC-Q100 grade 1.

ATmega164P/324P/644P

As indicated in the ordering information paragraph, the products are available in three different temperature grades, but with equivalent quality and reliability objectives. Different temperature identifiers have been defined as listed in Table 1.

 Table 1. Temperature Grade Identification for Automotive Products

Temperature	Temperature Identifier	Comments
-40 ; +85	Т	Similar to Industrial Temperature Grade but with Automotive Quality
-40 ; +105	T1	Reduced Automotive Temperature Range
-40 ; +125	Z	Full AutomotiveTemperature Range

3. Register Summary

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
						Dit 3				1 age
(0xFF) (0xFE)	Reserved	-	-	-	-	_	-	-	-	
(0xFD)	Reserved Reserved	-	-	-	-	-	-	-	-	
(0xFC)	Reserved	-	-	-	-	-	-	-	-	
(0xFB)	Reserved	_	-	-	-		_	-	_	
(0xFA)	Reserved	-	-	-	-	-	-	-	-	
(0xF9)	Reserved	-	-	-	-		-	-	-	
(0xF8)	Reserved	-	-	-	-	-	-	-	-	
(0xF7)	Reserved	-	-	-	-	-	-	-	-	
(0xF6)	Reserved	-	-	-	-	-	-	-	-	
(0xF5)	Reserved	-	-	-	-		-	-	-	
(0xF4)	Reserved	-	-	-	-	-	-	-	-	
(0xF3)	Reserved	-	-	-	-	-	-	-	-	
(0xF2)	Reserved	-	-	-	-	-	-	-	-	
(0xF1)	Reserved	-	-	-	-		-	-	-	
(0xF0)	Reserved	-	-	-	-	-	-	-	-	
(0xEF)	Reserved	-	-	-	-		-	-	-	
(0xEE)	Reserved	-	-	-	-	-	-	-	-	
(0xED)	Reserved	-	-	-	-	-	-	-	-	
(0xEC)	Reserved	-	-	-	-	-	-	-	-	
(0xEB)	Reserved	-	-	-	-		-	-	-	
(0xEA)	Reserved	-	-	-	-	-	-	-	-	
(0xE9)	Reserved Reserved	-	-	-	-	-	-	-	-	
(0xE8) (0xE7)	Reserved	-	-	-	-	-	-	-	-	
(0xE6)	Reserved	-	-	-	-	_	-	-	-	
(0xE5)	Reserved	-	-	-	-	_	-		-	
(0xE4)	Reserved	-	-	-	-	-	-	_	-	
(0xE3)	Reserved	-	-	-	-		-	-	-	
(0xE2)	Reserved	-	-	-	-	_	-	-	-	
(0xE1)	Reserved	-	-	-	-		-	-	-	
(0xE0)	Reserved	-	-	-	-		-	-	-	
(0xDF)	Reserved	-	-	-	-	-	-	-	-	
(0xDE)	Reserved	-	-	-	-	-	-	-	-	
(0xDD)	Reserved	-	-	-	-	-	-	-	-	
(0xDC)	Reserved	-	-	-	-		-	-	-	
(0xDB)	Reserved	-	-	-	-	-	-	-	-	
(0xDA)	Reserved	-	-	-	-	-	-	-	-	
(0xD9)	Reserved	-	-	-	-	-	-	-	-	
(0xD8)	Reserved	-	-	-	-	-	-	-	-	
(0xD7)	Reserved	-	-	-	-	-	-	-	-	
(0xD6)	Reserved	-	-	-	-	-	-	-	-	
(0xD5)	Reserved	-	-	-	-	-	-	-	-	
(0xD4) (0xD3)	Reserved Reserved	-	-	-	-	-	-	-	-	
(0xD3) (0xD2)	Reserved	-	-	-	-	-	-	-	-	
(0xD2) (0xD1)	Reserved	-	-	-	-	-	-	-	-	
(0xD1)	Reserved	-	-	-	-	-	-	-	-	
(0xCF)	Reserved	-	-	-	-	-	-	-	-	
(0xCE)	UDR1					Data Register				188
(0xCD)	UBRR1H	-							192/205	
(0xCC)	UBRR1L				JSART1 Baud Ra			<u> </u>	-	192/205
(0xCB)	Reserved	-	-	-	-	-	-	-	-	
(0xCA)	UCSR1C	UMSEL11	UMSEL10	UPM11	UPM10	USBS1	UCSZ11	UCSZ10	UCPOL1	190/204
(0xC9)	UCSR1B	RXCIE1	TXCIE1	UDRIE1	RXEN1	TXEN1	UCSZ12	RXB81	TXB81	189/203
(0xC8)	UCSR1A	RXC1	TXC1	UDRE1	FE1	DOR1	UPE1	U2X1	MPCM1	188/203
(0xC7)	Reserved	-	-	-	-	-	-	-	-	
(0xC6)	UDR0				USART0 I/C	Data Register	-	-		188
(0xC5)	UBRR0H	-	-	-	-			te Register High B	Byte	192/205
(0xC4)	UBRR0L		•		JSART0 Baud Ra					192/205
(0xC3)	Reserved	-	-	-	-	-	-	-	-	
(0xC2)	UCSR0C	UMSEL01	UMSEL00	UPM01	UPM00	USBS0	UCSZ01	UCSZ00	UCPOL0	190/204
(0xC1)	UCSR0B	RXCIE0	TXCIE0	UDRIE0	RXEN0	TXEN0	UCSZ02	RXB80	TXB80	189/203
(0xC0)	UCSR0A	RXC0	TXC0	UDRE0	FE0	DOR0	UPE0	U2X0	MPCM0	188/203

■ ATmega164P/324P/644P

	1					Dir o		54.4		_
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0xBF)	Reserved	-	-	-	-	-	-	-	-	
(0xBE)	Reserved	-	-	-	-	-	-	-	-	
(0xBD)	TWAMR	TWAM6	TWAM5	TWAM4	TWAM3	TWAM2	TWAM1	TWAM0	- TA#F	234
(0xBC)	TWCR	TWINT	TWEA	TWSTA	TWSTO	TWWC erface Data Regis	TWEN	-	TWIE	231 233
(0xBB) (0xBA)	TWAR	TWA6	TWA5	TWA4	TWA3	TWA2	TWA1	TWA0	TWGCE	233
(0xBA)	TWSR	TWS7	TWS6	TWS5	TWS4	TWS3	-	TWPS1	TWPS0	233
(0xB8)	TWBR	11107	11100		-wire Serial Interf			100.01	1111 00	231
(0xB7)	Reserved	-	-	-	-	-	-	-	-	
(0xB6)	ASSR	-	EXCLK	AS2	TCN2UB	OCR2AUB	OCR2BUB	TCR2AUB	TCR2BUB	157
(0xB5)	Reserved	-	-	-	-	-	-	-	-	
(0xB4)	OCR2B			Tim	ner/Counter2 Out	out Compare Reg	ister B			157
(0xB3)	OCR2A			Tin	ner/Counter2 Out		ister A			157
(0xB2)	TCNT2		1			unter2 (8 Bit)	1	ı		156
(0xB1)	TCCR2B	FOC2A	FOC2B	-	-	WGM22	CS22	CS21	CS20	155
(0xB0)	TCCR2A	COM2A1	COM2A0	COM2B1	COM2B0	-	-	WGM21	WGM20	152
(0xAF) (0xAE)	Reserved Reserved	-	-	-	-	-	-	-	-	
(0xAE)	Reserved	-	-	-	-	-	-	-	-	
(0xAC)	Reserved	-	-	-	-	-	-	-	-	
(0xAB)	Reserved	-	-	-	-	_	-	-	-	
(0xAA)	Reserved	-	-	-	-	-	-	-	-	
(0xA9)	Reserved	-	-	-	-	-	-	-	-	
(0xA8)	Reserved	-	-	-	-	-	-	-	-	
(0xA7)	Reserved	-	-	-	-	-	-	-	-	-
(0xA6)	Reserved	-	-	-	-	-	-	-	-	
(0xA5)	Reserved	-	-	-	-	-	-	-	-	
(0xA4)	Reserved	-	-	-	-	-	-	-	-	
(0xA3)	Reserved	-	-	-	-	-	-	-	-	
(0xA2)	Reserved Reserved	-	-	-	-	-	-	-	-	
(0xA1) (0xA0)	Reserved	-	-	-	-	-	-	-	-	
(0x9F)	Reserved	-	-	-	-	_	_		-	
(0x9E)	Reserved	-	-	-	-	-	-	-	-	
(0x9D)	Reserved	-	-	-	-	-	-	-	-	
(0x9C)	Reserved	-	-	-	-	-	-	-	-	
(0x9B)	Reserved	-	-	-	-	-	-	-	-	
(0x9A)	Reserved	-	-	-	-	-	-	-	-	
(0x99)	Reserved	-	-	-	-	-	-	-	-	
(0x98)	Reserved	-	-	-	-	-	-	-	-	
(0x97)	Reserved	-	-	-	-	-	-	-	-	
(0x96)	Reserved Reserved	-	-	-	-	-	-	-	-	
(0x95) (0x94)	Reserved	-	-	-	-	-	-	-	-	
(0x93)	Reserved	-	-	_	_	_	_		-	
(0x92)	Reserved	-	-	-	-	-	-	-	-	
(0x91)	Reserved	-	-	-	-	-	-	-	-	
(0x90)	Reserved	-	-	-	-	-	-	-	-	
(0x8F)	Reserved	-	-	-	-	-	-	-	-	
(0x8E)	Reserved	-	-	-	-	-	-	-	-	
(0x8D)	Reserved	-	-	-	-	-	-	-	-	
(0x8C)	Reserved	-	-	-	-	-	-	-	-	
(0x8B)	OCR1BH				unter1 - Output C					136
(0x8A)	OCR1BL				ounter1 - Output C		•			136
(0x89)	OCR1AH				unter1 - Output C					136 136
(0x88) (0x87)	OCR1AL ICR1H				ounter1 - Output C Counter1 - Input (136
(0x87) (0x86)	ICR1H ICR1L				Counter1 - Input (137
(0x85)	TCNT1H				er/Counter1 - Input of		-			136
(0x84)	TCNT1L				er/Counter1 - Cou		-			136
(0x83)	Reserved	-	-	-	-	-	-	-	-	
(0x82)	TCCR1C	FOC1A	FOC1B	-	-	-	-	-	-	135
(0x81)	TCCR1B	ICNC1	ICES1	-	WGM13	WGM12	CS12	CS11	CS10	134
(0x80)	TCCR1A	COM1A1	COM1A0	COM1B1	COM1B0	-	-	WGM11	WGM10	132
(0x7F)	DIDR1	-	-	-	-	-	-	AIN1D	AIN0D	238
(0x7E)	DIDR0	ADC7D	ADC6D	ADC5D	ADC4D	ADC3D	ADC2D	ADC1D	ADC0D	258

