

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	6
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 4x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-SOIC (0.154", 3.90mm Width)
Supplier Device Package	8-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic12lf1822t-i-sn

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description
RA5/CLKIN/OSC1/T1OSI/T1CKI	RA5	TTL	CMOS	General purpose I/O.
	CLKIN	CMOS		External clock input (EC mode).
	OSC1	XTAL		Crystal/Resonator (LP, XT, HS modes).
	T10SI	XTAL	XTAL	Timer1 oscillator connection.
	T1CKI	ST	_	Timer1 clock input.
RC0/AN4/CPS4/C2IN+/SCL/	RC0	TTL	CMOS	General purpose I/O.
SCK	AN4	AN		A/D Channel 4 input.
	CPS4	AN		Capacitive sensing input 4.
	C2IN+	AN		Comparator C2 positive input.
	SCL	l ² C™	OD	I ² C [™] clock.
	SCK	ST	CMOS	SPI clock.
RC1/AN5/CPS5/C12IN1-/SDA/	RC1	TTL	CMOS	General purpose I/O.
SDI	AN5	AN	_	A/D Channel 5 input.
	CPS5	AN	_	Capacitive sensing input 5.
	C12IN1-	AN	_	Comparator C1 or C2 negative input.
	SDA	I ² C™	OD	I ² C™ data input/output.
	SDI	CMOS		SPI data input.
RC2/AN6/CPS6/C12IN2-/P1D/	RC2	TTL	CMOS	General purpose I/O.
SDO ⁽¹⁾ /MDCIN1	AN6	AN		A/D Channel 6 input.
	CPS6	AN		Capacitive sensing input 6.
	C12IN2-	AN		Comparator C1 or C2 negative input.
	P1D		CMOS	PWM output.
	SDO	_	CMOS	SPI data output.
	MDCIN1	ST		Modulator Carrier Input 1.
RC3/AN7/CPS7/C12IN3-/P1C/	RC6	TTL	CMOS	General purpose I/O.
SS ⁽¹⁾ /MDMIN	AN7	AN		A/D Channel 6 input.
	CPS7	AN	_	Capacitive sensing input 6.
	C12IN3-	AN	_	Comparator C1 or C2 negative input.
	P1C		CMOS	PWM output.
	SS	ST		Slave Select input.
	MDMIN	ST		Modulator source input.
RC4/C2OUT/SRNQ/P1B/CK ⁽¹⁾ /	RC4	TTL	CMOS	General purpose I/O.
TX ⁽¹⁾ /MDOUT	C2OUT		CMOS	Comparator C2 output.
	SRNQ		CMOS	SR latch inverting output.
	P1B	_	CMOS	PWM output.
	СК	ST	CMOS	USART synchronous clock.
	ТΧ		CMOS	USART asynchronous transmit.
	MDOUT	_	CMOS	Modulator output.
RC5/P1A/CCP1/DT ⁽¹⁾ /RX ⁽¹⁾ /	RC5	TTL	CMOS	General purpose I/O.
MDCIN2	P1A	—	CMOS	PWM output.
	CCP1	ST	CMOS	Capture/Compare/PWM 1.
	DT	ST	CMOS	USART synchronous data.
	RX	ST		USART asynchronous input.
	MDCIN2	ST		Modulator Carrier Input 2.
Legend: AN = Analog input or c	output CMC	DS= CMC	DS compa	atible input or output OD = Open Drain
HV = High Voltage	TIPUL ST XTAI	- Schi L = Crys	stal	

TABLE 1-3: PIC16(L)F1823 PINOUT DESCRIPTION (CONTINUED)

Note 1: Pin functions can be assigned to one of two pin locations via software. See APFCON register (Register 12-1).

