

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	12
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-UQFN Exposed Pad
Supplier Device Package	16-UQFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1823-i-jq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-2: PIC12(L)F1822 PINOUT DESCRIPTION

Name	Function	Input Type	Output Type	Description
RA0/AN0/CPS0/C1IN+/	RA0	TTL	CMOS	General purpose I/O.
	AN0	AN	_	A/D Channel 0 input.
SS ⁽¹⁾ /P1B ⁽¹⁾ /MDOUT/ICSPDAT/ ICDDAT	CPS0	AN		Capacitive sensing input 0.
	C1IN+	AN	_	Comparator C1 positive input.
	DACOUT		AN	Digital-to-Analog Converter output.
	ТΧ		CMOS	USART asynchronous transmit.
	СК	ST	CMOS	USART synchronous clock.
	SDO		CMOS	SPI data output.
	SS	ST		Slave Select input.
	P1B		CMOS	PWM output.
	MDOUT		CMOS	Modulator output.
	ICSPDAT	ST	CMOS	ICSP™ Data I/O.
RA1/AN1/CPS1/VREF+/C1IN0-/	RA1	TTL	CMOS	General purpose I/O.
SRI/RX ⁽¹⁾ /DT ⁽¹⁾ /SCL/SCK/	AN1	AN		A/D Channel 1 input.
MDMIN/ICSPCLK/ICDCLK	CPS1	AN		Capacitive sensing input 1.
	VREF+	AN		A/D and DAC Positive Voltage Reference input.
	C1IN0-	AN	_	Comparator C1 or C2 negative input.
	SRI	ST	_	SR latch input.
	RX	ST	_	USART asynchronous input.
	DT	ST	CMOS	USART synchronous data.
	SCL	I ² C™	OD	I ² C [™] clock.
	SCK	ST	CMOS	SPI clock.
	MDMIN	ST	—	Modulator source input.
	ICSPCLK	ST	_	Serial Programming Clock.
RA2/AN2/CPS2/C1OUT/SRQ/	RA2	ST	CMOS	General purpose I/O.
TOCKI/CCP1 ⁽¹⁾ /P1A ⁽¹⁾ /FLT0/	AN2	AN	—	A/D Channel 2 input.
SDA/SDI/INT/MDCIN1	CPS2	AN	—	Capacitive sensing input 2.
	C10UT	_	CMOS	Comparator C1 output.
	SRQ	_	CMOS	SR latch non-inverting output.
	TOCKI	ST	—	Timer0 clock input.
	CCP1	ST	CMOS	Capture/Compare/PWM 1.
	P1A	_	CMOS	PWM output.
	FLT0	ST	_	ECCP Auto-Shutdown Fault input.
	SDA	I ² C™	OD	I ² C™ data input/output.
	SDI	CMOS	_	SPI data input.
	INT	ST	—	External interrupt.
	MDCIN1	ST	—	Modulator Carrier Input 1.
RA3/SS ⁽¹⁾ /T1G ⁽¹⁾ /VPP/MCLR	RA3	TTL		General purpose input.
	SS	ST		Slave Select input.
	T1G	ST	_	Timer1 Gate input.
	VPP	HV	_	Programming voltage.
	MCLR	ST		Master Clear with internal pull-up.

ST = Schmitt Trigger input with CMOS levels I^2C^{TM} = Schmitt Trigger input with I^2C TTL = TTL compatible input HV = High Voltage XTAL = Crystal levels

Note 1: Pin functions can be assigned to one of two pin locations via software. See APFCON register (Register 12-1).

4.0 DEVICE CONFIGURATION

Device Configuration consists of Configuration Word 1 and Configuration Word 2, Code Protection and Device ID.

4.1 Configuration Words

There are several Configuration Word bits that allow different oscillator and memory protection options. These are implemented as Configuration Word 1 at 8007h and Configuration Word 2 register at 8008h.


Note:	The DEBUG bit in Configuration Word 2 is
	managed automatically by device
	development tools including debuggers
	and programmers. For normal device
	operation, this bit should be maintained as
	a '1'.

