

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Dectano	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	14-SOIC (0.154", 3.90mm Width)
Supplier Device Package	14-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1823-e-sl

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 3-6: PIC12(L)F1822/16(L)F1823 MEMORY MAP, BANKS 24-31

	BANK 24		BANK 25		BANK 26		BANK 27		BANK 28		BANK 29		BANK 30		BANK 31
C00h	INDF0	C80h	INDF0	D00h	INDF0	D80h	INDF0	E00h	INDF0	E80h	INDF0	F00h	INDF0	F80h	INDF0
C01h	INDF1	C81h	INDF1	D01h	INDF1	D81h	INDF1	E01h	INDF1	E81h	INDF1	F01h	INDF1	F81h	INDF1
C02h	PCL	C82h	PCL	D02h	PCL	D82h	PCL	E02h	PCL	E82h	PCL	F02h	PCL	F82h	PCL
C03h	STATUS	C83h	STATUS	D03h	STATUS	D83h	STATUS	E03h	STATUS	E83h	STATUS	F03h	STATUS	F83h	STATUS
C04h	FSR0L	C84h	FSR0L	D04h	FSR0L	D84h	FSR0L	E04h	FSR0L	E84h	FSR0L	F04h	FSR0L	F84h	FSR0L
C05h	FSR0H	C85h	FSR0H	D05h	FSR0H	D85h	FSR0H	E05h	FSR0H	E85h	FSR0H	F05h	FSR0H	F85h	FSR0H
C06h	FSR1L	C86h	FSR1L	D06h	FSR1L	D86h	FSR1L	E06h	FSR1L	E86h	FSR1L	F06h	FSR1L	F86h	FSR1L
C07h	FSR1H	C87h	FSR1H	D07h	FSR1H	D87h	FSR1H	E07h	FSR1H	E87h	FSR1H	F07h	FSR1H	F87h	FSR1H
C08h	BSR	C88h	BSR	D08h	BSR	D88h	BSR	E08h	BSR	E88h	BSR	F08h	BSR	F88h	BSR
C09h	WREG	C89h	WREG	D09h	WREG	D89h	WREG	E09h	WREG	E89h	WREG	F09h	WREG	F89h	WREG
C0Ah	PCLATH	C8Ah	PCLATH	D0Ah	PCLATH	D8Ah	PCLATH	E0Ah	PCLATH	E8Ah	PCLATH	F0Ah	PCLATH	F8Ah	PCLATH
C0Bh	INTCON	C8Bh	INTCON	D0Bh	INTCON	D8Bh	INTCON	E0Bh	INTCON	E8Bh	INTCON	F0Bh	INTCON	F8Bh	INTCON
C0Ch	_	C8Ch	_	D0Ch	_	D8Ch	_	E0Ch	_	E8Ch	_	F0Ch	_	F8Ch	
C0Dh	_	C8Dh	_	D0Dh	_	D8Dh	_	E0Dh	_	E8Dh	_	F0Dh	_	F8Dh	
C0Eh	_	C8Eh	_	D0Eh	_	D8Eh	_	E0Eh	_	E8Eh	_	F0Eh	_	F8Eh	
C0Fh	_	C8Fh	_	D0Fh	_	D8Fh	_	E0Fh	_	E8Fh	_	F0Fh	_	F8Fh	
C10h	_	C90h	_	D10h	_	D90h	_	E10h	_	E90h	_	F10h	_	F90h	
C11h	_	C91h	_	D11h	_	D91h	_	E11h	_	E91h	_	F11h	_	F91h	
C12h	_	C92h	_	D12h	_	D92h	_	E12h	_	E92h	_	F12h	_	F92h	
C13h	_	C93h	_	D13h	_	D93h	_	E13h	_	E93h	_	F13h	_	F93h	
C14h	_	C94h	_	D14h	_	D94h	_	E14h	_	E94h	_	F14h	_	F94h	
C15h	_	C95h	_	D15h	_	D95h	_	E15h	_	E95h	_	F15h	_	F95h	
C16h	_	C96h	_	D16h	_	D96h	_	E16h	_	E96h	_	F16h	_	F96h	
C17h	_	C97h	_	D17h	_	D97h	_	E17h	_	E97h	_	F17h	_	F97h	
C18h	_	C98h	_	D18h	_	D98h	_	E18h	_	E98h	_	F18h	_	F98h	See Table 3-7 for
C19h	_	C99h	_	D19h	_	D99h	_	E19h	_	E99h	_	F19h	_	F99h	register mapping details
C1Ah	_	C9Ah	_	D1Ah	_	D9Ah	_	E1Ah	_	E9Ah	_	F1Ah	_	F9Ah	dotano
C1Bh	_	C9Bh	_	D1Bh	_	D9Bh	_	E1Bh	_	E9Bh	_	F1Bh	_	F9Bh	
C1Ch	_	C9Ch	_	D1Ch	_	D9Ch	_	E1Ch	_	E9Ch	_	F1Ch	_	F9Ch	
C1Dh	_	C9Dh	_	D1Dh	_	D9Dh	_	E1Dh	_	E9Dh	_	F1Dh	_	F9Dh	
C1Eh	_	C9Eh	_	D1Eh	_	D9Eh	_	E1Eh	_	E9Eh	_	F1Eh	_	F9Eh	
C1Fh	_	C9Fh	_	D1Fh	_	D9Fh	_	E1Fh	_	E9Fh	_	F1Fh	_	F9Fh	
C20h		CA0h		D20h		DA0h	-	E20h	-	EA0h		F20h		FA0h	
	Unimplemented Read as '0'														
C6Fh		CEFh		D6Fh		DEFh		E6Fh		EEFh		F6Fh		FEFh	
C70h		CF0h		D70h		DF0h		E70h		EF0h		F70h		FF0h	
	Accesses		Accesses												
	70h – 7Fh		70h – 7Fh												
CFFh		CFFh		D7Fh		DFFh		E7Fh		EFFh		F7Fh		FFFh	

Legend: = Unimplemented data memory locations, read as '0'.