			01101101								
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 6											
300h ⁽¹⁾	INDF0	Addressing this location uses contents of FSR0H/FSR0L to address data memory (not a physical register)								XXXX XXXX	XXXX XXXX
301h ⁽¹⁾	INDF1	Addressing to (not a physic	his location us al register)	es contents of	FSR1H/FSR1	1L to address	data memor	y		XXXX XXXX	XXXX XXXX
302h ⁽¹⁾	PCL	Program Cou	Program Counter (PC) Least Significant Byte								0000 0000
303h ⁽¹⁾	STATUS	_	_	_	TO	PD	Z	DC	С	1 1000	q quuu
304h ⁽¹⁾	FSR0L	Indirect Data	Memory Addr	ress 0 Low Poi	nter		•		•	0000 0000	uuuu uuuu
305h ⁽¹⁾	FSR0H	Indirect Data	Memory Addr	ress 0 High Po	inter					0000 0000	0000 0000
306h ⁽¹⁾	FSR1L	Indirect Data	Memory Addr	ess 1 Low Poi	nter					0000 0000	uuuu uuuu
307h ⁽¹⁾	FSR1H	Indirect Data	Memory Addr	ress 1 High Po	inter					0000 0000	0000 0000
308h ⁽¹⁾	BSR	_	_	_			BSR<4:0>			0 0000	0 0000
309h ⁽¹⁾	WREG	Working Reg	ister	•	•					0000 0000	uuuu uuuu
30Ah ⁽¹⁾	PCLATH	_	Write Buffer	for the upper 7	bits of the Pro	ogram Counte	er			-000 0000	-000 0000
30Bh ⁽¹⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 000x	0000 000u
30Ch	—	Unimplemen	ted	•			•		•	_	
30Dh	—	Unimplemen	ted							_	
30Eh	—	Unimplemen	ted							_	_
30Fh	—	Unimplemen	ted							_	
310h	—	Unimplemen	ted							_	_
311h	—	Unimplemen	ted							_	_
312h	—	Unimplemen	ted							_	_
313h	—	Unimplemen	ted							_	_
314h	—	Unimplemen	ted							_	_
315h	—	Unimplemen	ted							_	_
316h	—	Unimplemen	ted							_	_
317h	—	Unimplemen	ted							_	_
318h	—	Unimplemen	ted							_	_
319h	—	Unimplemen	ted							_	_
31Ah	—	Unimplemen	ted							_	_
31Bh	—	Unimplemen	ted							_	_
31Ch	—	Unimplemen	ted							_	_
31Dh	_	Unimplemen	ted							_	
31Eh	—	Unimplemen	ted							_	
31Fh	—	Unimplemen	ted							_	_

TABLE 3-8 SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from any bank.

PIC16(L)F1823 only. 2:

Unimplemented. Read as '1'. 3:

4: PIC12(L)F1822 only.

								/			
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Banks	Banks 9-30										
x00h/ x80h ⁽¹⁾	INDF0 Addressing this location uses contents of FSR0H/FSR0L to address data memory (not a physical register)									XXXX XXXX	XXXX XXXX
x00h/ x81h ⁽¹⁾	INDF1	Addressing t (not a physic	Addressing this location uses contents of FSR1H/FSR1L to address data memory (not a physical register)								
x02h/ x82h ⁽¹⁾	PCL	Program Cou	unter (PC) Lea	ist Significant E	3yte					0000 0000	0000 0000
x03h/ x83h ⁽¹⁾	STATUS	—	-	—	TO	PD	Z	DC	С	1 1000	q quuu
x04h/ x84h ⁽¹⁾	FSR0L	Indirect Data	Memory Addr	ess 0 Low Poir	nter					0000 0000	uuuu uuuu
x05h/ x85h ⁽¹⁾	FSR0H	Indirect Data	Memory Addr	ess 0 High Poi	inter					0000 0000	0000 0000
x06h/ x86h ⁽¹⁾	FSR1L	Indirect Data	Memory Addr	ess 1 Low Poir	nter					0000 0000	uuuu uuuu
x07h/ x87h ⁽¹⁾	FSR1H	Indirect Data	Memory Addr	ess 1 High Poi	inter					0000 0000	0000 0000
x08h/ x88h ⁽¹⁾	BSR	—	_				BSR<4:0>			0 0000	0 0000
x09h/ x89h ⁽¹⁾	WREG	Working Reg	ister							0000 0000	uuuu uuuu
x0Ah/ x8Ah ⁽¹⁾	PCLATH	—	Write Buffer	for the upper 7	bits of the Pro	ogram Counte	er			-000 0000	-000 0000
x0Bh/ x8Bh (1)	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 000x	0000 000u
x0Ch/ x8Ch	_	Unimplemen	Unimplemented								_
 x1Fh/ x9Fh											

SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) TABLE 3-8

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved.

Shaded locations are unimplemented, read as '0'. Note

1: These registers can be addressed from any bank.

2: PIC16(L)F1823 only.

3: Unimplemented. Read as '1'.

4: PIC12(L)F1822 only.

10.1 Independent Clock Source

The WDT derives its time base from the 31 kHz LFINTOSC internal oscillator.

10.2 WDT Operating Modes

The Watchdog Timer module has four operating modes controlled by the WDTE<1:0> bits in Configuration Word 1. See Table 10-1.

10.2.1 WDT IS ALWAYS ON

When the WDTE bits of Configuration Word 1 are set to '11', the WDT is always on.

WDT protection is active during Sleep.

10.2.2 WDT IS OFF IN SLEEP

When the WDTE bits of Configuration Word 1 are set to '10', the WDT is on, except in Sleep.