5.4.2 TWO-SPEED START-UP SEQUENCE

- 1. Wake-up from Power-on Reset or Sleep.
- Instructions begin execution by the internal oscillator at the frequency set in the IRCF<3:0> bits of the OSCCON register.
- 3. OST enabled to count 1024 clock cycles.
- 4. OST timed out, wait for falling edge of the internal oscillator.
- 5. OSTS is set.
- 6. System clock held low until the next falling edge of new clock (LP, XT or HS mode).
- 7. System clock is switched to external clock source.

5.4.3 CHECKING TWO-SPEED CLOCK STATUS

Checking the state of the OSTS bit of the OSCSTAT register will confirm if the microcontroller is running from the external clock source, as defined by the FOSC<2:0> bits in the Configuration Word 1, or the internal oscillator.

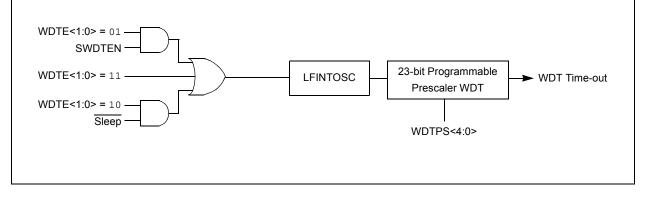
FIGURE 5-8: TWO-SPEED START-UP

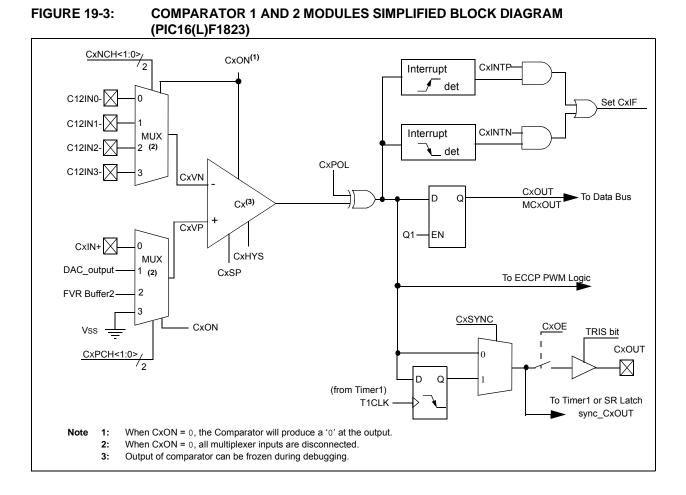
Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA	PS2	PS1	PS0	164
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	87
PIE2	OSFIE	C2IE ⁽¹⁾	C1IE	EEIE	BCL1IE	_	_	_	88
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	89
PIR2	OSFIF	C2IF ⁽¹⁾	C1IF	EEIF	BCL1IF	_	_	_	90

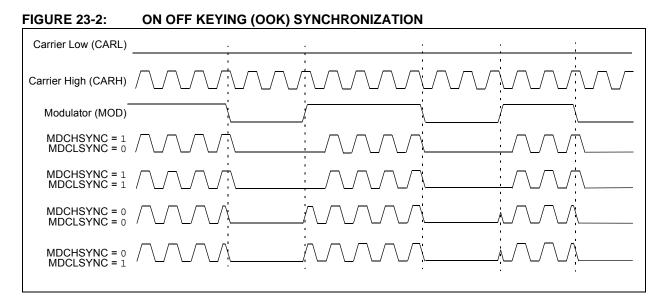
TABLE 8-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS

Legend: — = unimplemented locations read as '0'. Shaded cells are not used by Interrupts.

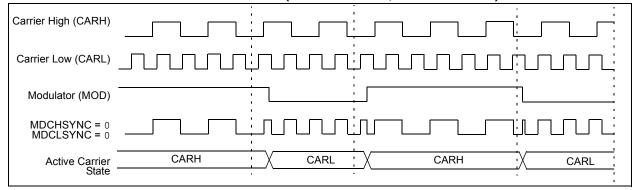
Note 1: PIC16(L)F1823 only.

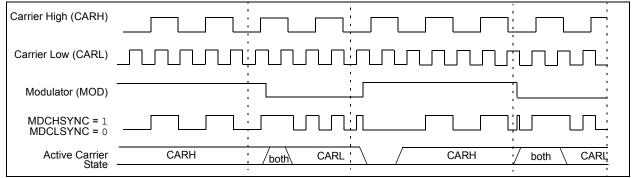

10.0 WATCHDOG TIMER


The Watchdog Timer is a system timer that generates a Reset if the firmware does not issue a CLRWDT instruction within the time-out period. The Watchdog Timer is typically used to recover the system from unexpected events.