IABLE	<u>ა-ი: ა</u>		UNCTION	REGIST				<u>(</u>			
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 2	Bank 2										
100h ⁽¹⁾	INDF0 Addressing this location uses contents of FSR0H/FSR0L to address data memory (not a physical register)								XXXX XXXX	XXXX XXXX	
101h ⁽¹⁾	INDF1	Addressing this location uses contents of FSR1H/FSR1L to address data memory (not a physical register)								XXXX XXXX	XXXX XXXX
102h ⁽¹⁾	PCL	Program Cou	inter (PC) Lea	st Significant E	lyte					0000 0000	0000 0000
103h ⁽¹⁾	STATUS	_	_	_	TO	PD	Z	DC	С	1 1000	q quuu
104h ⁽¹⁾	FSR0L	Indirect Data	Memory Addr	ess 0 Low Poir	nter	•		•	•	0000 0000	uuuu uuuu
105h ⁽¹⁾	FSR0H	Indirect Data	Memory Addr	ess 0 High Poi	nter					0000 0000	0000 0000
106h ⁽¹⁾	FSR1L	Indirect Data	Memory Addr	ess 1 Low Poir	nter					0000 0000	uuuu uuuu
107h ⁽¹⁾	FSR1H	Indirect Data	Memory Addr	ess 1 High Poi	nter					0000 0000	0000 0000
108h ⁽¹⁾	BSR	_	_	_			BSR<4:0>			0 0000	0 0000
109h ⁽¹⁾	WREG	Working Reg	ister							0000 0000	uuuu uuuu
10Ah ⁽¹⁾	PCLATH	_	Write Buffer f	or the upper 7	bits of the Pro	ogram Counte	er			-000 0000	-000 0000
10Bh ⁽¹⁾	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 000x	0000 000u
10Ch	LATA	_	_	LATA5	LATA4		LATA2	LATA1	LATA0	xx -xxx	uu -uuu
10Dh	—	Unimplement	ed							_	_
10Eh	LATC ⁽²⁾	_	_	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xx xxxx	uu uuuu
10Fh	_	Unimplement	ed					•		_	_
110h	_	Unimplement	ed							_	_
111h	CM1CON0	C10N	C1OUT	C10E	C1POL		C1SP	C1HYS	C1SYNC	0000 -100	0000 -100
112h	CM1CON1	C1INTP	C1INTN	C1PCH	1<1:0>		_	C1NCH1 ⁽²⁾	C1NCH0	00000	00000
113h	CM2CON0 ⁽²⁾	C2ON	C2OUT	C2OE	C2POL		C2SP	C2HYS	C2SYNC	0000 -100	0000 -100
114h	CM2CON1(2)	C2INTP	C2INTN	C2PCH	1<1:0>		_	C2NC	H<1:0>	000000	000000
115h	CMOUT	_	_	_	_		_	MC2OUT ⁽²⁾	MC10UT	00	00
116h	BORCON	SBOREN	_	_	_	_	_	_	BORRDY	1 q	uu
117h	FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	/R<1:0>	ADFV	/R<1:0>	0q00 0000	0q00 0000
118h	DACCON0	DACEN	DACLPS	DACOE	_	DACPS	SS<1:0>	_	_	000- 00	000- 00
119h	DACCON1	_	_	_			DACR<4:0>			0 0000	0 0000
11Ah	SRCON0	SRLEN		SRCLK<2:0>		SRQEN	SRNQEN	SRPS	SRPR	0000 0000	0000 0000
11Bh	SRCON1	SRSPE	SRSCKE	SRSC2E ⁽²⁾	SRSC1E	SRRPE	SRRCKE	SRRC2E	SRRC1E	0000 0000	0000 0000
11Ch	—	Unimplement	ed							_	—
11Dh	APFCON	RXDTSEL	SDOSEL	SSSEL		T1GSEL	TXCKSEL	P1BSEL ⁽⁴⁾	CCP1SEL (4)	000- 0000	000- 0000
11Eh	—	Unimplement	ed							_	—
11Fh	—	Unimplement	ed							_	—
Logondu											

TABLE 3-8: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from any bank.

2: PIC16(L)F1823 only.

3: Unimplemented. Read as '1'.

4: PIC12(L)F1822 only.

© 2010-2015 Microchip Technology Inc.