WDT protection is not active during Sleep.

10.2.3 WDT CONTROLLED BY SOFTWARE

When the WDTE bits of Configuration Word 1 are set to '01', the WDT is controlled by the SWDTEN bit of the WDTCON register.

WDT protection is unchanged by Sleep. See Table 10-1 for more details.

WDTE Config bits	SWDTEN	Device Mode	WDT Mode
WDT_ON (11)	х	Х	Active
WDT_NSLEEP (10)	х	Awake	Active
WDT_NSLEEP (10)	х	Sleep	Disabled
WDT_SWDTEN (01)	1	Х	Active
WDT_SWDTEN (01)	0	Х	Disabled
WDT_OFF (00)	Х	Х	Disabled

TABLE 10-1:WDT OPERATING MODES

10.3 Time-Out Period

The WDTPS bits of the WDTCON register set the time-out period from 1 ms to 256 seconds. After a Reset, the default time-out period is two seconds.

10.4 Clearing the WDT

The WDT is cleared when any of the following conditions occur:

- Any Reset
- CLRWDT instruction is executed
- · Device enters Sleep
- · Device wakes up from Sleep
- · Oscillator fail event
- WDT is disabled
- OST is running

See Table 10-2 for more information.

10.5 Operation During Sleep

When the device enters Sleep, the WDT is cleared. If the WDT is enabled during Sleep, the WDT resumes counting.

When the device exits Sleep, the WDT is cleared again. The WDT remains clear until the OST, if enabled, completes. See **Section 5.0** "Oscillator **Module (With Fail-Safe Clock Monitor)**" for more information on the OST.

When a WDT time-out occurs while the device is in Sleep, no Reset is generated. Instead, the device wakes up and resumes operation. The TO and PD bits in the STATUS register are changed to indicate the event. See **Section 3.0 "Memory Organization"** and The STATUS register (Register 3-1) for more information.

TABLE 10-2: WDT CLEARING CONDITIONS

Conditions	WDT		
WDTE<1:0> = 00			
WDTE<1:0> = 01 and SWDTEN = 0			
WDTE<1:0> = 10 and enter Sleep	Cleared		
CLRWDT Command	Cleared		
Oscillator Fail Detected			
Exit Sleep + System Clock = T1OSC, EXTRC, INTOSC, EXTCLK			
Exit Sleep + System Clock = XT, HS, LP Cleared until the end of			
Change INTOSC divider (IRCF bits)	Unaffected		

11.6 Write Verify

Depending on the application, good programming practice may dictate that the value written to the data EEPROM or program memory should be verified (see Example 11-6) to the desired value to be written. Example 11-6 shows how to verify a write to EEPROM.

EXAMPLE 11-6: EEPROM WRITE VERIFY

BANKSEL	EEDATL	;
MOVF	EEDATL, W	;EEDATL not changed
		;from previous write
BSF	EECON1, RE	;YES, Read the
		;value written
XORWF	EEDATL, W	;
BTFSS	STATUS, Z	;Is data the same
GOTO	WRITE_ERR	;No, handle error
:		;Yes, continue

15.0 TEMPERATURE INDICATOR MODULE

This family of devices is equipped with a temperature circuit designed to measure the operating temperature of the silicon die. The circuit's range of operating temperature falls between of -40° C and $+85^{\circ}$ C. The output is a voltage that is proportional to the device temperature. The output of the temperature indicator is internally connected to the device ADC.

The circuit may be used as a temperature threshold detector or a more accurate temperature indicator, depending on the level of calibration performed. A one-point calibration allows the circuit to indicate a temperature closely surrounding that point. A two-point calibration allows the circuit to sense the entire range of temperature more accurately. Reference Application Note AN1333, "Use and Calibration of the Internal Temperature Indicator" (DS01333) for more details regarding the calibration process.

15.1 Circuit Operation

Figure 15-1 shows a simplified block diagram of the temperature circuit. The proportional voltage output is achieved by measuring the forward voltage drop across multiple silicon junctions.

Equation 15-1 describes the output characteristics of the temperature indicator.

EQUATION 15-1: VOUT RANGES

High Range: VOUT = VDD - 4VT

Low Range: VOUT = VDD - 2VT

The temperature sense circuit is integrated with the Fixed Voltage Reference (FVR) module. See **Section 14.0 "Fixed Voltage Reference (FVR)"** for more information.

The circuit is enabled by setting the TSEN bit of the FVRCON register. When disabled, the circuit draws no current.

The circuit operates in either high or low range. The high range, selected by setting the TSRNG bit of the FVRCON register, provides a wider output voltage. This provides more resolution over the temperature range, but may be less consistent from part to part. This range requires a higher bias voltage to operate and thus, a higher VDD is needed.