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0x7D)	Reserved	-		5.0	-	5.0			5.0	. ago
(0x7C)	ADMUX	REFS1	REFS0	ADLAR	MUX4	MUX3	MUX2	MUX1	MUX0	254
(0x7B)	ADCSRB	-	ACME	-	-	-	ADTS2	ADTS1	ADTS0	237
(0x7A)	ADCSRA	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	256
(0x79)	ADCH	7.52.1	7.500	7.57.1.2		egister High byte	7151 02	7.5. 0.	7.2. 00	257
(0x78)	ADCL					egister Low byte				257
(0x77)	Reserved	-	-	-	-	-	-	-	-	
(0x76)	Reserved	-	-	-	-	-	-	-	-	
(0x75)	Reserved	-	-	-	-	-	-	-	-	
(0x74)	Reserved	-	-	-	-	-	-	-	-	
(0x73)	PCMSK3	PCINT31	PCINT30	PCINT29	PCINT28	PCINT27	PCINT26	PCINT25	PCINT24	70
(0x72)	Reserved	-	-	-	-	-	-	-	-	
(0x71)	Reserved	-	-	-	-	-	-	-	-	
(0x70)	TIMSK2	-	-	-	-	-	OCIE2B	OCIE2A	TOIE2	158
(0x6F)	TIMSK1	-	-	ICIE1	-	-	OCIE1B	OCIE1A	TOIE1	137
(0x6E)	TIMSK0	-	-	-	-	-	OCIE0B	OCIE0A	TOIE0	109
(0x6D)	PCMSK2	PCINT23	PCINT22	PCINT21	PCINT20	PCINT19	PCINT18	PCINT17	PCINT16	70
(0x6C)	PCMSK1	PCINT15	PCINT14	PCINT13	PCINT12	PCINT11	PCINT10	PCINT9	PCINT8	70
(0x6B)	PCMSK0	PCINT7	PCINT6	PCINT5	PCINT4	PCINT3	PCINT2	PCINT1	PCINT0	71
(0x6A)	Reserved	-	-	-	-	-	-	-	-	
(0x69)	EICRA	-	-	ISC21	ISC20	ISC11	ISC10	ISC01	ISC00	67
(0x68)	PCICR	-	-	-	-	PCIE3	PCIE2	PCIE1	PCIE0	69
(0x67)	Reserved	-	-	-	-	-	-	-	-	
(0x66)	OSCCAL					ibration Register				40
(0x65)	Reserved	-	-	-	-	-	-	-	-	
(0x64)	PRR	PRTWI	PRTIM2	PRTIM0	PRUSART1	PRTIM1	PRSPI	PRUSART0	PRADC	48
(0x63)	Reserved	-	-	-	-	-	-	-	-	
(0x62)	Reserved	-	-	-	-	-	-	-	-	
(0x61)	CLKPR	CLKPCE	-	-	-	CLKPS3	CLKPS2	CLKPS1	CLKPS0	40
(0x60)	WDTCSR	WDIF	WDIE	WDP3	WDCE	WDE	WDP2	WDP1	WDP0	60
0x3F (0x5F)	SREG	1	Т	Н	S	V	N	Z	С	10
0x3E (0x5E)	SPH	SP15	SP14	SP13	SP12	SP11	SP10	SP9	SP8	11
0x3D (0x5D)	SPL	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	11
0x3C (0x5C)	Reserved	-	-	-	-	-	-	-	-	
0x3B (0x5B)	Reserved	-	-	-	-	-	-	-	-	
0x3A (0x5A)	Reserved	-	-	-	-	-	-	-	-	
0x39 (0x59)	Reserved	-	-	-	-	-	-	-	-	
0x38 (0x58)	Reserved	-	-	-	- DMMMODE	-	- POWPT	-	- ODMEN	000
0x37 (0x57)	SPMCSR	SPMIE	RWWSB	SIGRD	RWWSRE	BLBSET	PGWRT	PGERS	SPMEN	290
0x36 (0x56)	Reserved	-	- PODC	- PODEE	PUD	-	-	-	-	04/074
0x35 (0x55)	MCUCR	JTD -	BODS	BODSE		- WDDE	- DODE	IVSEL	IVCE	91/274
0x34 (0x54)	MCUSR		-	-	JTRF	WDRF	BORF	EXTRF	PORF	59/274
0x33 (0x53) 0x32 (0x52)	SMCR	-	-	-	-	SM2	SM1	SM0	SE -	47
0x32 (0x52) 0x31 (0x51)	Reserved OCDR	-	-	-		ebug Register	•		-	264
0x31 (0x51) 0x30 (0x50)	ACSR	ACD	ACBG	ACO	ACI	ACIE	ACIC	ACIS1	ACIS0	256
0x30 (0x50) 0x2F (0x4F)	Reserved	- ACD	- ACBG	- ACO	ACI	AGIE	- ACIC	ACIST	- ACISU	230
0x2F (0x4F) 0x2E (0x4E)	SPDR	-	_	-		ata Register	-	_		169
0x2E (0x4E)	SPSR	SPIF0	WCOL0	-	- SPI 0 Da	-	-	-	SPI2X0	168
0x2C (0x4C)	SPCR	SPIE0	SPE0	DORD0	MSTR0	CPOL0	CPHA0	SPR01	SPR00	167
0x2B (0x4B)	GPIOR2	J. 120	0. 20	201120		se I/O Register 2		0. 101	500	28
0x2A (0x4A)	GPIOR1					se I/O Register 1				28
0x29 (0x49)	Reserved	-	-	-	-	-	-	-	-	
0x28 (0x48)	OCR0B			Tir	ner/Counter0 Out	out Compare Reg	ister B			109
0x27 (0x47)	OCR0A	<u> </u>			ner/Counter0 Out					108
0x26 (0x46)	TCNT0			•		unter0 (8 Bit)				108
0x25 (0x45)	TCCR0B	FOC0A	FOC0B	-	-	WGM02	CS02	CS01	CS00	107
0x24 (0x44)	TCCR0A	COM0A1	COM0A0	COM0B1	COM0B0	-	-	WGM01	WGM00	109
0x23 (0x43)	GTCCR	TSM	-	-	-	-	-	PSR2	PSR54310	159
0x22 (0x42)	EEARH	-	-	-	-		EPROM Addres	s Register High By		23
0x21 (0x41)	EEARL				EEPROM Addres					23
	EEDR					Data Register				23
0x20 (0x40)			-	EEPM1	EEPM0	EERIE	EEMWE	EEWE	EERE	23
· ' '	EECR	-	-	LLI IVII						
0x20 (0x40)	EECR GPIOR0	-	-	LLIWII		se I/O Register 0				28
0x20 (0x40) 0x1F (0x3F)		-	-	-				INT1	INT0	28 68