REGISTER 4-2: CONFIGURATION WORD 2

		R/P-1/1	R/P-1/1	U-1	R/P-1/1	R/P-1/1	R/P-1/1
		LVP ⁽¹⁾	DEBUG ⁽²⁾	_	BORV	STVREN	PLLEN
		bit 13					bit
U-1	U-1	U-1	R-1	U-1	U-1	R/P-1/1	R/P-1/1
0-1	0-1	0-1	Reserved	0-1	0-1		<1:0>
 bit 7			Reserved			VIXI	bit
							Dit
Legend:							
R = Readable bit		P = Programm	able bit	U = Unimplem	nented bit, read a	as '1'	
'0' = Bit is cleared		'1' = Bit is set		-n = Value wh	en blank or after	Bulk Erase	
bit 13	LVP: Low-Voltage						
	1 = Low-voltage p						
	0 = High-voltage			gramming			
bit 12	DEBUG : In-Circuit				eneral nurnose l	/O nins	
 1 = In-Circuit Debugger disabled, ICSPCLK and ICSPDAT are general purpose I/O pins 0 = In-Circuit Debugger enabled, ICSPCLK and ICSPDAT are dedicated to the debugger 						•	
bit 11	Unimplemented:	Read as '1'					
bit 10	BORV: Brown-out	t Reset Voltage	Selection bit ⁽³⁾				
	1 = Brown-out Re 0 = Brown-out Re	- ·					
bit 9	STVREN: Stack (1 = Stack Overflow						
	0 = Stack Overflow						
bit 8	PLLEN: PLL Enal	ble bit					
	1 = 4xPLL enable						
	0 = 4xPLL disable						
bit 7-5	Unimplemented:						
bit 4	Reserved: This lo		e programmed	to a '1'.			
bit 3-2	Unimplemented:			1-14-			
bit 1-0	WRT<1:0>: Flash 11 = Write protect		vrite Protection	DItS			
	10 = 000h to 1FFI		d, 200h to 7FFh	n may be modifie	d by EECON co	ontrol	
	01 = 000h to 3FFI			•	•		
	00 = 000h to 7FF	h write-protected	d, no addresses	s may be modifie	ed by EECON co	ontrol	
Note 1: The L	VP bit cannot be p	rogrammed to '0)' when Program	nming mode is e	entered via LVP.		
2: The D	EBUG bit in Config	uration Word is I	managed autom	atically by device	e development to	ols including deb	uggers and

programmers. For normal device operation, this bit should be maintained as a '1'.3: See Vbor parameter for specific trip point voltages.

8.1 Operation

Interrupts are disabled upon any device Reset. They are enabled by setting the following bits:

- · GIE bit of the INTCON register
- Interrupt Enable bit(s) for the specific interrupt event(s)
- PEIE bit of the INTCON register (if the Interrupt Enable bit of the interrupt event is contained in the PIE1 or PIE2 registers)

The INTCON, PIR1 and PIR2 registers record individual interrupts via interrupt flag bits. Interrupt flag bits will be set, regardless of the status of the GIE, PEIE and individual interrupt enable bits.

The following events happen when an interrupt event occurs while the GIE bit is set:

- · Current prefetched instruction is flushed
- · GIE bit is cleared
- Current Program Counter (PC) is pushed onto the stack
- Critical registers are automatically saved to the shadow registers (See "Section 8.5 "Automatic Context Saving".")
- · PC is loaded with the interrupt vector 0004h

The firmware within the Interrupt Service Routine (ISR) should determine the source of the interrupt by polling the interrupt flag bits. The interrupt flag bits must be cleared before exiting the ISR to avoid repeated interrupts. Because the GIE bit is cleared, any interrupt that occurs while executing the ISR will be recorded through its interrupt flag, but will not cause the processor to redirect to the interrupt vector.

The RETFIE instruction exits the ISR by popping the previous address from the stack, restoring the saved context from the shadow registers and setting the GIE bit.

For additional information on a specific interrupt's operation, refer to its peripheral chapter.

- Note 1: Individual interrupt flag bits are set, regardless of the state of any other enable bits.
 - 2: All interrupts will be ignored while the GIE bit is cleared. Any interrupt occurring while the GIE bit is clear will be serviced when the GIE bit is set again.

8.2 Interrupt Latency

Interrupt latency is defined as the time from when the interrupt event occurs to the time code execution at the interrupt vector begins. The latency for synchronous interrupts is three or four instruction cycles. For asynchronous interrupts, the latency is three to five instruction cycles, depending on when the interrupt occurs. See Figure 8-3 and Figure 8.3 for more details.

REGISTER 10-1:	WDTCON: WATCHDOG TIMER CONTROL REGISTER

U-0	U-0	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	R/W-1/1	R/W-0/0
_	_			WDTPS<4:0	>		SWDTEN
bit 7							bit
Legend:							
R = Readabl		W = Writable		•	mented bit, read		
u = Bit is unc	0	x = Bit is unkr	nown	-m/n = Value	at POR and BO	OR/Value at all	other Resets
'1' = Bit is se	t	'0' = Bit is cle	ared				
bit 7-6	Unimplem	ented: Read as '	0'				
bit 5-1	-	:0>: Watchdog Ti		elect bits			
		Prescale Rate					
		1:32 (Interval 1 m	s tvp)				
		1:64 (Interval 2 m					
	00010 = 1	1:128 (Interval 4 r	ns typ)				
		1:256 (Interval 8 r					
		1:512 (Interval 16					
		1:1024 (Interval 3 1:2048 (Interval 6	2 • • <i>i</i>				
		1:4096 (Interval 0					
		1:8192 (Interval 2					
	01001 = 1	1:16384 (Interval	512 ms typ)				
		:32768 (Interval					
	01011 = 1	1:65536 (Interval	2s typ) (Rese	et value)			
	01100 = 1	l:131072 (2 ¹⁷) (Ir l:262144 (2 ¹⁸) (Ir	iterval 4s typ)				
		1:524288 (2 ¹⁹) (Ir					
	01111 = 1	1:1048576 (2 ²⁰) (Interval 32s ty	(q)			
	10000 = 1	1:2097152 (2 ²¹) (Interval 64s ty	/p)			
	10001 = 1	I:4194304 (2 ²²) (Interval 128s	typ)			
	10010 = 1	1:8388608 (2 ²³) (Interval 256s	typ)			
	10011 = F	Reserved. Result	s in minimum	interval (1:32)			
	•						
	•						
	11111 = F	Reserved. Result	s in minimum	interval (1:32)			
bit 0		Software Enable/			bit		
	If WDTE<1			5			
	This bit is ig	gnored.					
	If WDTE<1						
	1 = WDT is						
	$\cap = WDTie$						
	If WDTE<1	s turned off					