The low range is selected by clearing the TSRNG bit of the FVRCON register. The low range generates a lower voltage drop and thus, a lower bias voltage is needed to operate the circuit. The low range is provided for low voltage operation.

FIGURE 15-1: T

TEMPERATURE CIRCUIT DIAGRAM

15.2 Minimum Operating VDD vs. Minimum Sensing Temperature

When the temperature circuit is operated in low range, the device may be operated at any operating voltage that is within specifications.

When the temperature circuit is operated in high range, the device operating voltage, VDD, must be high enough to ensure that the temperature circuit is correctly biased.

Table 15-1 shows the recommended minimum VDD vs. range setting.

TABLE 15-1: RECOMMENDED VDD VS. RANGE

Min. VDD, TSRNG = 1	Min. VDD, TSRNG = 0					
3.6V	1.8V					

15.3 Temperature Output

The output of the circuit is measured using the internal analog to digital converter. A channel is reserved for the temperature circuit output. Refer to **Section 16.0 "Analog-to-Digital Converter (ADC) Module"** for detailed information.

15.3.1 ADC ACQUISITION TIME

To ensure accurate temperature measurements, the user must wait at least 200 usec after the ADC input multiplexer is connected to the temperature indicator output before the conversion is performed. In addition, the user must wait 200 usec between sequential conversions of the temperature indicator output.

20.0 TIMER0 MODULE

The Timer0 module is an 8-bit timer/counter with the following features:

- 8-bit timer/counter register (TMR0)
- 8-bit prescaler (independent of Watchdog Timer)
- Programmable internal or external clock source
- Programmable external clock edge selection
- Interrupt on overflow
- TMR0 can be used to gate Timer1

Figure 20-1 is a block diagram of the Timer0 module.

20.1 Timer0 Operation

The Timer0 module can be used as either an 8-bit timer or an 8-bit counter.

20.1.1 8-BIT TIMER MODE

The Timer0 module will increment every instruction cycle, if used without a prescaler. 8-bit Timer mode is selected by clearing the TMR0CS bit of the OPTION register.

When TMR0 is written, the increment is inhibited for two instruction cycles immediately following the write.

Note: The value written to the TMR0 register can be adjusted, in order to account for the two instruction cycle delay when TMR0 is written.

20.1.2 8-BIT COUNTER MODE

In 8-Bit Counter mode, the Timer0 module will increment on every rising or falling edge of the T0CKI pin or the Capacitive Sensing Oscillator (CPSCLK) signal.

8-Bit Counter mode using the T0CKI pin is selected by setting the TMR0CS bit in the OPTION register to '1' and resetting the T0XCS bit in the CPSCON0 register to '0'.

8-Bit Counter mode using the Capacitive Sensing Oscillator (CPSCLK) signal is selected by setting the TMR0CS bit in the OPTION register to '1' and setting the T0XCS bit in the CPSCON0 register to '1'.

The rising or falling transition of the incrementing edge for either input source is determined by the TMR0SE bit in the OPTION register.

FIGURE 20-1: BLOCK DIAGRAM OF THE TIMER0

FIGURE 21-6:	TIMER1 GATE SINGLI	E-PULSE AND TOGGLE COMBINED MODE
TMR1GE		
T1GPOL		
T1GSPM		
T1GTM		
T1GG <u>O/</u> DONE	✓ Set by software Counting enabled	on
T1G_IN		
Т1СКІ		
T1GVAL		
Timer1	Ν	N + 1 N + 2 N + 3 N + 4
TMR1GIF	 Cleared by software 	Set by hardware on Cleared by falling edge of T1GVAL —