ATmega164P/324P/644P

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
0x1B (0x3B)	PCIFR	-	-	-	-	PCIF3	PCIF2	PCIF1	PCIF0	69
0x1A (0x3A)	Reserved	-	-	-	-	-	-	-	-	
0x19 (0x39)	Reserved	-	-	-	-	-	-	-	-	
0x18 (0x38)	Reserved	-	-	-	-	-	-	-	-	
0x17 (0x37)	TIFR2	-	-	-	-	-	OCF2b	OCF2A	TOV2	159
0x16 (0x36)	TIFR1	-	-	ICF1	-	-	OCF1B	OCF1A	TOV1	138
0x15 (0x35)	TIFR0	-	-	-	-	-	OCF0B	OCF0A	TOV0	109
0x14 (0x34)	Reserved	-	-	-	-	-	-	-	-	
0x13 (0x33)	Reserved	-	-	-	-	-	-	-	-	
0x12 (0x32)	Reserved	-	-	-	-	-	-	-	-	
0x11 (0x31)	Reserved	-	-	-	-	-	-	-	-	
0x10 (0x30)	Reserved	-	-	-	-	-	-	-	-	
0x0F (0x2F)	Reserved	-	-	-	-	-	-	-	-	
0x0E (0x2E)	Reserved	-	-	-	-	-	-	-	-	
0x0D (0x2D)	Reserved	-	-	-	-	-	-	-	-	
0x0C (0x2C)	Reserved	-	-	-	-	-	-	-	-	
0x0B (0x2B)	PORTD	PORTD7	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0	92
0x0A (0x2A)	DDRD	DDD7	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0	92
0x09 (0x29)	PIND	PIND7	PIND6	PIND5	PIND4	PIND3	PIND2	PIND1	PIND0	92
0x08 (0x28)	PORTC	PORTC7	PORTC6	PORTC5	PORTC4	PORTC3	PORTC2	PORTC1	PORTC0	92
0x07 (0x27)	DDRC	DDC7	DDC6	DDC5	DDC4	DDC3	DDC2	DDC1	DDC0	92
0x06 (0x26)	PINC	PINC7	PINC6	PINC5	PINC4	PINC3	PINC2	PINC1	PINC0	92
0x05 (0x25)	PORTB	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	91
0x04 (0x24)	DDRB	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	91
0x03 (0x23)	PINB	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	91
0x02 (0x22)	PORTA	PORTA7	PORTA6	PORTA5	PORTA4	PORTA3	PORTA2	PORTA1	PORTA0	91
0x01 (0x21)	DDRA	DDA7	DDA6	DDA5	DDA4	DDA3	DDA2	DDA1	DDA0	91
0x00 (0x20)	PINA	PINA7	PINA6	PINA5	PINA4	PINA3	PINA2	PINA1	PINA0	91

Notes: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.

- 2. I/O registers within the address range \$00 \$1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
- 3. Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on all bits in the I/O register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers 0x00 to 0x1F only.
- 4. When using the I/O specific commands IN and OUT, the I/O addresses \$00 \$3F must be used. When addressing I/O registers as data space using LD and ST instructions, \$20 must be added to these addresses. The ATmega164P/324P/644P is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from \$60 \$FF, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