16.2 ADC Operation

16.2.1 STARTING A CONVERSION

To enable the ADC module, the ADON bit of the ADCON0 register must be set to a '1'. Setting the GO/ DONE bit of the ADCON0 register to a '1' will start the Analog-to-Digital conversion.

Note:	The GO/DONE bit should not be set in the
	same instruction that turns on the ADC.
	Refer to Section 16.2.6 "A/D Conver-
	sion Procedure".

16.2.2 COMPLETION OF A CONVERSION

When the conversion is complete, the ADC module will:

- Clear the GO/DONE bit
- · Set the ADIF Interrupt Flag bit
- Update the ADRESH and ADRESL registers with new conversion result

16.2.3 TERMINATING A CONVERSION

If a conversion must be terminated before completion, the GO/DONE bit can be cleared in software. The ADRESH and ADRESL registers will be updated with the partially complete Analog-to-Digital conversion sample. Incomplete bits will match the last bit converted.

Note: A device Reset forces all registers to their Reset state. Thus, the ADC module is turned off and any pending conversion is terminated.

16.2.4 ADC OPERATION DURING SLEEP

The ADC module can operate during Sleep. This requires the ADC clock source to be set to the FRC option. When the FRC clock source is selected, the ADC waits one additional instruction before starting the conversion. This allows the SLEEP instruction to be executed, which can reduce system noise during the conversion. If the ADC interrupt is enabled, the device will wake-up from Sleep when the conversion completes. If the ADC interrupt is disabled, the ADC module is turned off after the conversion completes, although the ADON bit remains set.

When the ADC clock source is something other than FRC, a SLEEP instruction causes the present conversion to be aborted and the ADC module is turned off, although the ADON bit remains set.

16.2.5 SPECIAL EVENT TRIGGER

The Special Event Trigger of the CCPx/ECCPX module allows periodic ADC measurements without software intervention. When this trigger occurs, the GO/DONE bit is set by hardware and the Timer1 counter resets to zero.

TABLE 16-2: SPECIAL EVENT TRIGGER

Device	CCP1/ECCP1
PIC12(L)F1822/16(L)F1823	CCP1

Using the Special Event Trigger does not assure proper ADC timing. It is the user's responsibility to ensure that the ADC timing requirements are met.

Refer to Section 24.0 "Capture/Compare/PWM Modules" for more information.

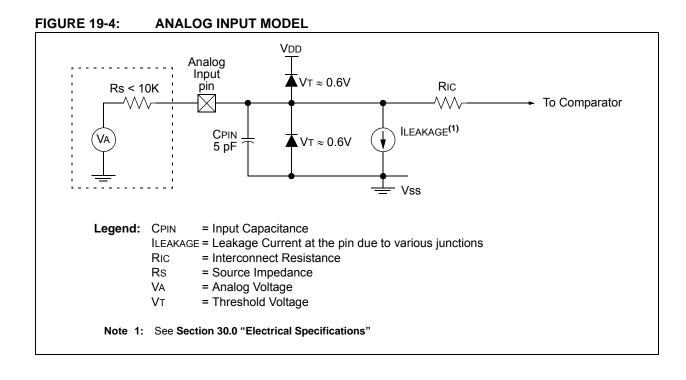

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ADCON0	_	CHS4	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	136
ADCON1	ADFM	ADCS2	ADCS1	ADCS0	—	—	ADPREF1	ADPREF0	137
ADRESH	A/D Result I	Register High							130*
ADRESL	A/D Result I	Register Low							130*
ANSELA	—	—	_	ANSA4	—	ANSA2	ANSA1	ANSA0	118
ANSELC ⁽¹⁾	—	_	_	_	ANSC3	ANSC2	ANSC1	ANSC0	122
CCP1CON	P1M1	P1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	213
DACCON0	DACEN	DACLPS	DACOE	_	DACPSS1	DACPSS0	_	_	146
DACCON1	—	_	_	DACR4	DACR3	DACR2	DACR1	DACR0	146
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFVR1	CDAFVR0	ADFVR1	ADFVR0	128
INTCON	GIE	PEIE	TMR0IE	INTE	IOCE	TMR0IF	INTF	IOCF	86
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	87
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	89
TRISA	—		TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	117
TRISC ⁽¹⁾	—	_	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	121

TABLE 16-3: SUMMARY OF REGISTERS ASSOCIATED WITH ADC

Legend: — = unimplemented read as '0'. Shaded cells are not used for ADC module.