REGISTER 24-1: CCP1CON: CCP1 CONTROL REGISTER

R/W-00	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
P1M<	1:0>(1)	DC1B-	<1:0>		CCP1M	1<3:0>				
bit 7							bit 0			
Legend:										
R = Readable b	it	W = Writable bit		U = Unimpleme	ented bit, read as	ʻ0'				
u = Bit is uncha	nged	x = Bit is unknow	vn	-n/n = Value at	POR and BOR/V	alue at all other	Reset			
'1' = Bit is set		'0' = Bit is cleare	ed							
L:4 7 0				:						
DIT 7-6	Conturo modo:		put Configurat	ion dits."						
	Unused	<u>.</u>								
	Compare mode	<u>ə:</u>								
	Unused									
	PWM mode:									
	If CCP1M<3:	<u>:2> = 00, 01, 10:</u>	<i>(</i> 2			(1)				
	xx = P1Aas	ssigned as Captur	e/Compare inp	out; P1B, P1C, P1	D assigned as po	ort pins(")				
	0.0 = Single	. <u>∠> = ⊥⊥.</u> output: P1A modi	ilated P1B P	1C P1D assigned	as port pins					
	01 = Full-Br	idge output forwar	rd; P1D modul	ated; P1A active;	P1B, P1C inactiv	e ⁽¹⁾				
	10 = Half-Br 11 = Full-Br	f-Bridge output; P1A, P1B modulated with dead-band control; P1C, P1D assigned as port pins								
hit 5-4	DC1B<1:0>: P	WM Duty Cycle I	east Significar	at hits		c				
bit 0 4	Capture mode:		cust orginitour							
	Unused	<u>.</u>								
	Compare mode	<u>e:</u>								
	Unused									
	PWM mode:					000041				
hit 2 0		ECCD1 Mode Se	le PVVIVI duty (cycle. The eight M	Sbs are found in	CCPRIL.				
DIL 3-0		ECCPT Mode Se	lect bits	CP1 modulo)						
	0000 - Capit	rved								
	0010 = Comp	oare mode: toggle	output on mat	ch						
	0011 = Reser	rved								
	0100 = Captu	ure mode: everv fa	Illina edae							
	0101 = Captu	ure mode: every ri	sing edge							
	0110 = Captu	ure mode: every 4	th rising edge							
	0111 = Captu	are mode: every 1	6th rising edge	2						
	1000 = Comp	oare mode: initializ	e ECCP1 pin	low; set output on	compare match	(set CCP1IF)				
	1001 = Comp	oare mode: initializ	e mode: initialize ECCP1 pin high; clear output on compare match (set CCP1IF)							
	1010 = Comp	pare mode: genera	ate software in	terrupt only; ECCF	P1 pin reverts to I	/O state				
	if A/D	module is enable	d)	r (CCP1 resets 11	mer, sets CCP III	- Dit, and starts	A/D conversion			
	PWM mode:	mode: D1A D1C	antivo histo D		h					
	1101 = PWM	mode: P1A, P1C mode: P1A. P1C	active-high; P	1B, P1D active-hig	yıı N					
	1110 = PWM	mode: P1A, P1C	active-low; P1	B, P1D active-hig	h					
	1111 = PWM	mode: P1A, P1C	active-low; P1	B, P1D active-low	1					

Note 1: PIC16(L)F1823 only.

© 2010-2015 Microchip Technology Inc.

25.6.5 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition (Figure 25-27) occurs when the RSEN bit of the SSP1CON2 register is programmed high and the Master state machine is no longer active. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the Baud Rate Generator is loaded and begins counting. The SDA pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, if SDA is sampled high, the SCL pin will be deasserted (brought high). When SCL is sampled high, the Baud Rate Generator is reloaded and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA = 0) for one TBRG while SCL is high. SCL is asserted low. Following this, the RSEN bit of the SSP1CON2 register will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDA pin held low. As soon as a Start condition is detected on the SDA and SCL pins, the S bit of the SSP1STAT register will be set. The SSP1IF bit will not be set until the Baud Rate Generator has timed out.

- Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.2: A bus collision during the Repeated Start
 - condition occurs if:

 SDA is sampled low when SCL
 - goes from low-to-high.
 - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data '1'.

FIGURE 25-27: REPEAT START CONDITION WAVEFORM

25.6.6 I²C MASTER MODE TRANSMISSION

Transmission of a data byte, a 7-bit address or the other half of a 10-bit address is accomplished by simply writing a value to the SSP1BUF register. This action will set the Buffer Full flag bit, BF, and allow the Baud Rate Generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDA pin after the falling edge of SCL is asserted. SCL is held low for one Baud Rate Generator rollover count (TBRG). Data should be valid before SCL is released high. When the SCL pin is released high, it is held that way for TBRG. The data on the SDA pin must remain stable for that duration and some hold time after the next falling edge of SCL. After the eighth bit is shifted out (the falling edge of the eighth clock), the BF flag is cleared and the master releases SDA. This allows the slave device being addressed to respond with an ACK bit during the ninth bit time if an address match occurred, or if data was received properly. The status of ACK is written into the ACKSTAT bit

on the rising edge of the ninth clock. If the master receives an Acknowledge, the Acknowledge Status bit, ACKSTAT, is cleared. If not, the bit is set. After the ninth clock, the SSP1IF bit is set and the master clock (Baud Rate Generator) is suspended until the next data byte is loaded into the SSP1BUF, leaving SCL low and SDA unchanged (Figure 25-28).