4. Instruction Set Summary

Mnemonics	Operands	Description	Operation	Flags	#Clocks
ARITHMETIC AND L	OGIC INSTRUCTIONS		·		
ADD	Rd, Rr	Add two Registers	$Rd \leftarrow Rd + Rr$	Z,C,N,V,H	1
ADC	Rd, Rr	Add with Carry two Registers	$Rd \leftarrow Rd + Rr + C$	Z,C,N,V,H	1
ADIW	Rdl,K	Add Immediate to Word	Rdh:Rdl ← Rdh:Rdl + K	Z,C,N,V,S	2
SUB	Rd, Rr	Subtract two Registers	Rd ← Rd - Rr	Z,C,N,V,H	1
SUBI	Rd, K	Subtract Constant from Register	$Rd \leftarrow Rd - K$	Z,C,N,V,H	1
SBC	Rd, Rr	Subtract with Carry two Registers	$Rd \leftarrow Rd - Rr - C$	Z,C,N,V,H	1
SBCI	Rd, K	Subtract with Carry Constant from Reg.	$Rd \leftarrow Rd - K - C$	Z,C,N,V,H	1
SBIW	Rdl,K	Subtract Immediate from Word	Rdh:Rdl ← Rdh:Rdl - K	Z,C,N,V,S	2
AND	Rd, Rr	Logical AND Registers	$Rd \leftarrow Rd \bullet Rr$	Z,N,V	1
ANDI	Rd, K	Logical AND Register and Constant	$Rd \leftarrow Rd \bullet K$	Z,N,V	1
OR	Rd, Rr	Logical OR Registers	$Rd \leftarrow Rd v Rr$	Z,N,V	1
ORI	Rd, K	Logical OR Register and Constant	$Rd \leftarrow Rd \vee K$	Z,N,V	1
EOR	Rd, Rr	Exclusive OR Registers	$Rd \leftarrow Rd \oplus Rr$	Z,N,V	1
COM	Rd	One's Complement	$Rd \leftarrow 0xFF - Rd$	Z,C,N,V	1
NEG	Rd	Two's Complement	Rd ← 0x00 – Rd	Z,C,N,V,H	1
SBR	Rd,K	Set Bit(s) in Register	$Rd \leftarrow Rd \vee K$	Z,N,V	1
CBR	Rd,K	Clear Bit(s) in Register	$Rd \leftarrow Rd \bullet (0xFF - K)$	Z,N,V	1
INC	Rd	Increment	Rd ← Rd + 1	Z,N,V	1
DEC	Rd	Decrement	Rd ← Rd – 1	Z,N,V	1
TST	Rd	Test for Zero or Minus	$Rd \leftarrow Rd \bullet Rd$	Z,N,V	1
CLR	Rd	Clear Register	$Rd \leftarrow Rd \oplus Rd$	Z,N,V	1
SER	Rd	Set Register	$Rd \leftarrow 0xFF$	None	1
MUL	Rd, Rr	Multiply Unsigned	$R1:R0 \leftarrow Rd \times Rr$	Z,C	2
MULS	Rd, Rr	Multiply Signed	$R1:R0 \leftarrow Rd \times Rr$	Z,C	2
MULSU	Rd, Rr	Multiply Signed with Unsigned	$R1:R0 \leftarrow Rd \times Rr$	Z,C	2
FMUL	Rd, Rr	Fractional Multiply Unsigned	$R1:R0 \leftarrow (Rd \times Rr) << 1$	Z,C	2
FMULS	Rd, Rr	Fractional Multiply Signed	$R1:R0 \leftarrow (Rd \times Rr) << 1$	Z,C	2
FMULSU	Rd, Rr	Fractional Multiply Signed with Unsigned	$R1:R0 \leftarrow (Rd \times Rr) << 1$	Z,C	2
BRANCH INSTRUC		Deletive house	DO DO HANA	Lare	
RJMP	k	Relative Jump	PC ← PC + k + 1	None	2
IJMP		Indirect Jump to (Z)	PC ← Z	None	2
JMP	k	Direct Jump	PC ← k	None	3
RCALL ICALL	k	Relative Subroutine Call	$PC \leftarrow PC + k + 1$ $PC \leftarrow Z$	None	4
CALL	k	Indirect Call to (Z) Direct Subroutine Call	PC ← k	None None	5
RET	K	Subroutine Return	PC ← K PC ← STACK	None	5
RETI		Interrupt Return	PC ← STACK	None	5
CPSE	Rd,Rr	Compare, Skip if Equal	if $(Rd = Rr) PC \leftarrow PC + 2 \text{ or } 3$	None	1/2/3
CP	Rd,Rr	Compare	Rd – Rr	Z, N,V,C,H	1/2/3
CPC	Rd,Rr	Compare with Carry	Rd – Rr – C	Z, N,V,C,H	1
CPI	Rd,K	Compare Register with Immediate	Rd – K	Z, N,V,C,H	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if (Rr(b)=0) PC ← PC + 2 or 3	None	1/2/3
SBRS	Rr, b	Skip if Bit in Register is Set	if $(Rr(b)=1)$ PC \leftarrow PC + 2 or 3	None	1/2/3
SBIC	1	- 1 - 3 - 1 - 1 - 1	` ` ` ` ` `		1/2/3
	I P. b	Skip if Bit in I/O Register Cleared	if (P(b)=0) PC ← PC + 2 or 3	None	
	P, b	Skip if Bit in I/O Register Cleared Skip if Bit in I/O Register is Set	if $(P(b)=0) PC \leftarrow PC + 2 \text{ or } 3$ if $(P(b)=1) PC \leftarrow PC + 2 \text{ or } 3$	None None	
SBIS BRBS	P, b P, b s, k	Skip if Bit in I/O Register Cleared Skip if Bit in I/O Register is Set Branch if Status Flag Set	if (P(b)=1) PC ← PC + 2 or 3	None None None	1/2/3
SBIS	P, b	Skip if Bit in I/O Register is Set	if $(P(b)=1) PC \leftarrow PC + 2 \text{ or } 3$ if $(SREG(s) = 1)$ then $PC \leftarrow PC + k + 1$	None	1/2/3
SBIS BRBS	P, b s, k	Skip if Bit in I/O Register is Set Branch if Status Flag Set	if (P(b)=1) PC ← PC + 2 or 3	None None	1/2/3 1/2
SBIS BRBS BRBC	P, b s, k s, k	Skip if Bit in I/O Register is Set Branch if Status Flag Set Branch if Status Flag Cleared	$\begin{split} &\text{if } (P(b)=1) \ PC \leftarrow PC + 2 \ \text{or } 3 \\ &\text{if } (SREG(s)=1) \ \text{then } PC\leftarrow PC+k+1 \\ &\text{if } (SREG(s)=0) \ \text{then } PC\leftarrow PC+k+1 \end{split}$	None None None	1/2/3 1/2 1/2
SBIS BRBS BRBC BREQ	P, b s, k s, k k	Skip if Bit in I/O Register is Set Branch if Status Flag Set Branch if Status Flag Cleared Branch if Equal	$\begin{split} &\text{if } (P(b)=1) \ PC \leftarrow PC + 2 \ \text{or } 3 \\ &\text{if } (SREG(s)=1) \ \text{then } PC \leftarrow PC + k + 1 \\ &\text{if } (SREG(s)=0) \ \text{then } PC \leftarrow PC + k + 1 \\ &\text{if } (Z=1) \ \text{then } PC \leftarrow PC + k + 1 \end{split}$	None None None	1/2/3 1/2 1/2 1/2
SBIS BRBS BRBC BREQ BRNE	P, b s, k s, k k	Skip if Bit in I/O Register is Set Branch if Status Flag Set Branch if Status Flag Cleared Branch if Equal Branch if Not Equal	$\begin{split} &\text{if } (P(b)=1) \ PC \leftarrow PC + 2 \ \text{or } 3 \\ &\text{if } (SREG(s)=1) \ \text{then } PC \leftarrow PC + k + 1 \\ &\text{if } (SREG(s)=0) \ \text{then } PC \leftarrow PC + k + 1 \\ &\text{if } (Z=1) \ \text{then } PC \leftarrow PC + k + 1 \\ &\text{if } (Z=0) \ \text{then } PC \leftarrow PC + k + 1 \end{split}$	None None None None None	1/2/3 1/2 1/2 1/2 1/2
SBIS BRBS BRBC BREQ BRNE BRCS	P, b s, k s, k k k	Skip if Bit in I/O Register is Set Branch if Status Flag Set Branch if Status Flag Cleared Branch if Equal Branch if Not Equal Branch if Carry Set	$\begin{split} &\text{if } (P(b)=1) \ PC \leftarrow PC + 2 \ \text{or } 3 \\ &\text{if } (SREG(s)=1) \ \text{then } PC \leftarrow PC + k + 1 \\ &\text{if } (SREG(s)=0) \ \text{then } PC \leftarrow PC + k + 1 \\ &\text{if } (Z=1) \ \text{then } PC \leftarrow PC + k + 1 \\ &\text{if } (Z=0) \ \text{then } PC \leftarrow PC + k + 1 \\ &\text{if } (C=1) \ \text{then } PC \leftarrow PC + k + 1 \end{split}$	None None None None None None None	1/2/3 1/2 1/2 1/2 1/2 1/2 1/2
SBIS BRBS BRBC BREQ BRNE BRCS BRCC	P, b s, k s, k k k	Skip if Bit in I/O Register is Set Branch if Status Flag Set Branch if Status Flag Cleared Branch if Equal Branch if Not Equal Branch if Carry Set Branch if Carry Cleared	$\begin{split} &\text{if } (P(b)=1) \ PC \leftarrow PC + 2 \ or \ 3 \\ &\text{if } (SREG(s)=1) \ then \ PC \leftarrow PC + k + 1 \\ &\text{if } (SREG(s)=0) \ then \ PC \leftarrow PC + k + 1 \\ &\text{if } (Z=1) \ then \ PC \leftarrow PC + k + 1 \\ &\text{if } (Z=0) \ then \ PC \leftarrow PC + k + 1 \\ &\text{if } (C=1) \ then \ PC \leftarrow PC + k + 1 \\ &\text{if } (C=0) \ then \ PC \leftarrow PC + k + 1 \\ &\text{if } (C=0) \ then \ PC \leftarrow PC + k + 1 \end{split}$	None None None None None None None None	1/2/3 1/2 1/2 1/2 1/2 1/2 1/2 1/2