The WDT has the following features:

- · Independent clock source
- Multiple operating modes
 - WDT is always on
 - WDT is off when in Sleep
 - WDT is controlled by software
 - WDT is always off
- Configurable time-out period is from 1 ms to 256 seconds (typical)
- Multiple Reset conditions
- Operation during Sleep


FIGURE 10-1: WATCHDOG TIMER BLOCK DIAGRAM



EXAMPLE 23-1: NO SYNCHRONIZATION (MDSHSYNC = 0, MDCLSYNC = 0)

FIGURE 23-3: CARRIER HIGH SYNCHRONIZATION (MDSHSYNC = 1, MDCLSYNC = 0)

24.3.6 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the CCP1 pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

24.3.7 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See Section 5.0 "Oscillator Module (With Fail-Safe Clock Monitor)" for additional details.

24.3.8 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

24.3.9 ALTERNATE PIN LOCATIONS

This module incorporates I/O pins that can be moved to other locations with the use of the alternate pin function register, APFCON. To determine which pins can be moved and what their default locations are upon a Reset, see **Section 12.1 "Alternate Pin Function**" for more information.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON	RXDTSEL	SDOSEL	SSSEL	—	T1GSEL	TXCKSEL	P1BSEL ⁽²⁾	CCP1SEL ⁽²⁾	114
CCP1CON	P1M·	<1:0>	DC1B	<1:0>		CCP1I	V<3:0>		213
CCPR1L	Capture/Com	Capture/Compare/PWM Register x Low Byte (LSB)						191	
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	86
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	87
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	89
PR2	Timer2 Period	d Register							176*
T2CON	-	- T2OUTPS<3:0> TMR2ON T2CKPS<:0>1						178	
TMR2	Timer2 Module Register							176*	
TRISA	_	—	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	117
TRISC ⁽¹⁾	_	_	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	121

TABLE 24-8: SUMMARY OF REGISTERS ASSOCIATED WITH STANDARD PWM

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the PWM.

* Page provides register information.

Note 1: PIC16(L)F1823 only.

2: PIC12(L)F1822 only.

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-1/1
			STR1SYNC	STR1D	STR1C	STR1B	STR1A
bit 7		·					bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is ur	nchanged	x = Bit is unk	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is s	et	'0' = Bit is cle	ared				
bit 7-5	Unimplemer	nted: Read as	0'				
bit 4	STR1SYNC:	Steering Sync	bit				
		• •	occurs on next	•			
	•	• .		eginning of the	e instruction cyc	le boundary	
bit 3		ering Enable bit					
				olarity control	from CCP1M<	1:0>	
	•	is assigned to p					
bit 2	STR1C: Stee	ering Enable bit	: C ⁽²⁾				
	1 = P1C pin	has the PWM v	vaveform with p	olarity control	from CCP1M<	1:0>	
	0 = P1C pin i	is assigned to p	oort pin				
bit 1	STR1B: Stee	ering Enable bit	В				
	1 = P1B pin l	has the PWM v	vaveform with p	olarity control	from CCP1M<	1:0>	
	0 = P1B pin i	s assigned to p	oort pin				
bit 0	STR1A: Stee	ering Enable bit	A				
	1 = P1A pin l	has the PWM v	vaveform with p	olarity control	from CCP1M<	1:0>	
	0 = P1A pin i	is assigned to p	port pin				
Note 1:	The PWM Steerin	ia mode is avai	lable only when	the CCP1CO	N register hits (CCP1M<3·2> =	= 11 and

REGISTER 24-4: PSTR1CON: PWM STEERING CONTROL REGISTER⁽¹⁾

Note 1: The PWM Steering mode is available only when the CCP1CON register bits CCP1M<3:2> = 11 and P1M<1:0> = 00.

2: PIC16(L)F1823 only.

25.3 I²C MODE OVERVIEW

The Inter-Integrated Circuit Bus (I^2C) is a multi-master serial data communication bus. Devices communicate in a master/slave environment where the master devices initiate the communication. A Slave device is controlled through addressing.