After the write to the SSP1BUF, each bit of the address will be shifted out on the falling edge of SCL until all seven address bits and the R/W bit are completed. On the falling edge of the eighth clock, the master will release the SDA pin, allowing the slave to respond with an Acknowledge. On the falling edge of the ninth clock, the master will sample the SDA pin to see if the address was recognized by a slave. The status of the ACK bit is loaded into the ACKSTAT Status bit of the SSP1CON2 register. Following the falling edge of the ninth clock transmission of the address, the SSP1IF is set, the BF flag is cleared and the Baud Rate Generator is turned off until another write to the SSP1BUF takes place, holding SCL low and allowing SDA to float.

26.1.2 EUSART ASYNCHRONOUS RECEIVER

The Asynchronous mode is typically used in RS-232 systems. The receiver block diagram is shown in Figure 26-2. The data is received on the RX/DT pin and drives the data recovery block. The data recovery block is actually a high-speed shifter operating at 16 times the baud rate, whereas the serial Receive Shift Register (RSR) operates at the bit rate. When all eight or nine bits of the character have been shifted in, they are immediately transferred to a two character First-In-First-Out (FIFO) memory. The FIFO buffering allows reception of two complete characters and the start of a third character before software must start servicing the EUSART receiver. The FIFO and RSR registers are not directly accessible by software. Access to the received data is via the RCREG register.

26.1.2.1 Enabling the Receiver

The EUSART receiver is enabled for asynchronous operation by configuring the following three control bits:

- CREN = 1
- SYNC = 0
- SPEN = 1

All other EUSART control bits are assumed to be in their default state.

Setting the CREN bit of the RCSTA register enables the receiver circuitry of the EUSART. Clearing the SYNC bit of the TXSTA register configures the EUSART for asynchronous operation. Setting the SPEN bit of the RCSTA register enables the EUSART. The programmer must set the corresponding TRIS bit to configure the RX/DT I/O pin as an input.

Note 1: If the RX/DT function is on an analog pin, the corresponding ANSEL bit must be cleared for the receiver to function.

26.1.2.2 Receiving Data

The receiver data recovery circuit initiates character reception on the falling edge of the first bit. The first bit, also known as the Start bit, is always a zero. The data recovery circuit counts one-half bit time to the center of the Start bit and verifies that the bit is still a zero. If it is not a zero then the data recovery circuit aborts character reception, without generating an error, and resumes looking for the falling edge of the Start bit. If the Start bit zero verification succeeds then the data recovery circuit counts a full bit time to the center of the next bit. The bit is then sampled by a majority detect circuit and the resulting '0' or '1' is shifted into the RSR. This repeats until all data bits have been sampled and shifted into the RSR. One final bit time is measured and the level sampled. This is the Stop bit, which is always a '1'. If the data recovery circuit samples a '0' in the Stop bit position then a framing error is set for this character, otherwise the framing error is cleared for this character. See Section 26.1.2.4 "Receive Framing Error" for more information on framing errors.

Immediately after all data bits and the Stop bit have been received, the character in the RSR is transferred to the EUSART receive FIFO and the RCIF interrupt flag bit of the PIR1 register is set. The top character in the FIFO is transferred out of the FIFO by reading the RCREG register.

Note:	If the receive FIFO is overrun, no additional								
	characters will be received until the overrun								
	condition is cleared. See Section 26.1.2.5								
	"Receive Overrun Error" for more								
	information on overrun errors.								

26.1.2.3 Receive Interrupts

The RCIF interrupt flag bit of the PIR1 register is set whenever the EUSART receiver is enabled and there is an unread character in the receive FIFO. The RCIF interrupt flag bit is read-only, it cannot be set or cleared by software.

RCIF interrupts are enabled by setting all of the following bits:

- RCIE interrupt enable bit of the PIE1 register
- PEIE peripheral interrupt enable bit of the INTCON register
- GIE global interrupt enable bit of the INTCON register

The RCIF interrupt flag bit will be set when there is an unread character in the FIFO, regardless of the state of interrupt enable bits.

					SYNC	SYNC = 0, BRGH = 1, BRG16 = 0							
BAUD	Fos	c = 8.00	0 MHz	Fos	c = 4.00	= 4.000 MHz		Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	—	—	—	_	_				_	300	0.16	207	
1200	—	—	—	1202	0.16	207	1200	0.00	191	1202	0.16	51	
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25	
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	—	_	_	
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5	
19.2k	19231	0.16	25	19.23k	0.16	12	19.2k	0.00	11	—	_	_	
57.6k	55556	-3.55	8	—	_	_	57.60k	0.00	3	—	_	_	
115.2k	—	—	_	—	—		115.2k	0.00	1	—	—	—	