SBIS BRBS BRBC BREQ BRNE BRCS BRCC BRCC BRSH	P, b s, k s, k k k k	Skip if Bit in I/O Register is Set Branch if Status Flag Set Branch if Status Flag Cleared Branch if Equal Branch if Not Equal Branch if Carry Set Branch if Carry Cleared Branch if Same or Higher	$\begin{split} &\text{if } (P(b)=1) \ PC \leftarrow PC + 2 \ or \ 3 \\ &\text{if } (SREG(s)=1) \ then \ PC \leftarrow PC + k + 1 \\ &\text{if } (SREG(s)=0) \ then \ PC \leftarrow PC + k + 1 \\ &\text{if } (Z=1) \ then \ PC \leftarrow PC + k + 1 \\ &\text{if } (Z=0) \ then \ PC \leftarrow PC + k + 1 \\ &\text{if } (C=1) \ then \ PC \leftarrow PC + k + 1 \\ &\text{if } (C=0) \ then \ PC \leftarrow PC + k + 1 \\ &\text{if } (C=0) \ then \ PC \leftarrow PC + k + 1 \\ &\text{if } (C=0) \ then \ PC \leftarrow PC + k + 1 \\ \end{split}$	None None None None None None None None	1/2/3 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
SBIS BRBS BRBC BREQ BRNE BRCS BRCC BRSH BRLO	P, b s, k s, k k k k k	Skip if Bit in I/O Register is Set Branch if Status Flag Set Branch if Status Flag Cleared Branch if Equal Branch if Not Equal Branch if Carry Set Branch if Carry Cleared Branch if Same or Higher Branch if Lower	if $(P(b)=1)$ PC \leftarrow PC + 2 or 3 if $(SREG(s)=1)$ then PC \leftarrow PC+k+1 if $(SREG(s)=0)$ then PC \leftarrow PC+k+1 if $(Z=1)$ then PC \leftarrow PC + k+1 if $(Z=0)$ then PC \leftarrow PC + k+1 if $(C=1)$ then PC \leftarrow PC + k+1 if $(C=0)$ then PC \leftarrow PC + k+1	None None None None None None None None	1/2/3 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
SBIS BRBS BRBC BREQ BRNE BRCS BRCC BRSH BRLO BRMI	P, b s, k s, k k k k k k	Skip if Bit in I/O Register is Set Branch if Status Flag Set Branch if Status Flag Cleared Branch if Equal Branch if Not Equal Branch if Carry Set Branch if Carry Cleared Branch if Same or Higher Branch if Lower Branch if Minus	if $(P(b)=1)$ PC \leftarrow PC + 2 or 3 if $(SREG(s)=1)$ then PC \leftarrow PC+k + 1 if $(SREG(s)=0)$ then PC \leftarrow PC+k + 1 if $(Z=1)$ then PC \leftarrow PC + k + 1 if $(Z=0)$ then PC \leftarrow PC + k + 1 if $(C=1)$ then PC \leftarrow PC + k + 1 if $(C=0)$ then PC \leftarrow PC + k + 1 if $(C=0)$ then PC \leftarrow PC + k + 1 if $(C=0)$ then PC \leftarrow PC + k + 1 if $(C=1)$ then PC \leftarrow PC + k + 1 if $(C=1)$ then PC \leftarrow PC + k + 1 if $(C=1)$ then PC \leftarrow PC + k + 1	None None None None None None None None	1/2/3 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
SBIS BRBS BRBC BREQ BRNE BRCS BRCC BRSH BRLO BRMI BRPL	P, b s, k s, k k k k k k k	Skip if Bit in I/O Register is Set Branch if Status Flag Set Branch if Status Flag Cleared Branch if Equal Branch if Not Equal Branch if Carry Set Branch if Carry Cleared Branch if Same or Higher Branch if Lower Branch if Minus Branch if Plus	if $(P(b)=1)$ PC \leftarrow PC + 2 or 3 if $(SREG(s)=1)$ then PC \leftarrow PC+k+1 if $(SREG(s)=0)$ then PC \leftarrow PC+k+1 if $(Z=1)$ then PC \leftarrow PC + k+1 if $(Z=0)$ then PC \leftarrow PC + k+1 if $(C=1)$ then PC \leftarrow PC + k+1 if $(C=0)$ then PC \leftarrow PC + k+1 if $(C=0)$ then PC \leftarrow PC + k+1 if $(C=0)$ then PC \leftarrow PC + k+1 if $(C=1)$ then PC \leftarrow PC + k+1	None None None None None None None None	1/2/3 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
SBIS BRBS BRBC BREQ BRNE BRCS BRCC BRSH BRLO BRMI BRPL BRGE	P, b s, k s, k k k k k k k k	Skip if Bit in I/O Register is Set Branch if Status Flag Set Branch if Status Flag Cleared Branch if Equal Branch if Not Equal Branch if Carry Set Branch if Carry Cleared Branch if Same or Higher Branch if Lower Branch if Minus Branch if Plus Branch if Greater or Equal, Signed	if (P(b)=1) PC ← PC + 2 or 3 if (SREG(s) = 1) then PC←PC+k+1 if (SREG(s) = 0) then PC←PC+k+1 if (Z = 1) then PC ← PC + k+1 if (Z = 0) then PC ← PC + k+1 if (C = 1) then PC ← PC + k+1 if (C = 0) then PC ← PC + k+1 if (C = 0) then PC ← PC + k+1 if (C = 1) then PC ← PC + k+1 if (N = 1) then PC ← PC + k+1 if (N = 0) then PC ← PC + k+1 if (N = 0) then PC ← PC + k+1 if (N = 0) then PC ← PC + k+1	None None None None None None None None	1/2/3 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
SBIS BRBS BRBC BREQ BRNE BRCS BRCC BRSH BRLO BRMI BRPL BRGE BRLT	P, b s, k s, k k k k k k k k k	Skip if Bit in I/O Register is Set Branch if Status Flag Set Branch if Status Flag Cleared Branch if Equal Branch if Not Equal Branch if Carry Set Branch if Carry Cleared Branch if Same or Higher Branch if Lower Branch if Hinus Branch if Plus Branch if Greater or Equal, Signed Branch if Less Than Zero, Signed	if (P(b)=1) PC ← PC + 2 or 3 if (SREG(s) = 1) then PC←PC+k+1 if (SREG(s) = 0) then PC←PC+k+1 if (Z = 1) then PC ← PC + k+1 if (Z = 0) then PC ← PC + k+1 if (C = 1) then PC ← PC + k+1 if (C = 0) then PC ← PC + k+1 if (C = 0) then PC ← PC + k+1 if (C = 1) then PC ← PC + k+1 if (N = 1) then PC ← PC + k+1 if (N = 0) then PC ← PC + k+1 if (N ⊕ V = 0) then PC ← PC + k+1 if (N ⊕ V = 0) then PC ← PC + k+1 if (N ⊕ V = 0) then PC ← PC + k+1	None None None None None None None None	1/2/3 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
SBIS BRBS BRBC BREQ BRNE BRCS BRCC BRSH BRLO BRMI BRLO BRMI BRPL BRGE BRLT BRHS	P, b s, k s, k k k k k k k k k k	Skip if Bit in I/O Register is Set Branch if Status Flag Set Branch if Status Flag Cleared Branch if Equal Branch if Not Equal Branch if Carry Set Branch if Carry Cleared Branch if Same or Higher Branch if Lower Branch if Lower Branch if Minus Branch if Greater or Equal, Signed Branch if Less Than Zero, Signed Branch if Half Carry Flag Set	if (P(b)=1) PC ← PC + 2 or 3 if (SREG(s) = 1) then PC←PC+k+1 if (SREG(s) = 0) then PC←PC+k+1 if (Z = 1) then PC ← PC + k+1 if (Z = 0) then PC ← PC + k+1 if (C = 1) then PC ← PC + k+1 if (C = 0) then PC ← PC + k+1 if (C = 0) then PC ← PC + k+1 if (C = 0) then PC ← PC + k+1 if (C = 1) then PC ← PC + k+1 if (N = 1) then PC ← PC + k+1 if (N = 0) then PC ← PC + k+1 if (N = 0) then PC ← PC + k+1 if (N = 0) then PC ← PC + k+1 if (N ⊕ V = 0) then PC ← PC + k+1 if (N ⊕ V = 0) then PC ← PC + k+1 if (N ⊕ V = 1) then PC ← PC + k+1 if (N ⊕ V = 1) then PC ← PC + k+1	None None None None None None None None	1/2/3 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2
SBIS BRBS BRBC BREQ BRNE BRCS BRCC BRSH BRLO BRMI BRLO BRMI BRPL BRGE BRLT BRHS	P, b s, k s, k k k k k k k k k k k k	Skip if Bit in I/O Register is Set Branch if Status Flag Set Branch if Status Flag Cleared Branch if Equal Branch if Not Equal Branch if Carry Set Branch if Carry Cleared Branch if Carry Cleared Branch if Same or Higher Branch if Lower Branch if Minus Branch if Plus Branch if Greater or Equal, Signed Branch if Less Than Zero, Signed Branch if Half Carry Flag Set Branch if Half Carry Flag Cleared	if (P(b)=1) PC ← PC + 2 or 3 if (SREG(s) = 1) then PC←PC+k+1 if (SREG(s) = 0) then PC←PC+k+1 if (Z = 1) then PC ← PC + k+1 if (Z = 0) then PC ← PC + k+1 if (C = 1) then PC ← PC + k+1 if (C = 0) then PC ← PC + k+1 if (C = 0) then PC ← PC + k+1 if (C = 0) then PC ← PC + k+1 if (N = 1) then PC ← PC + k+1 if (N = 1) then PC ← PC + k+1 if (N = 0) then PC ← PC + k+1 if (N = 0) then PC ← PC + k+1 if (N = 0) then PC ← PC + k+1 if (N = 0) then PC ← PC + k+1 if (N ⊕ V = 0) then PC ← PC + k+1 if (N ⊕ V = 1) then PC ← PC + k+1 if (H = 1) then PC ← PC + k+1 if (H = 0) then PC ← PC + k+1	None None None None None None None None	1/2/3 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2