The I²C bus specifies two signal connections:

- Serial Clock (SCL)
- Serial Data (SDA)

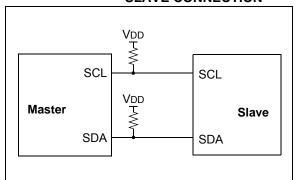
Figure 25-11 shows the block diagram of the MSSP1 module when operating in I²C mode.

Both the SCL and SDA connections are bidirectional open-drain lines, each requiring pull-up resistors for the supply voltage. Pulling the line to ground is considered a logical zero and letting the line float is considered a logical one.

Figure 25-11 shows a typical connection between two processors configured as master and slave devices.

The I^2C bus can operate with one or more master devices and one or more slave devices.

There are four potential modes of operation for a given device:


- Master Transmit mode (master is transmitting data to a slave)
- Master Receive mode
 (master is receiving data from a slave)
- Slave Transmit mode (slave is transmitting data to a master)
- Slave Receive mode
 (slave is receiving data from the master)

To begin communication, a master device starts out in Master Transmit mode. The master device sends out a Start bit followed by the address byte of the slave it intends to communicate with. This is followed by a single Read/Write bit, which determines whether the master intends to transmit to or receive data from the slave device.

If the requested slave exists on the bus, it will respond with an Acknowledge bit, otherwise known as an ACK. The master then continues in either Transmit mode or Receive mode and the slave continues in the complement, either in Receive mode or Transmit mode, respectively.

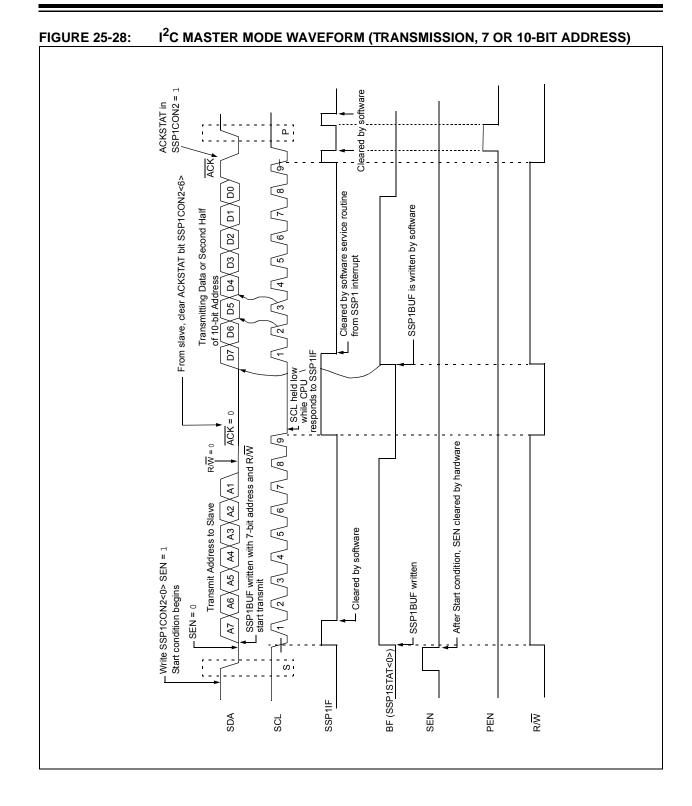
A Start bit is indicated by a high-to-low transition of the SDA line while the SCL line is held high. Address and data bytes are sent out, Most Significant bit (MSb) first. The Read/Write bit is sent out as a logical one when the master intends to read data from the slave, and is sent out as a logical zero when it intends to write data to the slave.

FIGURE 25-11: I²C MASTER/ SLAVE CONNECTION

The Acknowledge bit (\overline{ACK}) is an active-low signal, which holds the SDA line low to indicate to the transmitter that the slave device has received the transmitted data and is ready to receive more.

The transition of a data bit is always performed while the SCL line is held low. Transitions that occur while the SCL line is held high are used to indicate Start and Stop bits.

If the master intends to write to the slave, then it repeatedly sends out a byte of data, with the slave responding after each byte with an \overrightarrow{ACK} bit. In this example, the master device is in Master Transmit mode and the slave is in Slave Receive mode.