* Page provides register information.

Note 1: PIC16(L)F1823 only.

21.1 Timer1 Operation

The Timer1 module is a 16-bit incrementing counter which is accessed through the TMR1H:TMR1L register pair. Writes to TMR1H or TMR1L directly update the counter.

When used with an internal clock source, the module is a timer and increments on every instruction cycle. When used with an external clock source, the module can be used as either a timer or counter and increments on every selected edge of the external source.

Timer1 is enabled by configuring the TMR1ON and TMR1GE bits in the T1CON and T1GCON registers, respectively. Table 21-1 displays the Timer1 enable selections.

TABLE 21-1:	TIMER1 ENABLE
	SELECTIONS

TMR10N	TMR1GE	Timer1 Operation
0	0	Off
0	1	Off
1	0	Always On
1	1	Count Enabled

21.2 Clock Source Selection

The TMR1CS<1:0> and T1OSCEN bits of the T1CON register are used to select the clock source for Timer1. Table 21-2 displays the clock source selections.

21.2.1 INTERNAL CLOCK SOURCE

When the internal clock source is selected the TMR1H:TMR1L register pair will increment on multiples of Fosc as determined by the Timer1 prescaler.

When the Fosc internal clock source is selected, the Timer1 register value will increment by four counts every instruction clock cycle. Due to this condition, a 2 LSB error in resolution will occur when reading the Timer1 value. To utilize the full resolution of Timer1, an asynchronous input signal must be used to gate the Timer1 clock input.

The following asynchronous sources may be used:

- Asynchronous event on the T1G pin to Timer1 Gate
- C1 or C2 comparator input to Timer1 Gate

21.2.2 EXTERNAL CLOCK SOURCE

When the external clock source is selected, the Timer1 module may work as a timer or a counter.

When enabled to count, Timer1 is incremented on the rising edge of the external clock input T1CKI or the capacitive sensing oscillator signal. Either of these external clock sources can be synchronized to the microcontroller system clock or they can run asynchronously.

When used as a timer with a clock oscillator, an external 32.768 kHz crystal can be used in conjunction with the dedicated internal oscillator circuit.

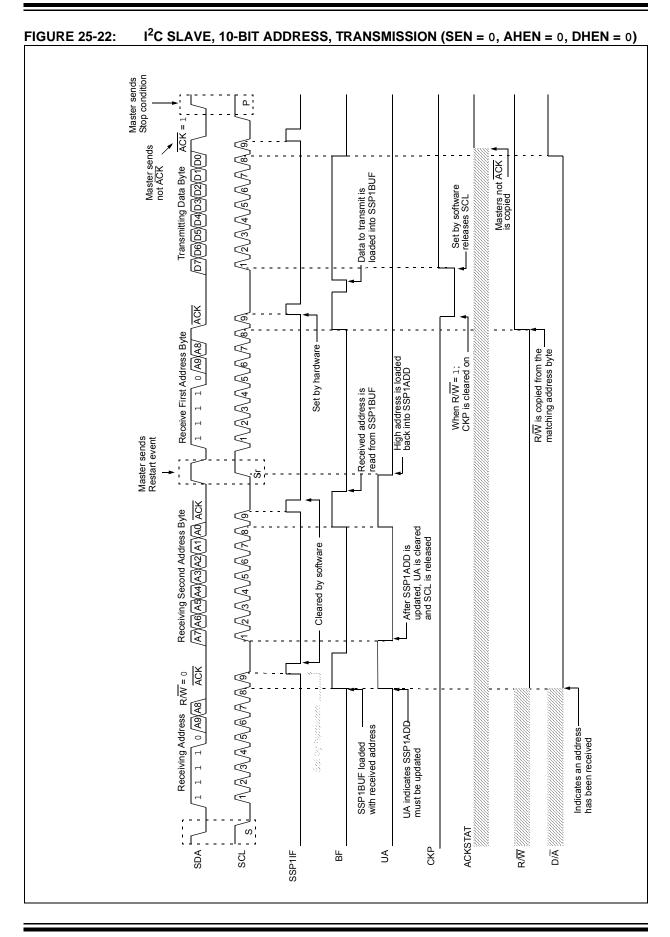
- **Note:** In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge after any one or more of the following conditions:
 - Timer1 enabled after POR
 - Write to TMR1H or TMR1L
 - Timer1 is disabled
 - Timer1 is disabled (TMR1ON = 0) when T1CKI is high then Timer1 is enabled (TMR1ON=1) when T1CKI is low.

TMR1CS1	TMR1CS0	T1OSCEN	Clock Source
0	1	x	System Clock (Fosc)
0	0	x	Instruction Clock (Fosc/4)
1	1	x	Capacitive Sensing Oscillator
1	0	0	External Clocking on T1CKI Pin
1	0	1	Osc.Circuit On T1OSI/T1OSO Pins

TABLE 21-2: CLOCK SOURCE SELECTIONS

24.4.8 ALTERNATE PIN LOCATIONS

This module incorporates I/O pins that can be moved to other locations with the use of the alternate pin function register, APFCON. To determine which pins can be moved and what their default locations are upon a reset, see **Section 12.1 "Alternate Pin Function"** for more information.


Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON	RXDTSEL	SDOSEL	SSSEL	_	T1GSEL	TXCKSEL	P1BSEL ⁽²⁾	CCP1SEL ⁽²⁾	114
CCP1CON	P1M•	P1M<1:0> DC1B<1:0>			CCP1M<3:0>				213
CCP1AS	CCP1ASE	CCP1AS<2:0>			PSS1AC<1:0>		PSS1BD<1:0>		214
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	87
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	89
PR2	Timer2 Period Register								176*
PSTR1CON	—	_	_	STR1SYNC	STR1D ⁽¹⁾	STR1C ⁽¹⁾	STR1B	STR1A	216
PWM1CON	P1RSEN P1DC<6:0>								215
T2CON	—		T2OUTI	PS<3:0>		TMR2ON	T2CKPS<:0>1		178
TMR2	Timer2 Module Register							176*	
TRISA	—	—	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	117
TRISC ⁽¹⁾	—	_	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	121

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the PWM.

* Page provides register information.

Note 1: PIC16(L)F1823 only.

2: PIC12(L)F1822 only.

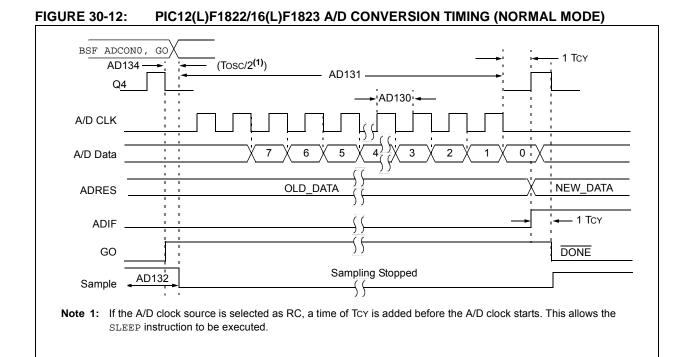
FIGURE 29-1: GENERAL FORMAT FOR INSTRUCTIONS

Byte-oriented file register operations								
13 8 7 6 0 OPCODE d f (FILE #)								
d = 0 for destination W d = 1 for destination f f = 7-bit file register address								
Bit-oriented file register operations 13 10 9 7 6 0								
OPCODE b (BIT #) f (FILE #)								
b = 3-bit bit address f = 7-bit file register address								
Literal and control operations								
General								
OPCODE k (literal)								
k = 8-bit immediate value								
CALL and GOTO instructions only								
13 11 10 0								
OPCODE k (literal)								
k = 11-bit immediate value								
MOVLP instruction only 13 7 6 0								
OPCODE k (literal)								
k = 7-bit immediate value								
MOVLB instruction only								
13 5 4 0 OPCODE k (literal)								
k = 5-bit immediate value								
BRA instruction only								
OPCODE k (literal)								
k = 9-bit immediate value								
FSR Offset instructions 13 7 6 5 0								
OPCODE n k (literal)								
n = appropriate FSR k = 6-bit immediate value								
FSR Increment instructions 13								
OPCODE n m (mode)								
n = appropriate FSR m = 2-bit mode value								
OPCODE only 13 0								
OPCODE								

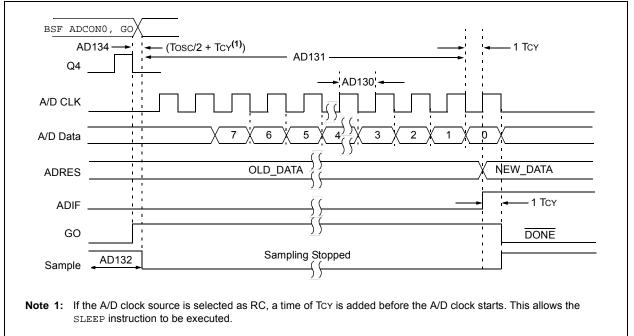
Standard Operating Conditions (unless otherwise stated) **DC CHARACTERISTICS** Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended Param Sym. Characteristic Min. Typ† Max. Units Conditions No. VIL Input Low Voltage I/O PORT: D030 with TTL buffer 0.8 V $4.5V \le VDD \le 5.5V$ D030A 0.15 VDD $1.8V \le VDD \le 4.5V$ V D031 with Schmitt Trigger buffer 0.2 VDD V $2.0V \le V\text{DD} \le 5.5V$ with I²C[™] levels 0.3 VDD V ____ _ with SMBus levels 0.8 V $2.7V \leq V\text{DD} \leq 5.5V$ _____ _ MCLR, OSC1 (RC mode)(1) D032 0.2 VDD V D033 OSC1 (HS mode) 0.3 VDD V _ ____ Vін Input High Voltage I/O ports: D040 with TTL buffer 2.0 V $4.5V \le VDD \le 5.5V$ D040A 0.25 VDD + V $1.8V \le V\text{DD} \le 4.5V$ 0.8 D041 with Schmitt Trigger buffer 0.8 VDD V $2.0V \leq V\text{DD} \leq 5.5V$ with I²C[™] levels 0.7 VDD V with SMBus levels $2.7V \le VDD \le 5.5V$ 2.1 V D042 MCLR 0.8 VDD V _ _ D043A OSC1 (HS mode) 0.7 VDD V D043B OSC1 (RC mode) 0.9 VDD VDD > 2.0V, (Note 1) V Input Leakage Current⁽²⁾ ١L D060 I/O ports ± 5 ± 125 nA $Vss \leq VPIN \leq VDD$. Pin at high-impedance at 85°C ± 5 ± 1000 nA 125°C MCLR⁽³⁾ D061 ± 200 $Vss \le VPIN \le VDD$ at $85^{\circ}C$ ± 50 nA Weak Pull-up Current IPUR D070* 200 VDD = 3.3V, VPIN = VSS 25 100 25 140 300 uΑ VDD = 5.0V, VPIN = VSS Voi Output Low Voltage⁽⁴⁾ D080 I/O ports IOL = 8mA, VDD = 5V0.6 V IOL = 6mA, VDD = 3.3VIOL = 1.8mA, VDD = 1.8V Vон Output High Voltage⁽⁴⁾ D090 I/O ports ІОН = 3.5mA, VDD = 5V ІОН = 3mA. VDD = 3.3V VDD - 0.7 V ІОН = 1mA, VDD = 1.8V Capacitive Loading Specs on Output Pins In XT. HS and LP modes when D101* COSC2 OSC2 pin 15 рF external clock is used to drive OSC1 D101A* pF CIO All I/O pins 50