■ ATmega164P/324P/644P

BISS K	Mnemonics	Operands	Description	Operation	Flags	#Clocks
BERT P.D. See Birt IN Register Nove 1 1 1 1 1 1 1 1 1	BRVC	k	Branch if Overflow Flag is Cleared	if $(V = 0)$ then $PC \leftarrow PC + k + 1$	None	1/2
Big P D Set Bin 10 Register NO(Pa) + 1 None 2 CBI P D Cours film In 10 Register NO(Pa) + 1 None 2 CBI P D Cours film In 10 Register NO(Pa) + 10 None 2 CBI P D Cours film In 10 Register NO(Pa) + 10 None 2 CBI P None 2 CBI P No. CBI	BRIE	k	Branch if Interrupt Enabled	if (I = 1) then PC \leftarrow PC + k + 1	None	1/2
Set P.b Set Bit in 10 Register DOP 26 + 1 None 2		k	·	. ,		1/2
CBI	BIT AND BIT-TEST	INSTRUCTIONS				
188	SBI	P,b	Set Bit in I/O Register	I/O(P,b) ← 1	None	2
SE	CBI	P,b	Clear Bit in I/O Register	$I/O(P,b) \leftarrow 0$	None	2
ROL	LSL	Rd	Logical Shift Left	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$	Z,C,N,V	1
ROR	LSR	Rd	Logical Shift Right	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	Z,C,N,V	1
ASR Rd Administration Shift Right Rd(0) - Reflort I, n=0, 6 ZCN V BSET 8 Flag Set SREG(0) - 1 SREG(0) 1 BSET 8 Flag Clair SREG(0) - 0 SREG(0) 1 BST 8 Flag Clair SREG(0) 1 T - Re(0) T T 1 T RG(0) 1 T N 1 N 1 N 1 T N 1 N N </td <td>ROL</td> <td>Rd</td> <td>Rotate Left Through Carry</td> <td>$Rd(0)\leftarrow C,Rd(n+1)\leftarrow Rd(n),C\leftarrow Rd(7)$</td> <td>Z,C,N,V</td> <td>1</td>	ROL	Rd	Rotate Left Through Carry	$Rd(0)\leftarrow C,Rd(n+1)\leftarrow Rd(n),C\leftarrow Rd(7)$	Z,C,N,V	1
SMAP	ROR	Rd	Rotate Right Through Carry	$Rd(7)\leftarrow C,Rd(n)\leftarrow Rd(n+1),C\leftarrow Rd(0)$	Z,C,N,V	1
SERGIO	ASR	Rd	Arithmetic Shift Right	$Rd(n) \leftarrow Rd(n+1), n=06$	Z,C,N,V	1
BCLB S	SWAP	Rd	Swap Nibbles	Rd(30)←Rd(74),Rd(74)←Rd(30)	None	1
BST Rt, b Bit load from 1 Register to T T = Frito) T T BID Rtd b Bit load from 1 Register R4(b) + T None SEC J Set Carry C + 1 C SCL J Clear Carry C + 0 C SEN J Set Nagewe Flag N + 0 N N SEN J Set Year Flag Z + 0 N 2 SEZ J Clocar Zero Flag Z + 0 Z <td>BSET</td> <td>s</td> <td>Flag Set</td> <td>SREG(s) ← 1</td> <td>SREG(s)</td> <td>1</td>	BSET	s	Flag Set	SREG(s) ← 1	SREG(s)	1
BLD Rd, b Bit load from T to Register Ridbox - T C - 1 C C C 1 SEC L Set Carry C ← 0 C<	BCLR	S	Flag Clear	$SREG(s) \leftarrow 0$	SREG(s)	1
SEC Set Carry	BST	Rr, b	Bit Store from Register to T	$T \leftarrow Rr(b)$	Т	1
CLC Cen Carry C ← 0 C C SEN Set Negative Flag N ← 1 N N CLN Clear Negative Flag N ← 0 N N SEZ Set Set Flag 2 ← 1 2 2 CLZ Chear Zeno Flag 2 ← 0 2 1 SEI Global Interrupt Enable 1 ← 0 1 1 CLI Global Interrupt Enable 1 ← 0 1 1 1 SEI Global Interrupt Enable 1 ← 0 1 <	BLD	Rd, b	Bit load from T to Register	$Rd(b) \leftarrow T$	None	1
Sert Nogative Flag	SEC		Set Carry	C ← 1	С	1
CLN Clear Negative Flag N - 0 N 1 SEZ Sez Zoro Flag 2 - 1 2 1 CLZ Cloar Zero Flag 2 - 0 2 1 SE Global Interrupt Enable 1 - 0 1 1 SE Set Global Interrupt Enable 1 - 0 1 1 SES Set Suprad Test Flag S + 1 S 1 1 1 SES Cloar Suprad Test Flag S + 0 S 1	CLC		Clear Carry	C ← 0	С	1
SEZ	SEN		Set Negative Flag	N ← 1	N	1
CLZ Clarz Zeno Fisig Z ← 0 Z 1 <td>CLN</td> <td></td> <td>Clear Negative Flag</td> <td>N ← 0</td> <td>N</td> <td>1</td>	CLN		Clear Negative Flag	N ← 0	N	1
SEE	SEZ		Set Zero Flag	Z ← 1	Z	1
CLI Global Interrupt Disable 1 ← 0 1 1 1 1 1 5 2 SES Set Signed Test Flag S ← 0 S 1 SEV Set Twos Complement Overflow V ← 1 V 1 CLV Clear Two Complement Overflow V ← 0 V 1 SET Set Tim SREG T ← -1 T 1 1 CLT Clear Tim SREG T ← -0 T 7 1 1 SEH Set Half Carry Flag in SREG H ← -1 H H 1 <td>CLZ</td> <td></td> <td>Clear Zero Flag</td> <td>Z ← 0</td> <td>Z</td> <td>1</td>	CLZ		Clear Zero Flag	Z ← 0	Z	1
SES Set Symod Test Flag S + -1 S Image: CLS CLS Clear Signed Test Flag S + -0 S S SEV Set Twee Complement Overflow V + -1 V 1 CLV Clear Two Complement Overflow V + -0 V 1 SET Set Tain SEG T + -1 T T 1 1 CLT Clear Tin SREG T + -0 T 1	SEI		Global Interrupt Enable	I ← 1	ı	1
CLS Clear Signed Test Flag S ← 0 S S SEV Set Twos Complement Overflow. V + -1 V 1 CLV Clear Twos Complement Overflow. V + -1 V 1 SET Set Tin SREG T + -1 T 1 <td>CLI</td> <td></td> <td>Global Interrupt Disable</td> <td>1 ← 0</td> <td>1</td> <td>1</td>	CLI		Global Interrupt Disable	1 ← 0	1	1
SEV Set Tuos Complement Overflow V ← 1 V 1 CLV Clear Twos Complement Overflow V ← 0 V 1 SET Set Tin SREG T ← 1 T 1 1 CLT Clear Tin SREG T ← 0 T 1 <t< td=""><td>SES</td><td></td><td>Set Signed Test Flag</td><td>S ← 1</td><td>S</td><td>1</td></t<>	SES		Set Signed Test Flag	S ← 1	S	1
CLV Clear Twos Complement Overflow V ← 0 V SET 3st 1 in SREG T ← 1 T 1 CLT Clear Tin SREG T ← 0 T 1 SEH Set Half Carry Flag in SREG H ← 0 H 1 CLH Clear Half Carry Flag in SREG H ← 0 H 1 DATA TRANSFER INSTRUCTIONS MOV Rd, Rr Move Between Registers Rd ← Rr None 1 MOVW Rd, Rr Copy Register Word Rd + Rr None 1 LD Rd, K Load Immediate Rd ← K None 1 LD Rd, K Load Indirect and Post-Inc. Rd ← (X) None 2 LD Rd, Y Load Indirect and Post-Inc. Rd ← (Y) None 2 LD Rd, Y Load Indirect and Post-Inc. Rd ← (Y) None 2 LD Rd, Y Load Indirect and Post-Inc. Rd ← (Y) None 2 LD Rd, Y+ Load Indi	CLS		Clear Signed Test Flag	S ← 0	S	1
SET Set T in SREG T ← 1 T T CLT Clear T in SREG T ← 0 T T 1 1 SEH Set Half Carry Flag in SREG H ← 0 H H 1 1 CLH Clear Half Carry Flag in SREG H ← 0 H H 1 1 DLH Clear Half Carry Flag in SREG H ← 0 H H 1 </td <td>SEV</td> <td></td> <td>Set Twos Complement Overflow.</td> <td>V ← 1</td> <td>V</td> <td>1</td>	SEV		Set Twos Complement Overflow.	V ← 1	V	1
CLT Clear In SREG T ← 0 T T SEH Set Half Carry Flag in SREG H ← 1 H 1 CH Clear Flaff Carry Flag in SREG H ← 0 H 1 DATA TRANSFER INSTRUCTIONS None None 1 MOVW Rd, Rr Move Between Registers Rd ← Rr None 1 LDI Rd, K Load Inmediate Rd ← Rt None 1 LD Rd, K Load Indirect Rd ← (X) None 1 LD Rd, X Load Indirect and Post-Inc. Rd ← (X) None 2 LD Rd, Y Load Indirect and Post-Inc. Rd ← (Y) None 2 LD Rd, Y Load Indirect and Post-Inc. Rd ← (Y), Y ← Y + 1 None 2 LD Rd, Y Load Indirect and Pre-Dec. Y ← Y + 1, Rd ← (Y) None 2 LD Rd, Y Load Indirect and Pre-Dec. Y ← Y + 1, Rd ← (Y) None 2 LD Rd, Z+ Load Indirect and Pre-Dec.	CLV		Clear Twos Complement Overflow	V ← 0	V	1
SEH Set Half Carry Flag in SREG H ← 1 H 1 CLH Clear Half Carry Flag in SREG H ← 0 H H DATA TRANSFER NSTRUCTIONS To Clear Half Carry Flag in SREG Rd ← Rr None None MOV Rd, Rr Move Between Registers Rd ← Rr None 1 MOV Rd, Rr Copy Register Word Rd + GR ← Rr None 1 LD1 Rd, K Load Indirect Rd ← K None 1 LD Rd, X Load Indirect Rd ← CX None 2 LD Rd, X Load Indirect and Pre-Dec. X ← X + 1, Rd ← (X) None 2 LD Rd, Y Load Indirect and Pre-Dec. X ← X + 1, Rd ← (X) None 2 LD Rd, Y Load Indirect and Pre-Dec. Y ← Y + 1, Rd ← (Y) None 2 LD Rd, Y Load Indirect and Pre-Dec. Y ← Y + 1, Rd ← (Y) None 2 LD Rd, Z Load Indirect and Pre-Dec. Y ← Y + 1, Rd ← (Z) None 2	SET		Set T in SREG	T ← 1	T	1
CLH Clear Half Carry Flag in SREG H ← 0 H DATA TRANSFER INSTRUCTIONS MOV Rd, Rr Move Between Registers Rd ← Rr None 1 MOWW Rd, Rr Copy Register Word Rd+18d ← Rr+1:Rr None 1 LDI Rd, K Load Indirect Rd ← KR None 1 LD Rd, X Load Indirect and Post-Inc. Rd ← (X) None 2 LD Rd, X+ Load Indirect and Post-Inc. Rd ← (X), X ← X + 1 None 2 LD Rd, Y Load Indirect and Pre-Dec. X ← X+1, Rd ← (X) None 2 LD Rd, Y Load Indirect and Pre-Dec. Y ← Y+1, Rd ← (Y) None 2 LD Rd, Y+ Load Indirect and Pre-Dec. Y ← Y+1, Rd ← (Y) None 2 LD Rd, Y+ Load Indirect and Pre-Dec. Y ← Y+1, Rd ← (Y) None 2 LD Rd, Z Load Indirect and Pre-Dec. Y ← Y+1, Rd ← (Z) None 2 LD Rd, Z <	CLT		Clear T in SREG	T ← 0	T	1