If the master intends to read from the slave, then it repeatedly receives a byte of data from the slave, and responds after each byte with an \overline{ACK} bit. In this example, the master device is in Master Receive mode and the slave is Slave Transmit mode.

On the last byte of data communicated, the master device may end the transmission by sending a Stop bit. If the master device is in Receive mode, it sends the Stop bit in place of the last ACK bit. A Stop bit is indicated by a low-to-high transition of the SDA line while the SCL line is held high.

In some cases, the master may want to maintain control of the bus and re-initiate another transmission. If so, the master device may send another Start bit in place of the Stop bit or last ACK bit when it is in receive mode.

The I²C bus specifies three message protocols;

- Single message where a master writes data to a slave.
- Single message where a master reads data from a slave.
- Combined message where a master initiates a minimum of two writes, or two reads, or a combination of writes and reads, to one or more slaves.

REGISTER 25-1: SSP1STAT: SSP1 STATUS REGISTER

R/W-0/0	R/W-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0	R-0/0		
SMP	CKE	D/A	Р	S	R/W	UA	BF		
bit 7				1	L	•	bit (
Legend:									
R = Readable b	bit	W = Writable b	it	U = Unimplem	ented bit, read as	'0'			
u = Bit is uncha	nged	x = Bit is unkno	own	-n/n = Value at	POR and BOR/V	alue at all other l	Resets		
'1' = Bit is set		'0' = Bit is clear	red						
bit 7		Input Sample bi	t						
	<u>SPI Master mo</u>	<u>de:</u> sampled at end c	of data output tir	ne					
		sampled at middl							
	<u>SPI Slave mod</u>								
	-	leared when SP	I is used in Slav	e mode					
	$\frac{\ln I^2 C \text{ Master o}}{1 = \text{Slew rate }}$	<u>er Slave mode:</u> control disabled t	for standard sne	ed mode (100 k	Hz and 1 MHz)				
		control enabled f	•	•					
bit 6		k Edge Select bi	o .	· · · ·					
	In SPI Master of	or Slave mode:							
		ccurs on transitio							
	-	Transmit occurs on transition from Idle to active clock state							
		<u>mode only:</u> ble input logic so that thresholds are compliant with SMBus specification							
		Bus specific inp							
bit 5	D/A: Data/Add	ress bit (I ² C mod	e only)						
		hat the last byte r							
		hat the last byte r	eceived or trans	smitted was add	ress				
bit 4	P: Stop bit	This bit is also							
		at a Stop bit has			disabled, SSP1EN	is cleared.)			
		s not detected la			on resety				
bit 3	S: Start bit								
	(I ² C mode only	. This bit is clear	ed when the MS	SP1 module is	disabled, SSP1EN	l is cleared.)			
		hat a Start bit has		last (this bit is '0	o' on Reset)				
	_	s not detected la							
bit 2		te bit information			natch. This bit is o	ally valid from the	addraga matak		
		t bit, Stop bit, or		ne last audress i		any valid from the	address match		
	In I ² C Slave me	ode:							
	1 = Read 0 = Write								
	In I ² C Master n	node:							
	1 = Transmit i	s in progress							
		s not in progress			vill indianta if tha l	MCCD1 is in Idla	mada		
1-14 A					will indicate if the I	MSSPT is in Idle	mode.		
bit 1		ldress bit (10-bit			SP1ADD register				
		es not need to b	•		INDD Tegister				
bit 0	BF: Buffer Full	Status bit							
	Receive (SPI a								
	1 = Receive co	mplete, SSP1BL							
		t complete, SSP	1BUF is empty						
	<u>Transmit (I²C n</u> 1 = Data transr		loes not include	the ACK and St	op bits), SSP1BU	F is full			
		nit complete (doe							