30.4 DC Characteristics: PIC12(L)F1822/16(L)F1823-I/E

These parameters are characterized but not tested.


† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

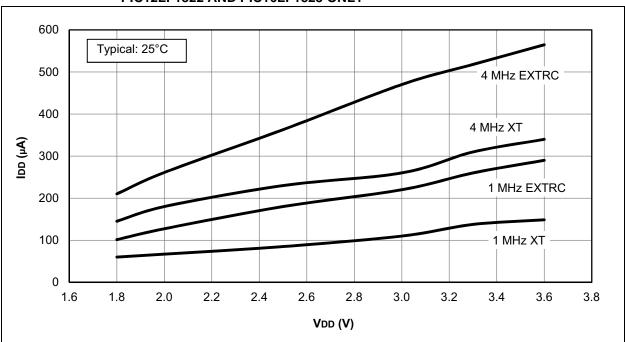
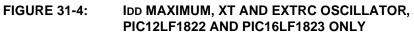
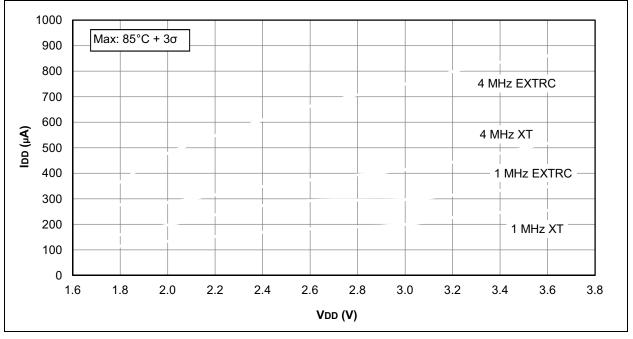
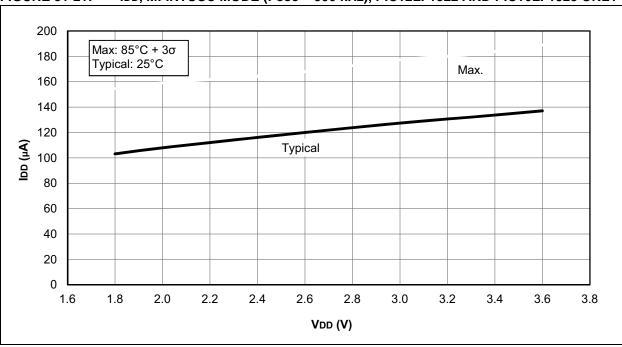
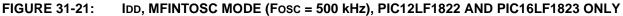
Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

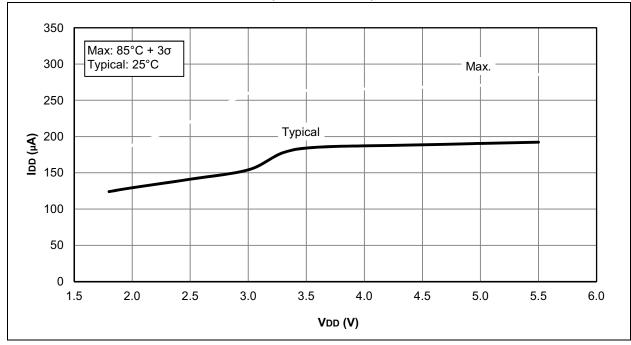

2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: Including OSC2 in CLKOUT mode.

FIGURE 30-13: PIC12(L)F1822/16(L)F1823 A/D CONVERSION TIMING (SLEEP MODE)