TABLE 26-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

	SYNC = 0, BRGH = 0, BRG16 = 1											
BAUD	Fosc = 32.000 MHz			Fosc	= 20.00	0 MHz	Foso	: = 18.43	2 MHz	Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	300.0	0.00	6666	300.0	-0.01	4166	300.0	0.00	3839	300.0	0.00	2303
1200	1200	-0.02	3332	1200	-0.03	1041	1200	0.00	959	1200	0.00	575
2400	2401	-0.04	832	2399	-0.03	520	2400	0.00	479	2400	0.00	287
9600	9615	0.16	207	9615	0.16	129	9600	0.00	119	9600	0.00	71
10417	10417	0.00	191	10417	0.00	119	10378	-0.37	110	10473	0.53	65
19.2k	19.23k	0.16	103	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35
57.6k	57.14k	-0.79	34	56.818	-1.36	21	57.60k	0.00	19	57.60k	0.00	11
115.2k	117.6k	2.12	16	113.636	-1.36	10	115.2k	0.00	9	115.2k	0.00	5

	SYNC = 0, BRGH = 0, BRG16 = 1											
BAUD	Fosc = 8.000 MHz			Fos	c = 4.000	0 MHz	Fosc	: = 3.686	4 MHz	Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	299.9	-0.02	1666	300.1	0.04	832	300.0	0.00	767	300.5	0.16	207
1200	1199	-0.08	416	1202	0.16	207	1200	0.00	191	1202	0.16	51
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	—	_	_
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5
19.2k	19.23k	0.16	25	19.23k	0.16	12	19.20k	0.00	11	—	_	_
57.6k	55556	-3.55	8	—	_	_	57.60k	0.00	3	—	_	_
115.2k	—	_	_	—	_	_	115.2k	0.00	1	—	_	_

SWAPF	Swap Nibbles in f
Syntax:	[label] SWAPF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(f<3:0>) \rightarrow (destination<7:4>),$ $(f<7:4>) \rightarrow (destination<3:0>)$
Status Affected:	None
Description:	The upper and lower nibbles of regis- ter 'f' are exchanged. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed in register 'f'.

XORLW	Exclusive OR literal with W					
Syntax:	[label] XORLW k					
Operands:	$0 \leq k \leq 255$					
Operation:	(W) .XOR. $k \rightarrow (W)$					
Status Affected:	Z					
Description:	The contents of the W register are XOR'ed with the 8-bit literal 'k'. The result is placed in the W register.					

TRIS	Load TRIS Register with W
Syntax:	[label] TRIS f
Operands:	$5 \leq f \leq 7$
Operation:	$(W) \rightarrow TRIS$ register 'f'
Status Affected:	None
Description:	Move data from W register to TRIS register. When 'f' = 5, TRISA is loaded. When 'f' = 6, TRISB is loaded. When 'f' = 7, TRISC is loaded.

XORWF	Exclusive OR W with f
Syntax:	[label] XORWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) .XOR. (f) \rightarrow (destination)
Status Affected:	Z
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

Standard Operating Conditions (unless otherwise stated) **DC CHARACTERISTICS** Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended Param Sym. Characteristic Min. Typ† Max. Units Conditions No. VIL Input Low Voltage I/O PORT: D030 with TTL buffer 0.8 V $4.5V \le VDD \le 5.5V$ D030A 0.15 VDD $1.8V \le VDD \le 4.5V$ V D031 with Schmitt Trigger buffer 0.2 VDD V $2.0V \le V\text{DD} \le 5.5V$ with I²C[™] levels 0.3 VDD V ____ _ with SMBus levels 0.8 V $2.7V \leq V\text{DD} \leq 5.5V$ _____ _ MCLR, OSC1 (RC mode)⁽¹⁾ D032 0.2 VDD V D033 OSC1 (HS mode) 0.3 VDD V _ ____ Vін Input High Voltage I/O ports: D040 with TTL buffer 2.0 V $4.5V \le VDD \le 5.5V$ D040A 0.25 VDD + V $1.8V \le V\text{DD} \le 4.5V$ 0.8 D041 with Schmitt Trigger buffer 0.8 VDD V $2.0V \leq V\text{DD} \leq 5.5V$ with I²C[™] levels 0.7 VDD V with SMBus levels $2.7V \le VDD \le 5.5V$ 2.1 V D042 MCLR 0.8 VDD V _ _ D043A OSC1 (HS mode) 0.7 VDD V D043B OSC1 (RC mode) 0.9 VDD VDD > 2.0V, (Note 1) V Input Leakage Current⁽²⁾ ١L D060 I/O ports ± 5 ± 125 nA $Vss \leq VPIN \leq VDD$. Pin at high-impedance at 85°C ± 5 ± 1000 nA 125°C MCLR⁽³⁾ D061 ± 200 $Vss \le VPIN \le VDD$ at $85^{\circ}C$ ± 50 nA Weak Pull-up Current IPUR D070* 200 VDD = 3.3V, VPIN = VSS 25 100 25 140 300 uΑ VDD = 5.0V, VPIN = VSS Voi Output Low Voltage⁽⁴⁾ D080 I/O ports IOL = 8mA, VDD = 5V0.6 V IOL = 6mA, VDD = 3.3VIOL = 1.8mA, VDD = 1.8V Vон Output High Voltage⁽⁴⁾ D090 I/O ports ІОН = 3.5mA, VDD = 5V ІОН = 3mA. VDD = 3.3V VDD - 0.7 V ІОН = 1mA, VDD = 1.8V Capacitive Loading Specs on Output Pins In XT. HS and LP modes when D101* COSC2 OSC2 pin 15 рF external clock is used to drive OSC1 D101A* pF CIO All I/O pins 50