DATA TRANSFER INSTRUCTIONS MOV Rd, Rr Move Between Registers Rd ← Rr None 1 MOVW Rd, Rr Copy Register Word Rd+1:Rd ← Rr+1:Rr None 1 LDI Rd, K Load Indirect Rd ← (X) None 1 LD Rd, X Load Indirect Rd ← (X) None 2 LD Rd, X+ Load Indirect and Post-Inc. Rd ← (X) None 2 LD Rd, X+ Load Indirect and Post-Inc. Rd ← (Y) None 2 LD Rd, Y Load Indirect and Post-Inc. Rd ← (Y) None 2 LD Rd, Y+ Load Indirect and Post-Inc. Rd ← (Y) + Y + 1, Rd ← (Y) None 2 LD Rd, Y+ Load Indirect and Post-Inc. Rd ← (Y) + Y + 1, Rd ← (Y) None 2 LD Rd, Z Load Indirect and Post-Inc. Rd ← (Z) None 2 LD Rd, Z Load Indirect and Post-Inc. Rd ← (Z) + Z + 1, Rd ← (Z) None 2 LD			, ,	H ← 1		1
MOV Rd, Rr Move Between Registers Rd ← Rr None 1 MOVW Rd, Rr Copy Register Word Rd+1:Rd ← Rr+1:Rr None 1 LDI Rd, K Load Immediate Rd ← K None 1 LD Rd, X Load Indirect and Post-Inc. Rd ← (X), X ← X + 1 None 2 LD Rd, X+ Load Indirect and Post-Inc. Rd ← (X), X ← X + 1 None 2 LD Rd, Y Load Indirect and Pre-Dec. X ← X + 1, Rd ← (X) None 2 LD Rd, Y Load Indirect and Post-Inc. Rd ← (Y), Y ← Y + 1 None 2 LD Rd, Y Load Indirect and Post-Inc. Rd ← (Y), Y ← Y + 1 None 2 LD Rd, Y Load Indirect with Displacement Rd ← (Y) None 2 LD Rd, Y Load Indirect with Displacement Rd ← (Z) None 2 LD Rd, Z+ Load Indirect with Displacement Rd ← (Z) None 2 LD Rd, Z- Load Indir	CLH		Clear Half Carry Flag in SREG	H ← 0	Н	1
MOWW Rd, Rr Copy Register Word Rd+1:Rd ← Rr+1:Rr None LDI Rd, K Load Indirect Rd ← K None 1 LD Rd, X Load Indirect Rd ← (X) None 2 LD Rd, X+ Load Indirect and Pre-Dec. X + X + 1, Rd ← (X) None 2 LD Rd, Y Load Indirect and Pre-Dec. X + X + 1, Rd ← (Y) None 2 LD Rd, Y Load Indirect and Pre-Dec. Rd ← (Y) None 2 LD Rd, Y+ Load Indirect and Pre-Dec. Y + Y + 7, Rd ← (Y) None 2 LD Rd, Y+ Load Indirect and Pre-Dec. Y + Y + 7, Rd ← (Y) None 2 LD Rd, 2+ Load Indirect and Pre-Dec. Y + Y + 7, Rd ← (Y) None 2 LD Rd, 2 Load Indirect and Pre-Dec. Rd ← (2) None 2 LD Rd, Z+ Load Indirect and Pre-Dec. Z - Z + 1, Rd ← (Z) None 2 LD Rd, X+ Load Indirect and Pre-Dec. Z					1	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			'		None	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					None	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			Load Immediate		None	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Rd, X	Load Indirect	$Rd \leftarrow (X)$	None	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	None	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						2
LD Rd, -Y Load Indirect and Pre-Dec. Y ← Y - 1, Rd ← (Y) None 2 LDD Rd, Y+q Load Indirect with Displacement Rd ← (Y+q) None 2 LD Rd, Z Load Indirect and Post-Inc. Rd ← (Z) None 2 LD Rd, Z+ Load Indirect and Post-Inc. Rd ← (Z), Z ← Z+1 None 2 LD Rd, Z+q Load Indirect with Displacement Rd ← (Z+q) None 2 LDD Rd, Z+q Load Indirect with Displacement Rd ← (Z+q) None 2 LDS Rd, k Load Direct from SRAM Rd ← (K) None 2 ST X, Rr Store Indirect (X) ← Rr None 2 ST X+, Rr Store Indirect and Post-Inc. (X) ← Rr, X ← X+1 None 2 ST Y+, Rr Store Indirect and Pre-Dec. X ← X-1, (X) ← Rr None 2 ST Y+, Rr Store Indirect of Post-Inc. (Y) ← Rr None 2 ST Y+, Rr Store Indirect with Displacement (Y) ← Rr None 2 ST					None	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1		None	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			· ·			2
LD Rd, -Z Load Indirect and Pre-Dec. $Z \leftarrow Z - 1$, Rd \leftarrow (Z) None 2 LDD Rd, Z+q Load Indirect with Displacement Rd \leftarrow (Z+q) None 2 LDS Rd, k Load Direct from SRAM Rd \leftarrow (K) None 2 ST X, Rr Store Indirect (X) \leftarrow Rr None 2 ST X+, Rr Store Indirect and Post-Inc. (X) \leftarrow Rr None 2 ST -X, Rr Store Indirect and Pre-Dec. X \leftarrow X - 1, (X) \leftarrow Rr None 2 ST Y, Rr Store Indirect and Pre-Dec. (Y) \leftarrow Rr None 2 ST Y+, Rr Store Indirect and Pre-Dec. (Y) \leftarrow Rr None 2 ST Y+, Rr Store Indirect and Pre-Dec. (Y) \leftarrow Rr None 2 ST Y+, Rr Store Indirect and Pre-Dec. (Y) \leftarrow Rr, Y \leftarrow Y+1 None 2 ST Y+, Rr Store Indirect and Pre-Dec. (Y) \leftarrow Rr, Y \leftarrow Y+1 None 2 ST Y+, Rr Store Indirect with Displacement (Y+q) \leftarrow Rr None 2 ST Y+q, Rr Store Indirect with Displacement (Y+q) \leftarrow Rr None 2 ST Z+, Rr Store Indirect and Pre-Dec. (Z) \leftarrow Rr None 2 ST Z+, Rr Store Indirect and Pre-Dec. (Z) \leftarrow Rr None 2 ST Z+, Rr Store Indirect and Pre-Dec. (Z) \leftarrow Rr None 2 ST Z+q, Rr Store Indirect and Pre-Dec. (Z) \leftarrow Rr None 2 ST Z+q, Rr Store Indirect and Pre-Dec. (Z) \leftarrow Rr None 2 ST Z+q, Rr Store Indirect with Displacement (Z) \leftarrow Rr None 2 ST Z+q, Rr Store Indirect with Displacement (Z+q) \leftarrow Rr None 2 ST Z+q, Rr Store Indirect with Displacement (Z+q) \leftarrow Rr None 2 ST Z+q, Rr Store Indirect with Displacement (Z+q) \leftarrow Rr None 2 ST Z+q, Rr Store Indirect with Displacement (Z+q) \leftarrow Rr None 3 ST Z+q, Rr Store Indirect with Displacement (Z+q) \leftarrow Rr None 3 ST Z+q, Rr Store Indirect with Displacement (Z+q) \leftarrow Rr None 3 ST Z+q, Rr Store Indirect with Displacement (Z+q) \leftarrow Rr None 3 ST Z+q, Rr Store Indirect with Displacement (Z+q) \leftarrow Rr None 3 ST Z+q, Rr Store Indirect with Displacement (Z+q) \leftarrow Rr None 3 ST Z+q, Rr Store Indirect with Displacement (Z+q) \leftarrow Rr None 3 ST Z+q, Rr Store Indirect None 3 ST Z+q, Rr Store In						2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		· ·	1			2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		· ·	·			2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				` `		2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						2
STY+, RrStore Indirect and Post-Inc. $(Y) \leftarrow Rr, Y \leftarrow Y+1$ None2ST-Y, RrStore Indirect and Pre-Dec. $Y \leftarrow Y-1, (Y) \leftarrow Rr$ None2STDY+q,RrStore Indirect with Displacement $(Y+q) \leftarrow Rr$ None2STZ, RrStore Indirect and Post-Inc. $(Z) \leftarrow Rr$ None2STZ+, RrStore Indirect and Pre-Dec. $(Z) \leftarrow Rr, Z \leftarrow Z+1$ None2ST-Z, RrStore Indirect and Pre-Dec. $(Z+q) \leftarrow Rr$ None2STDZ+q,RrStore Indirect with Displacement $(Z+q) \leftarrow Rr$ None2STSk, RrStore Direct to SRAM $(k) \leftarrow Rr$ None2LPMLoad Program MemoryR0 \leftarrow (Z)None3LPMRd, ZLoad Program MemoryRd \leftarrow (Z)None3LPMRd, Z+Load Program Memory and Post-IncRd \leftarrow (Z), Z \leftarrow Z+1None3SPMStore Program Memory(Z) \leftarrow R1:R0None-						2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1			2
STDY+q,RrStore Indirect with Displacement $(Y+q) \leftarrow Rr$ None2STZ, RrStore Indirect $(Z) \leftarrow Rr$ None2STZ+, RrStore Indirect and Post-Inc. $(Z) \leftarrow Rr, Z \leftarrow Z+1$ None2ST-Z, RrStore Indirect and Pre-Dec. $Z \leftarrow Z-1, (Z) \leftarrow Rr$ None2STDZ+q,RrStore Indirect with Displacement $(Z+q) \leftarrow Rr$ None2STSk, RrStore Direct to SRAM $(k) \leftarrow Rr$ None2LPMLoad Program Memory $R0 \leftarrow (Z)$ None3LPMRd, ZLoad Program Memory $Rd \leftarrow (Z)$ None3LPMRd, Z+Load Program Memory and Post-Inc $Rd \leftarrow (Z), Z \leftarrow Z+1$ None3SPMStore Program Memory $(Z) \leftarrow R1:R0$ None-						2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			'			2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1			2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			·			2
LPMRd, ZLoad Program MemoryRd \leftarrow (Z)None3LPMRd, Z+Load Program Memory and Post-IncRd \leftarrow (Z), Z \leftarrow Z+1None3SPMStore Program Memory(Z) \leftarrow R1:R0None-		k, Rr				2
LPMRd, Z+Load Program Memory and Post-IncRd \leftarrow (Z), Z \leftarrow Z+1None3SPMStore Program Memory(Z) \leftarrow R1:R0None-		ļ				3
SPM Store Program Memory (Z) ← R1:R0 None -			·			3
		Rd, Z+				3
IN			 		None	-
100,- 100,-1	IN	Rd, P	In Port	Rd ← P	None	1