FIGURE 31-3: IDD TYPICAL, XT AND EXTRC OSCILLATOR, PIC12LF1822 AND PIC16LF1823 ONLY

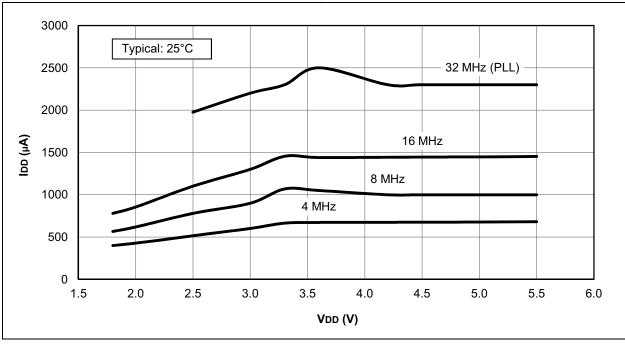


FIGURE 31-22: IDD, MFINTOSC MODE (Fosc = 500 kHz), PIC12F1822 AND PIC16F1823 ONLY

FIGURE 31-25: IDD TYPICAL, HFINTOSC MODE, PIC12F1822 AND PIC16F1823 ONLY

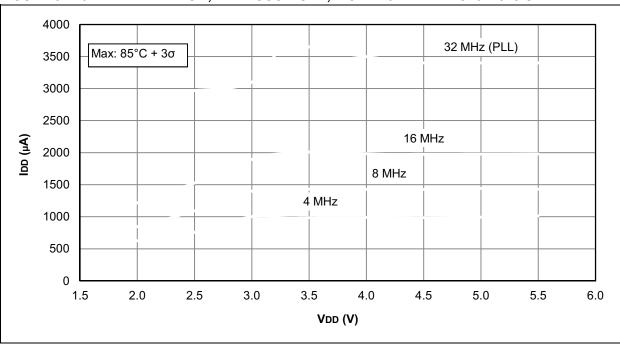
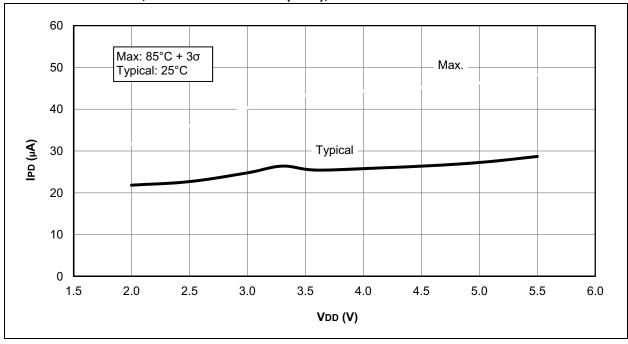



FIGURE 31-26: IDD MAXIMUM, HFINTOSC MODE, PIC12F1822 AND PIC16F1823 ONLY

FIGURE 31-37: IPD, BROWN-OUT RESET (BOR), PIC12F1822 AND PIC16F1823 ONLY

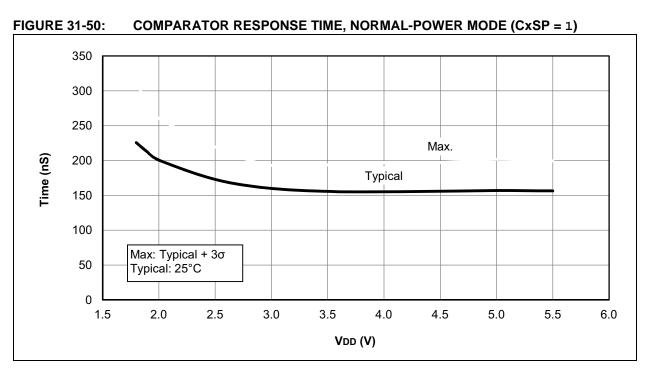
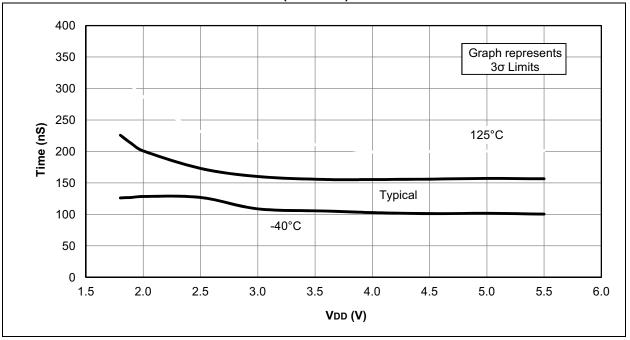
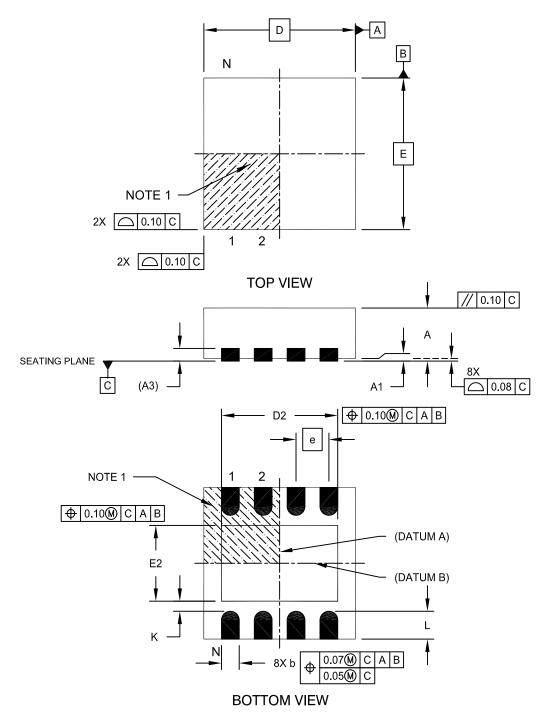




FIGURE 31-51: COMPARATOR RESPONSE TIME OVER TEMPERATURE, NORMAL-POWER MODE (CxSP = 1)

8-Lead Plastic Dual Flat, No Lead Package (MF) - 3x3x0.9mm Body [DFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing No. C04-062C Sheet 1 of 2