30.2 DC Characteristics: PIC12(L)F1822/16(L)F1823-I/E (Industrial, Extended)

PIC12LF1	1822/16LF1823	$\begin{array}{ll} \mbox{Standard Operating Conditions (unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for industrial} \\ -40^\circ C \leq TA \leq +125^\circ C \mbox{ for extended} \end{array}$					
PIC12F1822/16F1823							less otherwise stated) A ≤ +85°C for industrial A ≤ +125°C for extended
Param	Device	Min.	Тур†	Max.	Units		Conditions
No.	Characteristics		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Шал	onno	Vdd	Note
	Supply Current (IDD) ^{(1,}	2)					
D010			5.0	15	μA	1.8	Fosc = 32 kHz, -40°C to +85°C
		_	8.0	19	μA	3.0	LP Oscillator mode
D010			24	36	μΑ	1.8	Fosc = 32 kHz, -40°C to +85°C
			30	48	μΑ	3.0	LP Oscillator mode
			32	66	μA	5.0	
D010A		—	5.0	21	μA	1.8	Fosc = 32 kHz, -40°C to +125°C
		_	7.5	25	μΑ	3.0	LP Oscillator mode
D010A		_	24	60	μΑ	1.8	Fosc = 32 kHz, -40°C to +125°C
		—	30	70	μΑ	3.0	LP Oscillator mode
			32	80	μA	5.0	
D011		_	60	115	μA	1.8	Fosc = 1 MHz
		—	111	200	μA	3.0	XT Oscillator mode
D011			82	135	μA	1.8	Fosc = 1 MHz
			141	225	μA	3.0	XT Oscillator mode
			200	320	μA	5.0	
D012		_	145	280	μA	1.8	Fosc = 4 MHz
			260	460	μA	3.0	XT Oscillator mode
D012			165	300	μA	1.8	Fosc = 4 MHz
			290	500	μA	3.0	XT Oscillator mode
		_	368	700	μA	5.0	
D013			34	170	μA	1.8	Fosc = 1 MHz
			59	250	μA	3.0	EC Oscillator mode, Medium-power mode
D013			60	200	μA	1.8	Fosc = 1 MHz
			92	260	μA	3.0	EC Oscillator mode Medium-power mode
		—	126	350	μA	5.0	
D014			118	250	μA	1.8	Fosc = 4 MHz
		—	210	420	μA	3.0	EC Oscillator mode, Medium-power mode

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

- 2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.
- **3:** 8 MHz internal RC oscillator with 4x PLL enabled.
- 4: 8 MHz crystal oscillator with 4x PLL enabled.
- 5: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in kΩ.

30.9 High Temperature Operation

This section outlines the specifications for the following devices operating in the high temperature range between -40° C and 150° C.⁽²⁾

- PIC12F1822⁽⁴⁾
- PIC16F1823⁽⁴⁾

When the value of any parameter is identical for both the 125°C Extended and the 150°C High Temp. temperature ranges, then that value will be found in the standard specification tables shown earlier in this chapter, under the fields listed for the 125°C Extended temperature range. If the value of any parameter is unique to the 150°C High Temp. temperature range, then it will be listed here, in this section of the data sheet.

If a Silicon Errata exists for the product and it lists a modification to the 125°C Extended temperature range value, one that is also shared at the 150°C High Temp. temperature range, then that modified value will apply to both temperature ranges.

- Note 1: Writes are <u>not allowed</u> for Flash program memory above 125°C.
 - 2: AEC-Q100 reliability testing for devices intended to operate at 150°C is 1,000 hours. Any design in which the total operating time from 125°C to 150°C will be greater than 1,000 hours is not warranted without prior written approval from Microchip Technology Inc.
 - **3:** The temperature range indicator in the catalog part number and device marking is "H" for -40°C to 150°C.

Example: PIC12F1822T-H/SN indicates the device is shipped in a Tape and Reel configuration, in the SOIC package, and is rated for operation from -40°C to 150°C.

- 4: The low voltage versions of these devices, PIC12LF1822 and PIC16LF1823, is not released for operation above +125°C.
- Errata Sheet DS80502 lists various mask revisions. 150°C operation applies only to revisions A9 and later.
- 6: The Capacitive Sensing module (CPS) should not be used in High Temperature devices. Function and its parametrics are not warranted.
- Only SOIC (SN or SL), TSSOP (ST), and DFN/QFN (MF or ML) packages will be offered, not PDIP or UQFN.

Parameter	Condition	Value
Max. Current: VDD	Source	15 mA
Max. Current: Vss	Sink	15 mA
Max. Current: Pin	Source	5 mA
Max. Current: Pin	Sink	5 mA
Max. Storage Temperature	—	-65°C to 155°C
Max. Junction Temperature	—	+155°C
Ambient Temperature under Bias	—	-40°C to +150°C

TABLE 30-18: ABSOLUTE MAXIMUM RATINGS

Note: Stresses above those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability.