30.4 DC Characteristics: PIC12(L)F1822/16(L)F1823-I/E

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: Including OSC2 in CLKOUT mode.

TABLE 30-4: CLKOUT AND I/O TIMING PARAMETERS

Standard Operating Conditions (unless otherwise stated) Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
OS11	TosH2ckL	Fosc↑ to CLKOUT↓ ⁽¹⁾	—		70	ns	VDD = 3.0-5.0V	
OS12	TosH2ckH	Fosc↑ to CLKOUT↑ ⁽¹⁾	—		72	ns	VDD = 3.0-5.0V	
OS13	TckL2ioV	CLKOUT↓ to Port out valid ⁽¹⁾	_		20	ns		
OS14	TioV2ckH	Port input valid before CLKOUT↑ ⁽¹⁾	Tosc + 200 ns		_	ns		
OS15	TosH2ioV	Fosc↑ (Q1 cycle) to Port out valid	—	50	70*	ns	VDD = 3.0-5.0V	
OS16	TosH2iol	Fosc↑ (Q2 cycle) to Port input invalid (I/O in hold time)	50	—	—	ns	VDD = 3.0-5.0V	
OS17	TioV2osH	Port input valid to Fosc↑ (Q2 cycle) (I/O in setup time)	20	_	—	ns		
OS18*	TioR	Port output rise time	—	40	72	ns	VDD = 1.8V	
			—	15	32		VDD = 3.0-5.0V	
OS19*	TioF	Port output fall time	—	28	55	ns	VDD = 1.8V	
			—	15	30		VDD = 3.0-5.0V	
OS20*	Tinp	INT pin input high or low time	25		—	ns		
OS21*	Tioc	Interrupt-on-change new input level time	25	_	_	ns		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated.

Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x Tosc.

FIGURE 30-8: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

FIGURE 31-30: IDD MAXIMUM, HS OSCILLATOR, PIC12F1822 AND PIC16F1823 ONLY

8-Lead Plastic Dual Flat, No Lead Package (MF) - 3x3x0.9mm Body [DFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS							
Dimension	Limits	MIN	NOM	MAX				
Number of Pins	N		8					
Pitch	е		0.65 BSC					
Overall Height	Α	0.80	0.90	1.00				
Standoff	A1	0.00	0.02	0.05				
Contact Thickness	A3		0.20 REF					
Overall Length	D		3.00 BSC					
Exposed Pad Width	E2	1.34	-	1.60				
Overall Width	E	3.00 BSC						
Exposed Pad Length	D2	1.60	-	2.40				
Contact Width	b	0.25	0.30	0.35				
Contact Length	L	0.20	0.30	0.55				
Contact-to-Exposed Pad	K	0.20	-	-				

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package may have one or more exposed tie bars at ends.

3. Package is saw singulated

4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing No. C04-062C Sheet 2 of 2

14-Lead Plastic Thin Shrink Small Outline (ST) - 4.4 mm Body [TSSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS						
Dimension	Limits	MIN	NOM	MAX			
Number of Pins	N		14				
Pitch	е		0.65 BSC				
Overall Height	Α	-	-	1.20			
Molded Package Thickness	A2	0.80	1.00	1.05			
Standoff	A1	0.05	-	0.15			
Overall Width	E	6.40 BSC					
Molded Package Width	E1	4.30	4.40	4.50			
Molded Package Length	D	4.90	5.00	5.10			
Foot Length	L	0.45	0.60	0.75			
Footprint	(L1)		1.00 REF				
Foot Angle	φ	0°	-	8°			
Lead Thickness	С	0.09	-	0.20			
Lead Width	b	0.19	-	0.30			

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or
- protrusions shall not exceed 0.15mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing No. C04-087C Sheet 2 of 2

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC³² logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2010-2015, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-63277-253-4

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELoQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.