Mnemonics	Operands	Description	Operation	Flags	#Clocks
PUSH	Rr	Push Register on Stack	STACK ← Rr	None	2
POP	Rd	Pop Register from Stack	Rd ← STACK	None	2
MCU CONTROL INS	TRUCTIONS				
NOP		No Operation		None	1
SLEEP		Sleep	(see specific descr. for Sleep function)	None	1
WDR		Watchdog Reset	(see specific descr. for WDR/timer)	None	1
BREAK		Break	For On-chip Debug Only	None	N/A

5. Ordering Information

5.1 ATmega164P

Speed (MHz) ⁽³⁾	Power Supply	Ordering Code	Package ⁽¹⁾	Operational Range
		ATmega164P-15AT ⁽²⁾		-40°C to +85°C
8-16	2.7 - 5.5V	ATmega164P-15AT1 ⁽²⁾	ML	-40°C to +105°C
		ATmega164P-15AZ ⁽²⁾		-40°C to +125°C
		ATmega164P-15MT ⁽²⁾		-40°C to +85°C
8-16	2.7 - 5.5V	ATmega164P-15MT1 ⁽²⁾	PW	-40°C to +105°C
		ATmega164P-15MZ ⁽²⁾		-40°C to +125°C

Notes: 1. Green and Rohs packaging

2. Tape & Reel with Dry-pack delivery

3. For Speed vs. V_{CC} see "Speed Grades" on page 326

	Package Type
ML	44-lead, Thin (1.0 mm) Plastic Gull Wing Quad Flat Package (TQFP)
PW	44-pad, 7 x 7 x 1.0 mm body, lead pitch 0.50 mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

5.2 ATmega324P

Speed (MHz) ⁽³⁾	Power Supply	Ordering Code	Package ⁽¹⁾	Operational Range
		ATmega324P-15AT ⁽²⁾		-40°C to +85°C
8-16	2.7 - 5.5V	ATmega324P-15AT1 ⁽²⁾	ML	-40°C to +105°C
		ATmega324P-15AZ ⁽²⁾		-40°C to +125°C
	3-16 2.7 - 5.5V	ATmega324P-15MT ⁽²⁾	PW	-40°C to +85°C
8-16		ATmega324P-15MT1 ⁽²⁾		-40°C to +105°C
		ATmega324P-15MZ ⁽²⁾		-40°C to +125°C

Notes: 1. Green and Rohs packaging

2. Tape & Reel with Dry-pack delivery

3. For Speed vs. V_{CC} see "Speed Grades" on page 326

Package Type	
ML	44-lead, Thin (1.0 mm) Plastic Gull Wing Quad Flat Package (TQFP)
PW	44-pad, 7 x 7 x 1.0 mm body, lead pitch 0.50 mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)

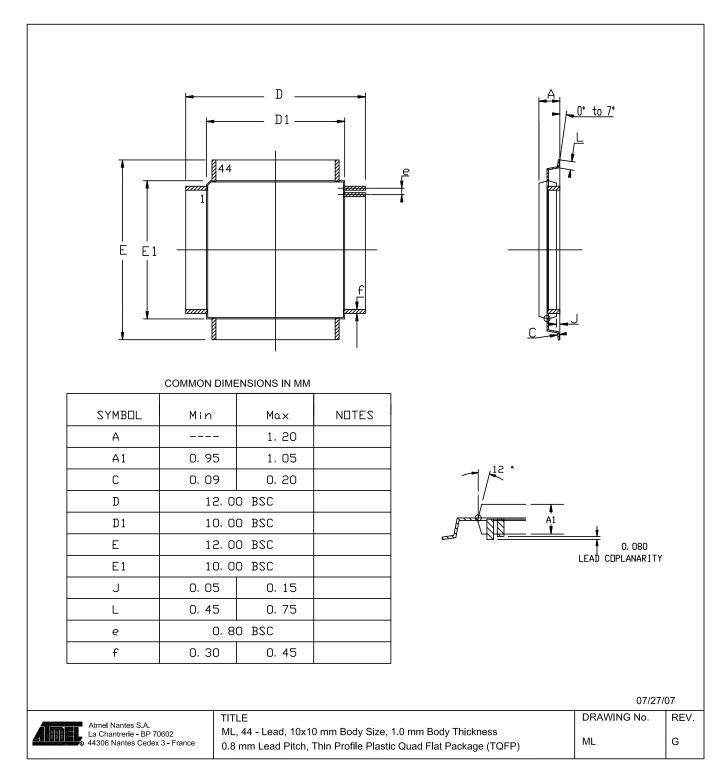
5.3 ATmega644P

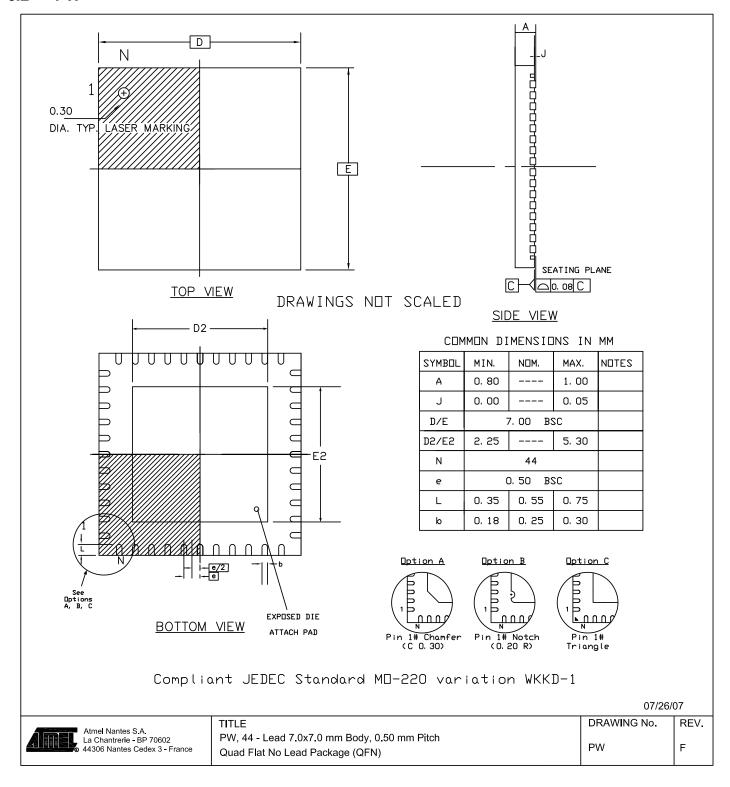
Speed (MHz)(3)	Power Supply	Ordering Code	Package ⁽¹⁾	Operational Range
		ATmega644P-15AT (2)		-40°C to +85°C
8-16	2.7 - 5.5V	ATmega644P-15AT1 ⁽²⁾	ML	-40°C to +105°C
		ATmega644P-15AZ (2)		-40°C to +125°C
		ATmega644P-15MT (2)		-40°C to +85°C
8-16	2.7 - 5.5V	ATmega644P-15MT1 ⁽²⁾	PW	-40°C to +105°C
		ATmega644P-15MZ (2)		-40°C to +125°C

Notes: 1. Green and Rohs packaging

2. Tape & Reel with Dry-pack delivery

3. For Speed vs. V_{CC} see "Speed Grades" on page 326.


Package Type	
ML	44-lead, Thin (1.0 mm) Plastic Gull Wing Quad Flat Package (TQFP)
PW	44-pad, 7 x 7 x 1.0 mm body, lead pitch 0.50 mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)



6. Packaging Information

6.1 ML

6.2 PW

NOTES: QFN STANDARD NOTES

- 1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M. 1994.
- 2. DIMENSION 6 APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 mm FROM TERMINAL TIP. IF THE TERMINAL HAS THE OPTIONAL RADIUS ON THE OTHER END OF THE TERMINAL, THE DIMENSION 6 SHOULD NOT BE MEASURED IN THAT RADIUS AREA.
- 3. MAX. PACKAGE WARPAGE IS 0.05mm.
- 4. MAXIMUM ALLOWABLE BURRS IS 0.076 mm IN ALL DIRECTIONS.
- 5. PIN #1 ID ON TOP WILL BE LASER MARKED.
- 6. THIS DRAWING CONFORMES TO JEDEC REGISTERED OUTLINE MO-220.
- 7. A MAXIMUM 0.15mm PULL BACK (L1) MAY BE PRESENT.

 L MINUS L1 TO BE EQUAL TO OR GREATER THAN 0.30 mm
- 8. THE TERMINAL #1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE ZONE INDICATE!
 THE TERMINAL #1 IDENTIFIER BE EITHER A MOLD OR MARKED FEATURE

7. Errata

7.1 ATmega164P Rev. A

No known Errata.

7.2 ATmega324P Rev. A

No known Errata.

7.3 ATmega644P Rev. A

No known Errata.

8. Datasheet Revision History

Please note that the referring page numbers in this section are referred to this document. The referring revision in this section are referring to the document revision.

8.1 Rev. 7674C -05/08

- 1. VIL reset pin update. Section 26.1 on page 325.
- 2. Updated EEPROM endurance. See "Features" on page 1.

8.2 Rev. 7674B -01/08

1. Update to electrical characteristics after product characterization.

8.3 Rev. 7674A - 04/07

- 1. Initial Automotive revision
- 2. Insertion of specific § for automative quality references
- 3. DC and Frequency adapted to Automotive temperature range
- 4. Part numbering and package selection according to Automotive rules
- 5. Current Consumption adapted based on Industrial electrical characterization.

9. Datasheet Revision History

Please note that the referring page numbers in this section are referred to this document. The referring revision in this section are referring to the document revision.

9.1 Rev. 7674D -08/08

- 1. Added ADC differential mode electrical characteristics for ATMega164 Table 26-10 on page 334.
- 2. Removed Ramp Z register.

9.2 Rev. 7674C -05/08

- 1. VIL reset pin update. Section 26.1 on page 325.
- 2. Updated EEPROM endurance. See "Features" on page 1.

9.3 Rev. 7674B -01/08

1. Update to electrical characteristics after product characterization.

9.4 Rev. 7674A - 04/07

- 1. Initial Automotive revision
- 2. Insertion of specific § for automative quality references
- 3. DC and Frequency adapted to Automotive temperature range
- 4. Part numbering and package selection according to Automotive rules
- 5. Current Consumption adapted based on Industrial electrical characterization.

Headquarters

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131 USA

Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

International

Atmel Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong

Tel: (852) 2721-9778 Fax: (852) 2722-1369 Atmel Europe

France

Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-en-Yvelines Cedex

Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11

Atmel Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan

Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Product Contact

Web Site

www.atmel.com

Technical Support

avr@atmel.com

Sales Contact

www.atmel.com/contacts

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.