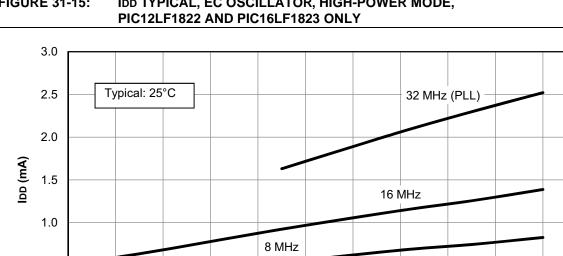
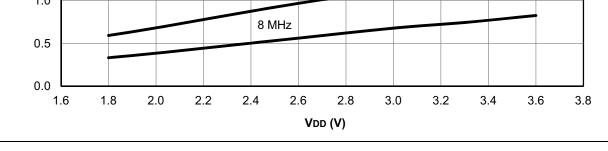
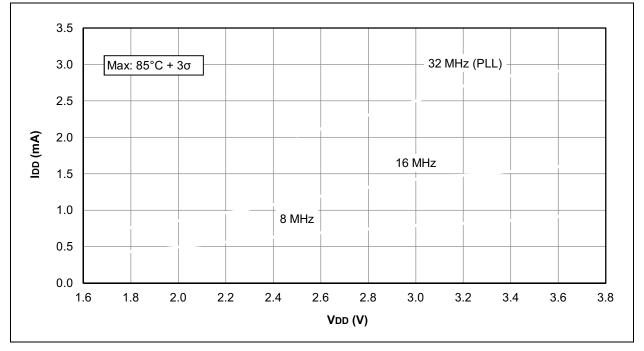
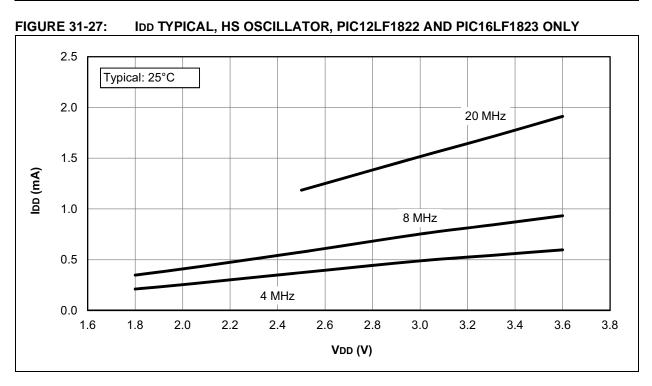





FIGURE 31-15: IDD TYPICAL, EC OSCILLATOR, HIGH-POWER MODE,

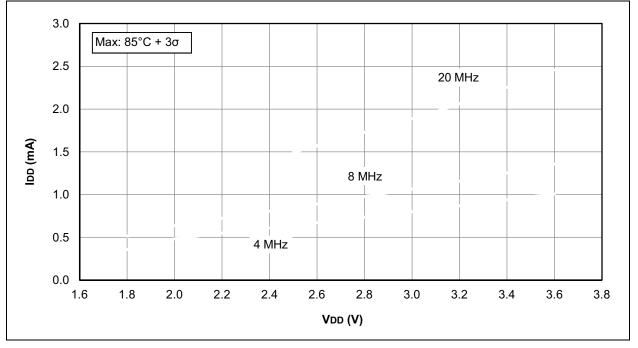


FIGURE 31-16: IDD MAXIMUM, EC OSCILLATOR, HIGH-POWER MODE, PIC12LF1822 AND PIC16LF1823 ONLY

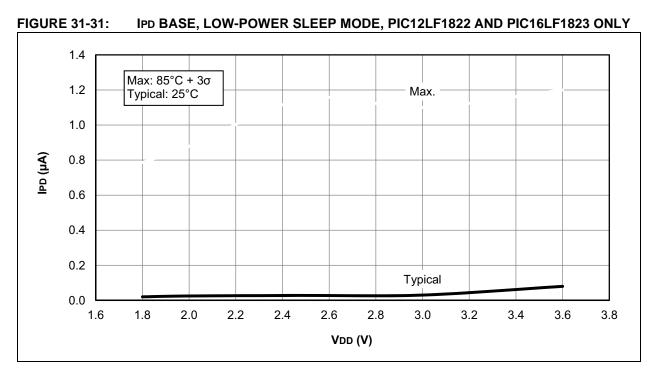
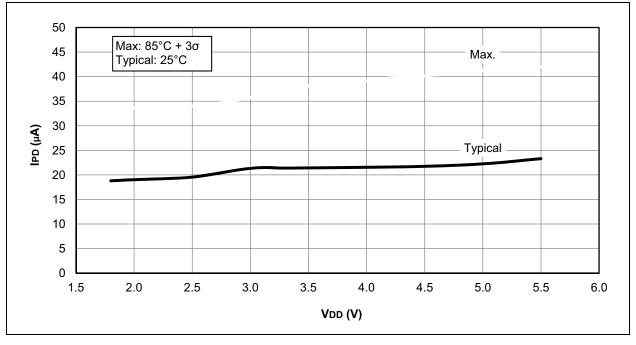
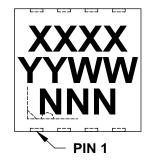




FIGURE 31-32: IPD BASE, LOW-POWER SLEEP MODE, PIC12F1822 AND PIC16F1823 ONLY

33.1 Package Marking Information (Continuation)

8-Lead DFN (3x3x0.9 mm) 8-Lead UDFN (3x3x0.5 mm)

Example

TABLE 33-1: 8-LEAD 3x3x0.9 DFN (MF) TOP MARKING

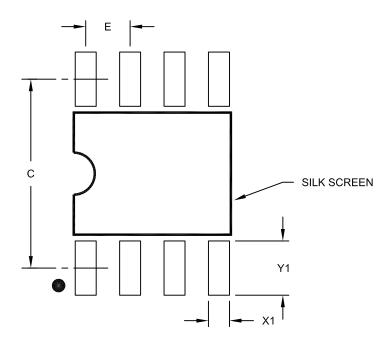

Part Number	Marking
PIC12F1822T-E/MF	MFLO
PIC12F1822T-I/MF	MFMO
PIC12LF1822T-E/MF	MFPO
PIC12LF1822T-I/MF	MFNO

TABLE 33-2: 8-LEAD 3x3x0.5 UDFN (RF) TOP MARKING

Part Number	Marking
PIC12F1822T-E/RF	DABO
PIC12F1822T-I/RF	DAAO
PIC12LF1822T-E/RF	DAHO
PIC12LF1822T-I/RF	DAGO

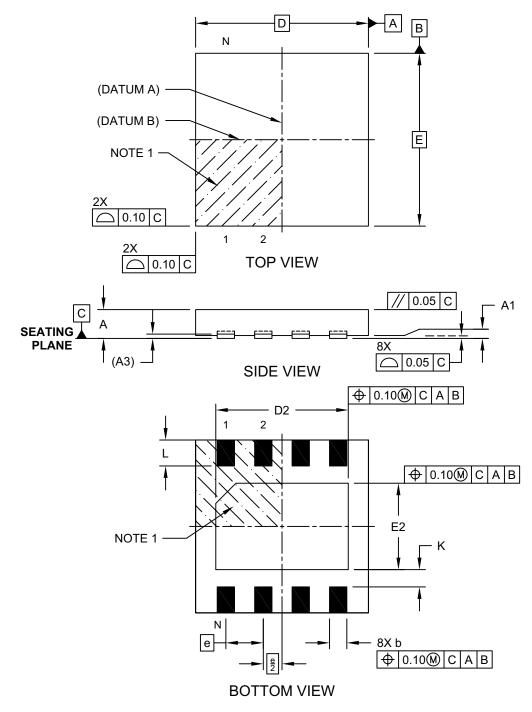
8-Lead Plastic Small Outline (SN) – Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E		1.27 BSC	
Contact Pad Spacing	С		5.40	
Contact Pad Width (X8)	X1			0.60
Contact Pad Length (X8)	Y1			1.55

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2057A

8-Lead Ultra Thin Plastic Dual Flat, No Lead Package (RF) - 3x3x0.50 mm Body [UDFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-254A Sheet 1 of 2